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Abstract Palladium nanoparticles supported on carbonVulcan
XC72 (Pd/C) and on phosphorus-doped carbon (Pd/P-C) were
prepared by an alcohol reduction process. X-ray diffractograms
of Pd/C and Pd/P-C showed the typical face-centered cubic
(fcc) structure of Pd. The crystallite sizes of Pd fcc phase were
around 8 nm for both samples. X-ray photoelectron spectrosco-
py revealed to Pd/C and Pd/P-C that Pd was found predomi-
nantly in the metallic state and to Pd/P-C, the presence of P
increases the amount of oxygen on the electrocatalyst surface.
The activity and stability of the electrocatalyts for ethanol
electro-oxidation in alkaline mediumwas investigated by cyclic
voltammetry and chronoamperometry experiments. The peak
current density on Pd/P-C was 50% higher than on Pd/C, while
the current density measured after 30 min at − 0.35 V vs. Hg/
HgO was 65% higher on Pd/P-C than on Pd/C. The enhance-
ment of the catalytic activity of Pd/P-C electrocatalyst might be
related to the presence of higher amounts of oxygen species on
the surface, which could contribute to the oxidation of interme-
diates formed during ethanol electro-oxidation process.
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Introduction

The search for new energy sources, which is based on the
concept of clean and renewable energy, has been intensified

in the recent years [1–3]. In this context, fuel cells may offer
an excellent alternative to the current energy generation as a
clean and efficient power source [4–7]. Polymer electrolyte
membrane fuel cells (PEMFCs) represent a promising alterna-
tive for transport and stationary power generation [8–10].
Thus, this technology could significantly contribute to the
reduction of greenhouse gas emissions [11]. Different fuels
have been proposed to feed these devices, e.g., methanol [4,
12], ethylene glycol [6, 13], formic acid [14, 15], and ethanol
[5, 8].

Among the different possible fuels, ethanol is considered
promising due to its high energy density (8.0 kW kg−1), low
toxicity, and for being a renewable fuel obtained from the
biomass [16–19]. The complete oxidation of ethanol to CO2

produces 12 electrons per ethanol molecule [5, 19–21].
However, to oxidize ethanol to CO2, the C–C bond splitting
is required, which is difficult in low temperatures [5, 19, 20].
As a consequence, acetaldehyde and acetic acid (acetate in
alkaline media), which produce 2 and 4 electrons per ethanol
molecule, respectively, are the main products [19, 22], which
represent considerable loss in the faradic efficiency to the
process [23, 24]. Although the production of CO2 from etha-
nol electro-oxidation is difficult, it occurs [25], and CO is an
intermediate to the CO2 formation, which adsorbs on the cat-
alyst surface, blocking the activity sites for ethanol electro-
oxidation, acting as a poisoning species [26].

It has been reported that the ethanol electro-oxidation ki-
netic in alkaline media is enhanced compared to the acid me-
dia [7, 27]. According to the literature, palladium shows
higher catalytic activity than platinum for ethanol electro-
oxidation in alkaline media [26, 28–33]. This aspect is very
important because palladium is more abundant and less expen-
sive than platinum [28, 34, 35]. However, the catalytic activity
of palladium towards ethanol electro-oxidation can be im-
proved by introducing a second or a third element, producing
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bimetallic or multimetallic palladium-based electrocatalysts,
such as PdAu/C, PdAg/C, and PdCuPb/C [30, 31, 36, 37].
The synergic effect of Pd with different metals was also ob-
served for different oxidation reactions, such as ethylene glycol
[38, 39], glycerol [13, 40], and glucose [41].

The electrocatalysts are usually synthesized as nanoparti-
cles and anchored on a support material, which is usually
carbon black due to its large surface area, high electrical con-
ductivity, porous structures, and low cost [42, 43]. However,
this support material does not enhance the catalytic activity of
the electrocatalysts, but serves mostly as a mechanical support
[44–47]. In order to improve the catalytic activity of the mate-
rials, carbon has been doped with different elements, such as P,
N, B, S, and Se [48, 49]. Among these elements, phosphorus is
an interesting choice since it has 5 electrons in its outer elec-
tronic orbit which might alter the electron distribution of the
metal nanoparticles [50]. It is also reported that the presence of
phosphorus into the carbon support materials increase the
amount of oxygen on the electrocatalysts, which is beneficial
to oxidize poisoning species, like CO, for example [51, 52].

Song et al. [51] investigated the influence of phosphorus as
dopant into ordered mesoporous carbon used as support for
platinum nanoparticles for methanol and CO electro-oxida-
tion. It was seen that the presence of phosphorus increased
the amount of oxygen on the material and shifted the onset
of CO and methanol electro-oxidation to lower overpotential
compared to the same catalyst without phosphorus.

According to Li et al. [50], the oxidation peak of CO
electro-oxidation was negatively shifted on Pd/P-C compared
to Pd/C, which was attributed to the higher amount of oxygen
groups on Pd/P-C. The electrocatalytic activity of Pd/P-C for
formic acid oxidation was also higher than Pd/C [50].

In the present study, palladium nanoparticles were support-
ed on carbon and phosphorus-doped carbon. The materials
were used as electrocatalysts for ethanol electro-oxidation in
alkaline media. The objective was to investigate the beneficial
effect of phosphorus-doping carbon into the electrocatalysts as
already shown for electro-oxidation of methanol, formic acid,
and CO [50, 51].

Experimental

Phosphorus-doped carbon was prepared based on the method
presented in reference [53]. In this process, certain amount of
phosphoric acid (corresponding 3% in mass ratio of the car-
bon) was inserted to the Vulcan XC72Cabot (previously treat-
ed at in a tubular oven at 800 °C under argon atmosphere) and
heated (10 °C min−1) under argon atmosphere in a tubular
furnace at 800 °C for 1 h.

Palladium nanoparticles supported on carbon and
phosphorus-doped carbon (20 wt% of metal loading) were
synthesized by a modified alcohol reduction process related

previously [54], using Pd(NO3)2·2H2O (Sigma-Aldrich) as
the metallic precursor. In this process, Pd(NO3)2·2H2O was
diluted in a solution containing three parts of ethylene glycol
and one of water (v/v), then appropriated amount of carbon or
phosphorus-doped carbon was subsequently added. The dis-
persion was kept in an ultrasonic bath for 20 min and then
submitted to reflux for 3 h under open atmosphere at 150 °C.
The resulting electrocatalysts were filtered, washed with de-
ionized water, and dried in an oven at 70 °C for 2 h.

A Rigaku diffractometer model Miniflex II using Cu
Kα radiation source (0.15406 nm) was used to perform
the X-ray diffraction (XRD) analysis. The X-ray diffrac-
tion patterns were recorded with a step size of 0.05° and a
scan time of 2 s per step from 2θ = 20° to 90°. A JEOL
transmission electron microscope (TEM) model JEM-
2100 operated at 200 kV was used to obtain information
about the sizes and distribution of the nanoparticles. The
size distribution and mean particle sizes were performed by
measuring about 200 nanoparticles from different regions of
the electrocatalysts.

The X-ray photoelectron spectroscopy (XPS) analyses
were done with an SPECSLAB II (Phoibos-Hsa 3500 150, 9
channeltrons) SPECS spectrometer, with Al Kα source
(E = 1486.6 eV) working at 15 kV, Epass = 40 eV, 0.2 eV
energy step, and 2 s per point was the acquisition time. The
synthesized electrocatalysts were kept on stainless steel sam-
ple holders and transported under inert atmosphere to the pre-
chamber of the XPS staying there in a vacuum atmosphere for
2 h. The residual pressure inside the analysis chamber was
~ 1 × 10−9 Torr. The binding energies (BE) of the Pd 3d, P
2p, O 1s, and C 1s spectral peaks were referenced to C 1s
peak, at 284.5 eV, providing accuracy within ± 0.2 eV.

Electrochemical measurements were performed with a
potentiostat/galvanostat PGSTAT 302N Autolab at room tem-
perature in a three-electrode cell made of Teflon. As reference
electrode and counter electrode, a Hg/HgO and a platinum foil
were used. A glassy carbon (GC) with the geometric area of
0.031 cm2 was the working electrodes to support the synthe-
sized electrocatalysts. Alumina (1 μm) was employed to pol-
ish the GC support before each experiment. In all experimen-
tal procedures, ultrapure water obtained from aMilli-Q system
(Millipore®) was used.

Theworking electrodes were constructed by dispersing 6mg
of the electrocatalyst powder in 900 μL of water, 100 μL of
isopropyl alcohol, and 40 μL of 5% Nafion®. Then, the mix-
ture was dispersed in an ultrasonic bath for 30 min. Shortly
thereafter, aliquots of 10 μL of the dispersion fluid were depos-
ited onto the GC surface and dried for 20 min at 60 °C.

Cyclic voltammograms (CV) in ethanol-free solutions
were carried out at the potential range of − 0.85 to 0.1 V vs.
Hg/HgO at a scan rate of 20 mV s−1. The electrocatalysts were
cycled for five consecutive cycles in the 1 mol L−1 KOH
solution, resulting in the reproducible shape of the CVs. The
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ethanol electro-oxidation was investigated by the CV experi-
ments in the presence of 1 mol L−1 ethanol in 1 mol L−1

KOH, carried out at a scan rate of 20 mV s−1 between − 0.85
and 0.1 V vs. Hg/HgO. The electrocatalysts were cycled
for three consecutive cycles and the third cycle is shown.
Chronoamperometric experiments were carried out at
− 0.35 V vs. Hg/HgO for 30 min.

The catalyst electrochemical active surface area (ECSA)
was determined by stripping experiments of CO monolayers,
integrating the COad stripping charges, assuming the factor of
420 μC cm−2 [55]. The experiment was performed in
1 mol L−1 KOH, carried out at a scan rate of 20 mV s−1 be-
tween − 0.85 and 0.1 V vs. Hg/HgO. The working electrode
was polarized at − 0.6 V and carbon monoxide was bubbled
during 20 min into electrolyte, followed by nitrogen gas for
20 min [56]. The estimated ECSAvalues for Pd/C and Pd/P-C
were 34.1 m2 per grams of Pd.

20 30 40 50 60 70 80 90

In
te

ns
ity

 / 
ar

b.
 u

ni
ts

2 / Degree

Pd/P-C 

Pd/C 

(111)

(200)

(220)
(311)

(222)

Fig. 1 X-ray diffraction patterns of Pd/C and Pd/P-C electrocatalysts

360 355 350 345 340 335 330

Pd/C

Pd/P-C

Pd 3d 3d
3/2

3d5/2a b

c

C
PS

 (a
.u

.)

Binding energy (eV)

Binding energy (eV)

Binding energy (eV)
296 294 292 290 288 286 284 282 280

P-C

C

C
PS

 (a
.u

.)

Pd/P-C

C-CC-H

-COOH

C 1s -C-OH
>C=OH

Pd/C

140 138 136 134 132 130 128

P-C

P2p

C
PS

 (a
.u

.)

Pd/P-C

Fig. 2 Fitted XPS Pd 3d (a), C 1s
(b), and P 2p (c) of C, P-C, Pd/C,
and Pd/P-C samples

Ionics (2018) 24:1111–1119 1113



Results and discussion

The X-ray diffractograms of Pd/C and Pd/P-C electrocatalysts
are shown in Fig. 1. In all XRD patterns, a broad peak at about
2θ = 25° due to the (022) reflection of the hexagonal structure
of Vulcan XC 72 carbon was observed [57, 58]. Peaks corre-
sponding to the palladium face-centered cubic (fcc) structure
can be seen at approximately 2θ = 39°, 46°, 67°, and 81° that
correspond to (111), (200), (220), and (311) planes, respec-
tively [16, 59]. Using the Scherrer equation and (220) peak,
the mean crystallite size of the materials was estimated [17,
60]. The obtained values were 9.2 and 8.1 nm for Pd/P-C and
Pd/C, respectively.

In order to investigate the surface composition and the ox-
idation state of the elements present in the eletrocatalyst XPS,
analyses were performed for the samples and the results are
presented in Fig. 2 and Tables 1 and 2. As shown in Fig. 2a, Pd
3d region exhibits a doublet (i.e., 3d5\2 and 3d3\2) with a spin-
orbit splitting of about ~ 5.2 eV, in agreement with the litera-
ture [61–63]. In this study, the Pd 3d5/2 peak gives two con-
tributions at 335.6 and 337.9 eV, which on the basis of their
binding energies can be assigned to two different states of
palladium, Pd0 and Pd2+, respectively [61, 63, 64]. As it can
be seen in Table 1, the surfaces of Pd/C and Pd/P-C are pre-
dominantly in the metallic state, 91 and 92%, respectively.
The feature at 346.3 eV is most likely a plasmon loss band
associated with the peak at 335.6 eV [64, 65].

The C 1s spectrum (Fig. 2b) was deconvoluted into six
peaks [66]. The peak at about 284.4 eVis assigned to graphitic
carbon phase, whereas the peak related to hydrocarbons (C–
H) from defects in the graphitic structure is around 286 eV
[66–68]. Additionally, peaks corresponding to carbon–oxygen
bonding structures (–C–OH, >C=O, and –COOH), and a peak
assigned to π→ π∗ plasmon excitation values [66, 68], can be
seen in Table 1. The O 1s peak (Table 1) consists of three
components at about 529, 531, and 534 eV, which are attrib-
uted to the lattice oxygen (OL), surface oxygen species bonded
to carbon support or metal atoms (OS), and oxygen atoms
bonded to carbon by double bonds (OC) and/or adsorbed wa-
ter (OW), respectively [66]. From Tables 1 and 2, it is possible
to see that the P-C and Pd/P-C have higher percentage of
oxygen on the surface than C and Pd/C; consequently, it is
possible to conclude that the presence of phosphorus into the
carbon support increases the amount of oxygen on the
electrocatalyst surface, which is in agreement with the litera-
ture [50, 51].

In Fig. 2c, it is possible to observe the peak related to P 2p
at around 134 eV [51, 59]. Although it is possible to observe a
peak related to phosphorus element, the presence of phospho-
rus on the surface is only in very small amount. However, it is
clear that the phosphorus is present into the carbon.

Figure 3 shows the TEMmicrographs and histogram of the
palladium particle sizes. The palladium nanoparticles support-
ed on carbon (Fig. 3a) and phosphorus-doped carbon (Fig. 3b)

Table 1 XPS characteristics of
Pd 4f5/2, P 2p, and O 1s regions
for C, P-V, Pd/C, and Pd/P-C
samples

Samples Binding energy (eV)

Pd 3d5/2 P 2p O 1s

Pd0 Pd2+ OL OS OC OW

C n.d. n.d. n.d. 528.9 (8) 531.2 (83) 534.4 (9)

P-C n.d. n.d. 133.9 529.4 (12) 531.6 (79) 534.4 (9)

Pd/C 335.6 (91) 337.9 (9) n.d. 529.6 (33) 531.5 (55) 534.6 (12)

Pd/P-C 335.6 (92) 337.8 (8) 134.0 529.8 (32) 531.5 (58) 534.7 (10)

Percent of species

n.d. not determined

Table 2 XPS characteristics of C 1s region for C, P-C, Pd/C, and Pd/P-C samples

Sample Binding energy C 1s (eV) Peak intensity (%)

Peak I C–C Peak II C–H (defects) Peak III –C–OH Peak IV >C=O Peak V –COOH Peak VI π → π* IOxy/IC**
b

C 284.5 (56)*a 286.0 (22) 287.5 (10) 289.2 (6) 290.9 (4) 292.8 (2) 19

P-CP 284.5 (50) 286.0 (22) 287.3 (15) 288.9 (6) 290.7 (5) 292.5 (2) 26

Pd/C 284.5 (57) 286.0 (22) 287.4 (10) 289.0 (5) 290.7 (4) 292.5 (2) 19

Pd/P-C 284.5 (52) 285.9 (23) 287.2 (12) 288.9 (7) 290.6 (4) 292.5 (2) 24

a Percent of species
b Intensity of three oxygen-containing functional groups (peaks III–V) in % of total C 1s area
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are relatively well dispersed on the material support. In the
corresponding histograms, it is possible to see that the nano-
particle sizes are from 2 to 18 nm, but the highest percentage of
them are smaller than 10 nm. The particle mean size of Pd/C is
7.92 ± 3.08 nm and Pd/P-C is 8.06 ± 2.76 nm, which are in
good concordance with the mean crystallite size estimated by
Scherrer equation and are in agreement with the nanoparticle
sizes of the catalysts synthesized by the same method [69, 70].

The cyclic voltammetry of the electrocatalysts in 1 mol L−1

KOH in the potential range of − 0.85 to 0.1 V are shown in
Fig. 4. As it can be seen, the CV shape of palladium in alkaline
media is similar from that reported in the literature [10, 33,
71]. The region from − 0.20 to 0.1 V (forward scan) is related
to the palladium oxide formation and in the reverse scan, a
peak at about − 0.2 V represents the reduction of palladium
oxide [10, 72]. The peak at around − 0.4 V related to OH
adsorption on Pd/C [10, 73] is slightly shifted to higher

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

Fr
eq

ue
nc

y 

Particle size / nm

 Pd/C

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

Fr
eq

ue
nc

y

Particle size / nm

 Pd/P-C 

a

b

Fig. 3 TEM micrographs of Pd/
C (a) and Pd/P-C (b)
electrocatalysts, and the respec-
tive histograms

-0.8 -0.6 -0.4 -0.2 0.0
-15

-10

-5

0

5

10

j /
 m

A
 m

g-1

vs. E / V Hg/HgO

 Pd/C
 Pd/P-C

Fig. 4 Voltammograms of Pd/C and Pd/P-C in 1 mol L−1 KOH at
20 mV s−1

-0.8 -0.6 -0.4 -0.2 0.0

0

50

100

150

200

250

300

j /
 m

A
 m

g-1

E / V vs. Hg/HgO

 Pd/C 
 Pd/P-C

Fig. 5 Voltammograms of Pd/C and Pd/P-C in 1 mol L−1 KOH +
1 mol L−1 ethanol at 20 mV s−1

Ionics (2018) 24:1111–1119 1115



overpotential on Pd/P-C. As it can be observed, the presence
of phosphorus into the carbon support did not lead to signif-
icant changes in the shape of the CVs of palladium
electrocatalysts as also observed in the literature [50].

Cyclic voltammetry was used to study the electrocatalytic
activity of the Pd/C and Pd/P-C towards ethanol electro-oxi-
dation. Figure 5 shows the CVs in 1 mol L−1 KOH +
1 mol L−1 ethanol. The presence of phosphorus into carbon
support enhanced the catalytic activity of palladium
electrocatalysts. The peak current density from ethanol
electro-oxidation on Pd/P-C was about 50% higher than on
Pd/C. Furthermore, the onset potential for ethanol electro-
oxidation on Pd/P-C was slightly lower than on the material
without phosphorus. The onset potential is related to the ther-
modynamics of the process; thus, the thermodynamics of eth-
anol electro-oxidation is favored on Pt/P-C [74, 75]. However,
the higher current density obtained on CVexperiments is also
related to the kinetic of the process [74, 75]. Therefore, the
results obtained suggest that the ethanol electro-oxidation on
Pt/P-C is favored in terms of thermodynamic and kinetic.

Li et al. [50] supported palladium nanoparticles on
phosphorus-doping carbon and observed that the catalytic

activity of the palladium nanoparticles towards formic acid
electro-oxidation was enhanced if compared to palladium sup-
ported on carbon. According to the authors, the presence of
phosphorus into carbon support improves the CO removal of
palladium nanoparticle surface, which was associated with the
higher amount of oxygen groups on the phosphorus-doped
carbon electrocatalysts. Song et al. [51] reported that platinum
nanoparticles supported on phosphorus-doped ordered meso-
porous carbon (Pt/POMC) show higher catalytic activity to-
wards methanol electro-oxidation in the acid medium than
platinum supported on ordered mesoporous carbon (Pt/
OMC). They attributed the enhancement in the catalytic activ-
ity to the higher oxygen content on Pt/POMC electrocatalysts.

It is important to point out that the XPS analysis showed
higher percentage of oxygen on the Pd/P-C electrocatalyst
than on Pd/C. Thus, the highest catalytic activity of Pd/P-C
towards ethanol electro-oxidation might be related to an im-
provement on the oxidation of adsorbed species on the cata-
lyst surface as seen for methanol and formic acid electro-
oxidation [50, 51].

Figure 6 displays the chronoamperometric curves obtained
by polarization at − 0.35 V during 30 min in the presence of
1 mol L−1 ethanol + 1 mol L−1 KOH. As in the CV experi-
ments, a better result was obtained with Pd/P-C than Pd/C
electrocatalyst. The presence of higher amount of oxygen on
the Pd/P-C might have improved the tolerance to the poison-
ing species, as discussed earlier [50, 51]. The current density
for ethanol electro-oxidation at the end of the experiment
using Pd/P-C was ~ 65% higher than on Pd/C. Thus, it is
evident the improvement of the catalytic activity of palladium
electrocatalyst towards ethanol electro-oxidation caused by
the presence of phosphorus as dopant into the carbon support
material.

The current densities from ethanol electro-oxidation were
also normalized per ECSA. Figure 7a shows the peak current
density values of the forward scan, and Fig.7b the current
density values obtained in the end of the CA experiments.
As it can be seen, for both normalization, Pd/P-C shows
higher catalytic activity than Pd/C.
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It is important to point out that a lot of papers are focused
on preparing binary or multimetallic Pd-based materials sup-
ported on carbon. In the present study, it was shown that the
catalyst activity of palladium electrocatalysts can be improved
by doping the carbon support with phosphorus. Thus, in future
works, the synergic effect of the phosphorus-doping carbon
support with bimetallic or multimetallic Pd-based materials
can be investigated for ethanol electro-oxidation.

Conclusions

In this work, it was shown that the ethanol electro-oxidation
on palladium nanoparticles can be improved by doping the
carbon support with phosphorus. According to the TEM mi-
crographs, the mean particle sizes were 8.06 ± 2.76 for Pd/P-C
and 7.92 ± 3.08 Pd/C. The XPS analysis revealed that the
presence of phosphorus into the carbon support increased
the amount of oxygen on the catalyst surface which is benefi-
cial to improve the catalytic activity of the palladium
electrocatalysts towards ethanol electro-oxidation. In CV ex-
periments, it was seen that the onset potential of ethanol
electro-oxidation was slightly shifted to lower overpotential
by the presence of phosphorus into carbon support.
Furthermore, the peak current density from ethanol electro-
oxidation on Pd/P-C was 50% higher than on Pd/C. In the
CA analysis, the current density measured at the end of the
experiment was 65% higher on Pd/P-C than on Pd/C. The
improvement in the catalytic activity might be related to the
higher amount of oxygen on the electrocatalyst containing
phosphorus, which could contribute to the oxidation of inter-
mediate products formed during ethanol electro-oxidation
process.
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