

Percepção de risco no processo de trabalho com fontes de radiação

J. C. G. Carneiro¹; D. Levy¹; M. P. Sanches¹; D.L. Rodrigues¹, G. M. A. A. Sordi¹

Gerência de Radioproteção, Instituto de Pesquisas Energéticas e Nucleares 05508-000, São Paulo-SP, Brasil

janetegc@ipen.br

RESUMO

Este estudo discute o risco ocupacional sob três aspectos distintos, que muitas vezes apresentam-se interligados ou são interdependentes no ambiente laboral. São eles: riscos ambientais, falhas humanas e falhas de equipamento. O artigo aborda a exposição potencial no ambiente de trabalho, causada pelo agente do risco físico radiação, resultante do manuseio com fontes de radiação ionizante. Baseado no histórico dos acidentes ocorridos em operações normais, o estudo apresenta um resumo dos principais acidentes em diversas instalações e possíveis causas envolvendo os três aspectos do risco. Em suas considerações finais, apresenta as lições aprendidas e as medidas a serem tomadas com o intuito de contribuir para a prevenção e mitigação dos riscos no ambiente laboral. A análise dos casos de acidentes e suas causas fornecem informações valiosas para a prevenção dos riscos de acidentes similares e contribuem para o aprimoramento dos projetos e procedimentos operacionais.

Palavras-chave: Exposição potencial, risco ocupacional, radiação ionizante.

1. INTRODUÇÃO

Sob a ótica da exposição ocupacional, o risco é avaliado em três aspectos distintos, mas passíveis de interligação: riscos ambientais, incluindo riscos nos locais de trabalho, falhas humanas e falhas de equipamento. As Normas Regulamentadoras limitam as exposições laborais, mas por vezes ocorrem superexposições, que podem resultar em detrimentos à saúde [1, 2]. Este estudo busca identificar os fatores comuns que levaram à ocorrência dos eventos de superexposição, bem como suas causas prováveis e medidas de prevenção e mitigação dos riscos associados às fontes de radiação.

2. MATERIAIS E MÉTODOS

Baseado no histórico de acidentes registrados na literatura [3 - 5], o estudo apresenta um resumo das possíveis causas envolvendo os três tipos de risco e sua interligação-. Foram compilados os dados dos principais tipos de acidentes, fatores que contribuiram para os riscos ocupacionais, lições aprendidas e medidas para a prevenção e mitigação dos riscos.

3. RESULTADOS E DISCUSSÕES

Foram analisadas as contribuições das ocorrências anormais nos EUA e Austrália, conforme demonstrado na Tabela 1 e Tabela 2, respectivamente [4, 5].

Tabela 1: Ocorrências anormais nos EUA entre 1986 e 1995 por tipo de instalação.

Tipo	Ocorrências	Causas	Exemplos					
Aplicações industriais	19,31%	Negligências administrativas	Suspensão da licença de operações, falsificação de dados e falha nos procedimentos operacionais.					
Instalações hospitalares	66,09%	Procedimentos administrativos	Omissão de erros em diagnósticos e terapia, negligência na calibração e aferição de					
nospitalares		de supervisão	equipamentos, contaminação durante o transporte de fontes.					
Reatores nucleares	13,31%	Falhas diversas em reatores	Ruptura em tubulações, perda do sistema de água de serviço, perda de potência elétrica.					

Ciclo	do	1,29%	Falhas diversas	Degradação dos procedimentos de segurança da				
combustível			planta, rompimento de cilindro de UF6 aquecido.					

Tabela 2: Tipos de acidentes ocorridos na Austrália nos anos de 2011 a 2015.

	2011		2012		2013		2014		2015	
Tipo de acidente*	No	%								
Radiologia diagnóstica	57	48%	65	58%	112	55%	175	59%	235	67%
Medicina nuclear	33	28%	28	25%	52	25%	74	25%	84	24%
Radioterapia	10	8%	6	5%	9	4%	14	5%	8	2%
Medidores nucleares	4	3%	0	<1%	3	1%	4	1%	3	<1%
Radiografia industrial	2	2%	0	<1%	1	<1%	6	2%	1	<1%
Total	106		99		177		273	331		31

^{*}A tabela apresenta os acidentes de maior ocorrência. Além destes foram reportadas outras causas (como contaminação, perda e roubo de fontes e causas desconhecidas) cuja incidência foi inferior a 1% no período.

Nos Estados Unidos, como na Austrália, as aplicações médicas foram responsáveis pelo maior índice de ocorrências de superexposição [3 - 5]. Em 2015, o erro humano foi identificado como o principal contribuinte das causas dos acidentes, totalizando 261 acidentes (74%), seguido por falha organizacional (8%), dano no paciente fora do controle do operador, (7%), complicações em procedimentos médicos (5%), causas desconhecidas (5%) e 1% falha ou deficiência de equipamentos [5]. Comparando as duas publicações foi possível relacionar a ocorrência dos tipos de acidentes e compilar as lições aprendidas e recomendações de medidas preventivas.

4. CONCLUSÕES

As lições aprendidas apontam as ações a serem tomadas: (1) gerenciamento adequado da cultura de segurança, incluindo fatores humanos e organizacionais; (2) treinamento adequado e atualização dos trabalhadores; (3) inventário atualizado da planta, fontes de radiação e equipamentos; (4) comunicação adequada, treinamento e consciência dos envolvidos; (5) supervisão periódica e monitoramento; e (6) em caso de perda de fonte ou roubo de material radioativo, investigação imediata e pronta informação a todos os envolvidos. Essas recomendações visam contribuir para que acidentes similares não se repitam nas diversas instalações que utilizam fontes de radiação

ionizante para aplicações industriais, médicas, agrícolas, ambientais e de pesquisa.

REFERÊNCIAS

- [1] Norma Regulamentadora NR 9, Portaria 3214/78 o **Programa de Prevenção de Riscos Ambientais**, PPRA. Alterações/Atualizações D.O.U. Portaria SSST n.º 25, de 29 de dezembro de 1994, D.O.U 30/12/1990.
- [2] Comissão Nacional de Energia Nuclear, Norma CNEN-NN-3.01, **Diretrizes Básicas de Proteção Radiológica**, março, 2014.
- [3] U. S. Nuclear Regulatory Commission, Report to Congress on Abnormal Occurrences, NU-REG-0090, January 1986-June1995.
- [4] Faustina B. Natacci, José Messias de Oliveira Neto e Francisco Correa. Análise Histórica de Ocorrências em Instalações Nucleares e Radioativas nos EUA. https://www.ipen.br/biblioteca/cd/inac/1999/PDF/CG06AE.PD , ultimo acesso em 03/07/2017.
- [5] ARPANSA, Australian Radiation Protection and Nuclear Safety Agency. Australian Radiation Incident Register, **Summary of Radiation Incidents**, 2015.