
Upconversion Luminescence of Yb³⁺: Tm³⁺ and Yb³⁺: Tm³⁺: Er³⁺-doped Beta-Tricalcium Phosphate nanoparticles

F. R. O. Silva^{1,*}, N. B. Lima¹, A. H. A. Bressiani¹, and L. Gomes²

¹ Centro de Ciência e Tecnologia dos Materiais, Instituto de Pesquisas Energéticas e Nucleares, IPEN, SP, Brazil ² Centro de Lasers e Aplicações, IPEN, SP, Brazil * Corresponding author: flavia.rodrigues@ipen.br

A novel class of fluorescence nanoparticles of 5.5 mol% of Yb³⁺, 0.5 mol% of Er³⁺ and 0.5 mol% Tm³⁺: calcium deficient hydroxyapatite were synthesized by co-precipitation method in aqueous solution (pH adjusted to 6) and specially treated with microwave radiation at 1000°C for 10 minutes to produce nanocrystals of Yb:Tm: and Yb:Tm:Er: β -tricalcium phosphate (β -TCP). As a result, we report for the first time, a single-phase β -TCP:Yb:Tm:Er and β -TCP:Yb:Tm exhibiting an efficient visible and near infrared upconversion luminescence from the ${}^{1}G_{4}$ (blue emission), ${}^{4}S_{3/2}$ (green emission), ${}^{3}F_{2}$ (red emission) and ${}^{3}H_{4}$ (near infrared emission) induced by the Yb³⁺ \rightarrow Tm³⁺ / Er³⁺ energy transfer under pulsed laser excitation at 972 nm (Yb³⁺) with an average energy of 11 mJ. The emission decay curves of the upconversion transients, from ${}^{1}G_{4}$ excited state of Tm³⁺ and ${}^{4}S_{3/2}$ excited level of Er³⁺, indicate that ESA process occurs in β -TCP:Yb/Tm/Er nanopowder measured for the 550 nm luminescence of Er³⁺, which has a time constant (t₂) of 0.4 μ s. However, Yb³⁺ \rightarrow Tm³⁺ upconversion (Up₂) has a time constant (t₂) of 14.4 μ s and does not exhibit ESA absorption.

This β -TCP activated by Yb^{3+} and Tm^{3+} ions constitutes a new nanobiomaterial that can be used as diagnostic and therapeutic agents, affording deeper tissue penetration and higher resolution and sensitivity for visible-near infrared bioimaging and treatments.

Keywords: beta tricalcium phosphate, ytterbium, thulium, erbium, upconversion luminescence

Acknowledgements

This work was supported by CNPq.

^{18&}lt;sup>th</sup> International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.