
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327510324

Architecting 3D Interactive Educational Applications for the Web: The Case

Study of CrystalWalk

Article · September 2018

DOI: 10.3390/mti2030056

CITATIONS

0
READS

7

1 author:

Some of the authors of this publication are also working on these related projects:

Development of aluminum-based dispersion fuels for nuclear research reactors View project

Combustion Synthesis of Intermetallic Compounds View project

Ricardo Mendes Leal Neto

Instituto de Pesquisas Energéticas e Nucleares

53 PUBLICATIONS 112 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ricardo Mendes Leal Neto on 07 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327510324_Architecting_3D_Interactive_Educational_Applications_for_the_Web_The_Case_Study_of_CrystalWalk?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327510324_Architecting_3D_Interactive_Educational_Applications_for_the_Web_The_Case_Study_of_CrystalWalk?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Development-of-aluminum-based-dispersion-fuels-for-nuclear-research-reactors?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Combustion-Synthesis-of-Intermetallic-Compounds?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Neto3?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Neto3?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_de_Pesquisas_Energeticas_e_Nucleares?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Neto3?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Neto3?enrichId=rgreq-f23c9bf6dc4023ef4ed1ed130ff807f6-XXX&enrichSource=Y292ZXJQYWdlOzMyNzUxMDMyNDtBUzo2NjgyNDI3MjUwNjQ3MDdAMTUzNjMzMjg4OTMwMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Multimodal Technologies
and Interaction

Article

Architecting 3D Interactive Educational Applications
for the Web: The Case Study of CrystalWalk

Fernando Bardella 1,* , Rafael Castilho de Moraes 1, Thanos Saringelos 2,
Alexandros Karatzaferis 2, Andre Montes Rodrigues 1, Andre Gomes da Silva 1 and
Ricardo Mendes Leal Neto 1

1 Research Group for Scientific Visualization in Materials (GVCM) at the Center for Materials Science and
Technology (CCTM), Nuclear and Energy Research Institute (IPEN-CNEN/SP), 2242 Prof. Lineu Prestes Av,
Sao Paulo 05508-000, Brazil; rafael@castilho.biz (R.C.d.M.); andre.montes.rodrigues@usp.br (A.M.R.);
silva.andregomes@gmail.com (A.G.d.S.); lealneto@ipen.br (R.M.L.N.)

2 School of Electrical and Computer Engineering, Technical University of Crete, Chania 731 00, Greece;
asariggelos@isc.tuc.gr (T.S.); ekaratzaferis@isc.tuc.gr (A.K.)

* Correspondence: bardella@ipen.br; Tel.: +55-(11)-3133-9218

Received: 20 August 2018; Accepted: 5 September 2018; Published: 7 September 2018
����������
�������

Abstract: This paper describes the technical development of CrystalWalk, a crystal editor and
visualization software designed for teaching materials science and engineering aiming to provide
an accessible and interactive platform to students, professors and researchers. Justified by the
lack of proper didactic tools, an evaluation of the existing crystallographic software has further
shown opportunities for the development of a new software, more focused on the educational
approach. CrystalWalk’s was guided by principles of free software, accessibility and democratization
of knowledge, which was reflected in the application’s architecture strategy and the adoption
of state-of-the-art technologies for the development of interactive web applications, such as
HTML5/WebGL, service-oriented architecture (SOA) and responsive, resilient and elastic distributed
systems. CrystalWalk’s architecture was successful in supporting the implementation of all specified
software requirements proposed by state-of-the-art research and deemed to exert a positive impact in
building accessible 3D interactive educational applications for the web.

Keywords: educational platforms; computer graphics; interactive web applications; service-oriented
architecture (SOA); distributed systems; crystallographic software

1. Introduction

Motivation behind the development of this research dates back to authors’ experience in lecturing
materials science and engineering disciplines, where difficulties in understanding fundamental crystal
structure topics were broadly reported. Bardella et al. [1] performed a thorough systematic review
within existing crystallographic software aiming to verify at what extent it supported the teaching
and learning process and the understanding of fundamental materials science topics. This revealed
opportunities for the development of a new software focused on students’ needs and more broadly a
generic online platform for 3D content creation, delivery, editing, and annotation for educational uses.
Systematic review highlighted a group of top performing crystallographic software as well indicated
gaps and neglected features that were not fulfilled by any evaluated references, revealing enhancement
possibilities and opportunities for development of a novel software focused on the educational support
to materials science and engineering curricula. Due to the to the domain-specific capabilities of
creating and visualizing 3D crystal structure models, only crystallographic software was considered
in the review, although interesting didactic opportunities were evaluated from course management

Multimodal Technologies and Interact. 2018, 2, 56; doi:10.3390/mti2030056 www.mdpi.com/journal/mti

http://www.mdpi.com/journal/mti
http://www.mdpi.com
https://orcid.org/0000-0002-0298-0538
https://orcid.org/0000-0001-5104-7392
http://www.mdpi.com/2414-4088/2/3/56?type=check_update&version=1
http://dx.doi.org/10.3390/mti2030056
http://www.mdpi.com/journal/mti

Multimodal Technologies and Interact. 2018, 2, 56 2 of 12

systems (CMS) but also potential interface and computer graphics features from computer aided
design (CAD) applications. This initial exploratory research was deemed important for determining
systematic review’s revision protocol, but also the foundational grounds for epistemological aspects of
the proposed research strategy [1].

UNESCO’s guidelines for education modernization guided CrystalWalk’s didactic philosophy,
which proposes the use of modern information techniques as enabler for wide availability of quality
education resources that can be adaptable customized to specific circumstances [2], capacitating
autonomous learning, leadership and creativity [3]. In alignment to such directives, free software [4]
and the reactive manifesto [5] philosophies were chosen to guide important strategic aspects of the
software architecture, suggesting an interesting perspective in the state of art technologies for the
development of interactive web applications such as HTML5/WebGL, service-oriented architecture
(SOA) and responsive, resilient and elastic distributed systems [6,7].

The outcomes of several iterations with students and professors reinforced the gaps identified by
the systematic review, but also functional requirements deemed significant to any educational context.
Aimed at providing students and professors with an easy to use and accessible platform aligned with
the material sciences and engineering curricula, a novel educational application was proposed and
developed. CrystalWalk is the first web-based 3D interactive crystal editor and visualization software
focused on materials science and engineering education [8].

2. Materials and Methods

Due to the complex challenges demanded by application’s functional requirements that were
identified and confirmed in the systematic review, but also the strict resource limitations imposed
by the project, an exploratory research was performed aimed at identifying the most appropriate
technologies for the project. Following the approach proposed by Waerner [9] and Pattrasitidech [7],
exploratory research aimed at analyzing and comparing main technologies used in 3D software
development. Literature was comprehensive and highlighted many flexible and featured-packed
technologies, although requirements of application portability narrowed technologies to a smaller
subset: Java3D (and its variants), Flash, Stage3D, 3DMLW and HTML5/WebGL. Data summarized
in Table 1 consolidate data from this exploratory research stage, indicating that HTML5/WebGL
was deemed better aligned with specified requirements of compatibility, portability, support and
future perspective. Despite of its risks related to the HTML5 standard maturity at the time of the
evaluation [10].

Table 1. Exploratory research summary of Web Graphical Computing technologies (February 2016).

Technology Compatibility Set-Up Support Integration Perspective

HTML5/WebGL FFF FFF FFF FFF FFF
3DMLW FF FF F F F
Java3D FF FF FF FF F
Flash FF FF FFF FF F

SilverLight F FF FFF FF FF
Stage3D FF FF FFF FF FFF

Source: adapted from [9] apud [10].

As a natural consequence, exploratory research focus moved towards the selection of a
high-level libraries and APIs that could potentially facilitate the application development process,
more specifically reducing the laborious efforts traditionally required for the development of a
standalone WebGL application [11]. Following the approach proposed by Barbosa [12], exploratory
research aimed at libraries that were stable, better documented which project was open source and
still active. Data summarized in Table 2 consolidates several WebGL high-level libraries and APIs
available, ThreeJS [13] was chosen due to its maturity, available documentation and popularity.

Multimodal Technologies and Interact. 2018, 2, 56 3 of 12

Table 2. Exploratory research summary of HTML5/WebGL high level libraries (February 2016).

Library Followers Forks Documentation License Type

ThreeJS 1438 6632 FFF MIT
SceneJS 39 88 FF MIT/GPL
X3DOM 63 133 FF MIT/GPL

CopperLicht 3 3 FFF CopperLicht
CubicVR.js 42 90 F MIT

GLGE 23 76 FFF BSD

Source: adapted from [10].

Fundamented in the technologies recommended by the performed exploratory research,
the reactive manifesto [5,14] was deemed an adequate paradigm to support functional requirements
of accessibility, portability and interaction. This lead to the adoption of other paradigms and
technologies in the project such as: service-oriented architectures (SOA), asynchronous module
definition specification (AMD), model-view-controller pattern (MVC), publish-subscribe pattern,
representational state transfer style (REST) and JavaScript object notation (JSON) [6,7,11,14–17].
Additionally, to the budget impact, this approach also aimed at resource efficiency, enabling the
project team to focus on the application development without having to own or manage the
infrastructure [14–16]. Lastly, Free Software [4] philosophy was relevant to define and implement
some of the project’s most important pillars as knowledge democratization and the collaborative
development process.

In practical terms, application architecture comprised the integration of 3 modular applications:
CWAPP, CWLY, CW4P. CWLY is application’s data API responsible for ensuring proper handling
of user’s querying, loading and storing requests in the database abstraction layer. Implementing a
REST architectural style, this API fully integrates application modules with its services as database,
domain routing and data storing services. Short URL inputted by the user is handled by Amazon
Route 53 service [18], which directs to the CWAPP application. In response to user’s performed
actions, main web application—CWAPP—initiates a dynamic module loading and communications,
enforcing a minimalist allocation of necessary modules and computational resources. CWAPP is an
extension of the CW4P framework which effectively implements the event-oriented paradigm for
WebGL technology. All applications’ lifecycles were designed to run on cloud-based services: they
use GitHub as code repository, Amazon Route 53 for domain routing and Heroku as partitioned
virtualization provider [19].

Figure 1 illustrates how CWAPP, CWLY, CW4P applications are integrated. An in-depth
description of the individual components will be described in the next section.

Multimodal Technologies and Interact. 2018, 2, 56 4 of 12
Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 4 of 13

Figure 1. System Architecture. The short URL is handled by Amazon Route 53 service, which directs

to the CWAPP application. CWAPP provides necessary modules on demand and CWLY allows

access to a database, in order to store or retrieve user created structures. Both applications are hosted

on virtualized servers at Heroku. GitHub holds the latest version of the code, which is automatically

deployed to Heroku at every update. Source: adapted from [10].

2.1. CrystalWalk Design Pattern (CW4P)

Motivated by best practices in the development of user interfaces, as proposed by Philip [15],

Osmani [16], Zakas [17] and the AMD specification [20], CW4P proposes a design pattern that

effectively implement the event-oriented paradigm for WebGL technology. This Design Pattern is

the foundation of the main CrystalWalk application (CWAPP) and describes overall system

architecture and how modules and interconnections are organized. The AMD specification is

implemented through the RequireJS library [21]; the publish-subscribe pattern is implemented

through the PubSubJS [22] library, which establishes the event-oriented communications component

[14,16]; the WebGL technology is implemented through the three.js library. Within this context, the

event router module listens and sends messages, coordinating the communications between

application modules and 3D objects. Figure 2 represents a summary of this architectural concept and

Figure 3 how application modules are organized and how they communicate between each other.

Figure 1. System Architecture. The short URL is handled by Amazon Route 53 service, which directs
to the CWAPP application. CWAPP provides necessary modules on demand and CWLY allows access
to a database, in order to store or retrieve user created structures. Both applications are hosted on
virtualized servers at Heroku. GitHub holds the latest version of the code, which is automatically
deployed to Heroku at every update. Source: adapted from [10].

2.1. CrystalWalk Design Pattern (CW4P)

Motivated by best practices in the development of user interfaces, as proposed by Philip [15],
Osmani [16], Zakas [17] and the AMD specification [20], CW4P proposes a design pattern that
effectively implement the event-oriented paradigm for WebGL technology. This Design Pattern
is the foundation of the main CrystalWalk application (CWAPP) and describes overall system
architecture and how modules and interconnections are organized. The AMD specification is
implemented through the RequireJS library [21]; the publish-subscribe pattern is implemented through
the PubSubJS [22] library, which establishes the event-oriented communications component [14,16];
the WebGL technology is implemented through the three.js library. Within this context, the event
router module listens and sends messages, coordinating the communications between application
modules and 3D objects. Figure 2 represents a summary of this architectural concept and Figure 3 how
application modules are organized and how they communicate between each other.

Multimodal Technologies and Interact. 2018, 2, 56 5 of 12
Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 5 of 13

Figure 2. Overview of the event router and event-oriented communications proposed by CW4P.

Source: adapted from [10].

Figure 3. Event flow proposed by CW4P. Source: adapted from [10].

2.2. CrystalWalk Client Application (CWAPP)

Main application of the CrystalWalk architecture, CWAPP is an extension of the CW4P

framework and is responsible for implementing all user interaction functional requirements. As

illustrated on Figure 4, CWAPP is divided in 3 main components: CW4P framework, application’s

additional modules and a Ruby on Rails interface (deployable) for the delivery of the application

files.

Figure 2. Overview of the event router and event-oriented communications proposed by CW4P. Source:
adapted from [10].

Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 5 of 13

Figure 2. Overview of the event router and event-oriented communications proposed by CW4P.

Source: adapted from [10].

Figure 3. Event flow proposed by CW4P. Source: adapted from [10].

2.2. CrystalWalk Client Application (CWAPP)

Main application of the CrystalWalk architecture, CWAPP is an extension of the CW4P

framework and is responsible for implementing all user interaction functional requirements. As

illustrated on Figure 4, CWAPP is divided in 3 main components: CW4P framework, application’s

additional modules and a Ruby on Rails interface (deployable) for the delivery of the application

files.

Figure 3. Event flow proposed by CW4P. Source: adapted from [10].

2.2. CrystalWalk Client Application (CWAPP)

Main application of the CrystalWalk architecture, CWAPP is an extension of the CW4P framework
and is responsible for implementing all user interaction functional requirements. As illustrated on
Figure 4, CWAPP is divided in 3 main components: CW4P framework, application’s additional
modules and a Ruby on Rails interface (deployable) for the delivery of the application files.

Multimodal Technologies and Interact. 2018, 2, 56 6 of 12

Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 6 of 13

Figure 4. CWAPP application components. Source: adapted from [10].

As proposed by CW4P, overall system architecture implements the Model-View-Controller

(MVC) design pattern [6,7,11]. Following the MVC specification, view generates mouse or keyboard

input events that are captured by controller. With the help of one or more models, controller

interprets the input events and maps user’s actions to commands that generate new state events.

Once again, controller captures them, generating new events for view, which finally displays the

changes back [14–17].

In CWAPP implementation, the initialization of the application modules and data structures

that define the logic of the pattern, as well as their dependencies, is performed by the main

application module (main.js). Model is responsible for managing the data structures and updating

the main scene elements: motif, unit cell, and crystal structure—through their primitive entities:

atoms, cells, Miller planes and directions. Finally, view renders the scene elements and displays the

user interface, communicating its status to the controller. Figure 5 describes how main modules and

interconnections are organized. Figure 6 is an illustrative screenshot of the CWAPP application

running in a Browser.

Figure 5. Implementation of the CW4P design pattern in the CWAPP application architecture.

Source: adapted from [10].

Figure 4. CWAPP application components. Source: adapted from [10].

As proposed by CW4P, overall system architecture implements the Model-View-Controller (MVC)
design pattern [6,7,11]. Following the MVC specification, view generates mouse or keyboard input
events that are captured by controller. With the help of one or more models, controller interprets the
input events and maps user’s actions to commands that generate new state events. Once again, controller
captures them, generating new events for view, which finally displays the changes back [14–17].

In CWAPP implementation, the initialization of the application modules and data structures that
define the logic of the pattern, as well as their dependencies, is performed by the main application
module (main.js). Model is responsible for managing the data structures and updating the main
scene elements: motif, unit cell, and crystal structure—through their primitive entities: atoms, cells,
Miller planes and directions. Finally, view renders the scene elements and displays the user interface,
communicating its status to the controller. Figure 5 describes how main modules and interconnections
are organized. Figure 6 is an illustrative screenshot of the CWAPP application running in a Browser.

Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 6 of 13

Figure 4. CWAPP application components. Source: adapted from [10].

As proposed by CW4P, overall system architecture implements the Model-View-Controller

(MVC) design pattern [6,7,11]. Following the MVC specification, view generates mouse or keyboard

input events that are captured by controller. With the help of one or more models, controller

interprets the input events and maps user’s actions to commands that generate new state events.

Once again, controller captures them, generating new events for view, which finally displays the

changes back [14–17].

In CWAPP implementation, the initialization of the application modules and data structures

that define the logic of the pattern, as well as their dependencies, is performed by the main

application module (main.js). Model is responsible for managing the data structures and updating

the main scene elements: motif, unit cell, and crystal structure—through their primitive entities:

atoms, cells, Miller planes and directions. Finally, view renders the scene elements and displays the

user interface, communicating its status to the controller. Figure 5 describes how main modules and

interconnections are organized. Figure 6 is an illustrative screenshot of the CWAPP application

running in a Browser.

Figure 5. Implementation of the CW4P design pattern in the CWAPP application architecture.

Source: adapted from [10].

Figure 5. Implementation of the CW4P design pattern in the CWAPP application architecture. Source:
adapted from [10].

Multimodal Technologies and Interact. 2018, 2, 56 7 of 12

Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 7 of 13

Figure 6. Screenshot of CWAPP interface running on a browser. Source: [8].

2.3. CrystalWalk’s URL Shortener and Persistence API (CWLY)

Another component of the CrystalWalk architecture, CWLY is the application responsible for

storing, managing, and transferring data between the server and the main client application

(CWAPP). Implementation strategy adopted standards and technologies capable of supporting

specified CrystalWalk’s architecture—such as Heroku cloud development platform, the Ruby on

Rails framework, the use of distributed systems (SOA), standardized interfaces for resource

management (REST) and high-scalability hybrid (NoSQL/relational) database.

CWLY is divided into three interdependent components: the URL shortener, the persistence

API, and the data management interface. The application also has an interface for implementation in

Heroku (deployable) developed in Ruby. Figure 7 illustrates this architecture.

Figure 7. CWLY application components. Source: adapted from [10].

Figure 6. Screenshot of CWAPP interface running on a browser. Source: [8].

2.3. CrystalWalk’s URL Shortener and Persistence API (CWLY)

Another component of the CrystalWalk architecture, CWLY is the application responsible
for storing, managing, and transferring data between the server and the main client application
(CWAPP). Implementation strategy adopted standards and technologies capable of supporting
specified CrystalWalk’s architecture—such as Heroku cloud development platform, the Ruby on Rails
framework, the use of distributed systems (SOA), standardized interfaces for resource management
(REST) and high-scalability hybrid (NoSQL/relational) database.

CWLY is divided into three interdependent components: the URL shortener, the persistence
API, and the data management interface. The application also has an interface for implementation in
Heroku (deployable) developed in Ruby. Figure 7 illustrates this architecture.

Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 7 of 13

Figure 6. Screenshot of CWAPP interface running on a browser. Source: [8].

2.3. CrystalWalk’s URL Shortener and Persistence API (CWLY)

Another component of the CrystalWalk architecture, CWLY is the application responsible for

storing, managing, and transferring data between the server and the main client application

(CWAPP). Implementation strategy adopted standards and technologies capable of supporting

specified CrystalWalk’s architecture—such as Heroku cloud development platform, the Ruby on

Rails framework, the use of distributed systems (SOA), standardized interfaces for resource

management (REST) and high-scalability hybrid (NoSQL/relational) database.

CWLY is divided into three interdependent components: the URL shortener, the persistence

API, and the data management interface. The application also has an interface for implementation in

Heroku (deployable) developed in Ruby. Figure 7 illustrates this architecture.

Figure 7. CWLY application components. Source: adapted from [10]. Figure 7. CWLY application components. Source: adapted from [10].

Multimodal Technologies and Interact. 2018, 2, 56 8 of 12

The data persistence API component performs the data storage and retrieves JSON documents in
the database. This component has a REST interface [14–17], whose routes are listed and detailed in the
Table 3.

Table 3. Description of routes, verbs and parameters of the CWLY REST interface.

Description Verb Path Request Parameters Response

Stores a JSON document specified
by the data parameter POST /add

url=server
data={“structure”:

“CubicSimple”,
“title”:”Demo 1”}

{“slug”:”$id”

Redirects a shortened URL to the
address previously defined in the
url parameter, appending the
unique identifier $id to the
destination address

GET /$id
HTTP/1.1 301 Moved

Permanently
Location: server/#$id

Retrieves stored JSON documents
that that matches specified search
criteria

POST /qv qs=”search string”
{{“data”:{“structure”:

“CubicSimple”,
“title”:”Demo 1”}}...}

Retrieves a stored JSON document
based on a unique identifier $id GET /$id.json JSON

{“data”:{“structure”:
“CubicSimple”,

“title”:”Demo 1”}}

Source: adapted from [10].

Upon receiving a store request, the data persistence API component registers the JSON document
in the database, returning a unique identifier for each transaction. The URL shortening component
uses this identifier to redirect a shortened URL address to the primary application address, query the
database, and retrieve the document. Figure 8 illustrates the operation of this mechanism.

Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 8 of 13

The data persistence API component performs the data storage and retrieves JSON documents

in the database. This component has a REST interface [14–17], whose routes are listed and detailed in

the Table 3.

Table 3. Description of routes, verbs and parameters of the CWLY REST interface.

Description Verb Path Request Parameters Response

Stores a JSON document

specified by the data parameter
POST /add

url=server

data={“structure”:

“CubicSimple”,

“title”:”Demo 1”}

{“slug”:”$id”

Redirects a shortened URL to

the address previously defined

in the url parameter, appending

the unique identifier $id to the

destination address

GET /$id

HTTP/1.1 301 Moved

Permanently

Location: server/#$id

Retrieves stored JSON

documents that that matches

specified search criteria

POST /qv qs=”search string”

{{“data”:{“structure”:

“CubicSimple”,

“title”:”Demo 1”}}...}

Retrieves a stored JSON

document based on a unique

identifier $id

GET /$id.json JSON

{“data”:{“structure”:

“CubicSimple”,

“title”:”Demo 1”}}

Source: adapted from [10].

Upon receiving a store request, the data persistence API component registers the JSON

document in the database, returning a unique identifier for each transaction. The URL shortening

component uses this identifier to redirect a shortened URL address to the primary application

address, query the database, and retrieve the document. Figure 8 illustrates the operation of this

mechanism.

Figure 8. CWLY application flow diagram. Source: adapted from [10].

In alignment with CrystalWalk’s architecture, standards and technologies, a hybrid scheme

(NoSQL/Relational) was used, adopting specifically PostgreSQL and the jsonb data type due to its

superiority in terms of availability and elasticity for the application [23]. The proposed hybrid

(NoSQL/Relational) database schema is specified in the Table 4. Finally, the data management

component is a restricted interface that allows the location and management of documents stored in

a database.

Figure 8. CWLY application flow diagram. Source: adapted from [10].

In alignment with CrystalWalk’s architecture, standards and technologies, a hybrid scheme
(NoSQL/Relational) was used, adopting specifically PostgreSQL and the jsonb data type due to
its superiority in terms of availability and elasticity for the application [23]. The proposed hybrid
(NoSQL/Relational) database schema is specified in the Table 4. Finally, the data management
component is a restricted interface that allows the location and management of documents stored in
a database.

Table 4. Description of the hybrid database schema (NoSQL/ Relational), referring to the
application CWLY.

Table Column Data Type Description

documents url VARCHAR(255) Redirect URL for the CWAPP application.
documents slug (*) VARCHAR(255) Unique identifier of the JSON document.
documents jsonb JSON/NoSQL JSON document data structure.

Source: adapted from [10].

Figure 9 demonstrates an illustrative example of CWLY use. The image was exported from
CWAPP for illustrating the Fluorite structure to a material sciences class. The image contains a QR

Multimodal Technologies and Interact. 2018, 2, 56 9 of 12

code and an URL (http://cw.gl/lw) which when typed or scanned in a browser allows students to
access CWAPP application and interact the 3D model online.

Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW 9 of 13

Table 4. Description of the hybrid database schema (NoSQL/ Relational), referring to the application

CWLY.

Table Column Data Type Description

documents url VARCHAR(255) Redirect URL for the CWAPP application.

documents slug (*) VARCHAR(255) Unique identifier of the JSON document.

documents jsonb JSON/NoSQL JSON document data structure.

Source: adapted from [10].

Figure 9 demonstrates an illustrative example of CWLY use. The image was exported from

CWAPP for illustrating the Fluorite structure to a material sciences class. The image contains a QR

code and an URL (http://cw.gl/lw) which when typed or scanned in a browser allows students to

access CWAPP application and interact the 3D model online.

Figure 9. Fluorite structure with a link and QR code to access the online model. Source: [8]

3. Results

Functional instances of all proposed architecture components were deployed and evaluated

against specified requirements [1], but also preliminary evaluated against implementation success,

performance, and compatibility. A full featured online instance was made available for the

preliminary evaluation and reported implementation results can be verified by accessing instance’s

available URL and using debugging functionalities available on most modern browsers.

From the architectural perspective, as detailed in Section 2, an instance of the CWLY application

was implemented using in the PaaS Heroku service, using a free web-type [24] Dyno with Puma

application server and PostgreSQL add-on [25] of the Hobby Dev type, setup in a NoSQL/relational

hybrid database schema. A specific domain was registered for this purpose, which was successfully

configured on the Amazon Route 53 DNS resolution IaaS service using the free entry level category

of service. The instance exhibited fluidity in preliminary testing, attesting that the server and domain

routing services were correctly configured, as well as the proposed data persistence mechanisms for

saving users’ models and sessions. All persistence API REST interface routes were verified,

demonstrating the storage and recovery of JSON documents from the database. A CWAPP

application instance was also deployed on Heroku’s PaaS service, using another free web Dyno with

a Puma server and, as described in Section 2. As an extension of the CW4P framework, proposed

architecture implemented the AMD specification using the RequireJS library; the publish-subscribe

Figure 9. Fluorite structure with a link and QR code to access the online model. Source: [8]

3. Results

Functional instances of all proposed architecture components were deployed and evaluated
against specified requirements [1], but also preliminary evaluated against implementation success,
performance, and compatibility. A full featured online instance was made available for the preliminary
evaluation and reported implementation results can be verified by accessing instance’s available URL
and using debugging functionalities available on most modern browsers.

From the architectural perspective, as detailed in Section 2, an instance of the CWLY application
was implemented using in the PaaS Heroku service, using a free web-type [24] Dyno with Puma
application server and PostgreSQL add-on [25] of the Hobby Dev type, setup in a NoSQL/relational
hybrid database schema. A specific domain was registered for this purpose, which was successfully
configured on the Amazon Route 53 DNS resolution IaaS service using the free entry level category of
service. The instance exhibited fluidity in preliminary testing, attesting that the server and domain
routing services were correctly configured, as well as the proposed data persistence mechanisms
for saving users’ models and sessions. All persistence API REST interface routes were verified,
demonstrating the storage and recovery of JSON documents from the database. A CWAPP application
instance was also deployed on Heroku’s PaaS service, using another free web Dyno with a Puma
server and, as described in Section 2. As an extension of the CW4P framework, proposed architecture
implemented the AMD specification using the RequireJS library; the publish-subscribe pattern through
the PubSubJS library and the WebGL technology through Three.js library. The Ruby on Rails interface
was correctly implemented, and the application files were properly delivered through the proposed
dynamic module loading. The Heroku Dyno instance under the free service category may hibernate
after a 30-min inactivity period, requiring additional 10 s to resume instance functions. After the initial
base CW4P framework modules and application files delivery (approximately 330 KB), remaining
application modules and interface libraries were loaded on demand by the router module, consuming
6.6 MB. A complete usage of application resources calls for the remaining components, summing up to
a maximum 8.4 MB, was loaded asynchronously upon user request. Modular design also optimizes
browser’s cache, reducing data transferring in subsequent accesses. Finally, graphics settings (polygon

http://cw.gl/lw

Multimodal Technologies and Interact. 2018, 2, 56 10 of 12

count and rendering quality) is automatically adjusted according to the processing capabilities of the
used device. These optimizations are particularly interesting for smartphone device access, since most
recent devices supports 3G access and can provide minimal HTML5/WebGL compatibility.

From the functional requirements perspective, proposed architectural strategy provided a
flexible platform capable of addressing all problems identified by students and professors in existing
crystallographic software and didactic materials used in materials science and engineering classes.
According to the guidelines proposed by UNESCO [2,3], CrystalWalk successfully attended to
functional requirements deemed significant for a broader education modernization context.

Following the approach proposed by Deveria [26], user acceptance tests were evaluated against
specifications using different browsers across different desktops, tablets and smartphones. Application
testing focused on the latest versions of IE, Firefox, Chrome and Safari due to its HTML 5 support
consistency. Although HTML 5 support is still incipient on mobile devices, application did perform
satisfactory on devices with OpenGL ES 3.0 support. Application compatibility results were consistent
with Deveria [26], having most recent Chrome versions providing the best results.

It was observed that for most of the tested operations and functionalities, application did perform
in a stable and responsive manner, demonstrating the effectiveness of reactive manifesto’s principles
of elasticity, resilience, responsiveness and message driven communications [5–7,14]. Although
sporadic, crashes were experienced during the execution of features that require the intensive use
of computational resources, such as the replication of large numbers of atoms and the computation
of differential geometries used in the representation of partial atoms. As per example, generating a
empty space representation from an unit cell containing 60 high definition atoms may take up to 4
minutes on the standard testing platform. Performance and instabilities were attributed to the currently
immature hardware and software support of WebGL standards, as noted by Deveria [26]. As means to
minimize undesirable effects, alerts are displayed to users warning before confirming the execution of
these functions.

Although present paper focuses on the architectural aspects of the project, it’s worth mentioning
that as metric of success from the functional requirements perspective, CrystalWalk was accepted for
International Union of Crystallography (IUCR)’s crystallographic software database inclusion [27],
and announced as a new tool for teaching concepts of crystallography to non-crystallographers at its
official journal [28].

Lastly, advanced users can access the platform’s source code repository online at the official
CrystalWalk repositories [29–31]. Table 5 contains a summary of project’s deployed proof-of-concept
instances as well GitHub repositories where the source code and further detailed technical
documentation and instructions is available.

Table 5. CrystalWalk’s applications, deployed proof-of-concept instances and repositories.

Application Proof-of-Concept Instance GitHub Repository

CWAPP https://crystalwalk.herokuapp.com https://github.com/gvcm/cwapp
CW4P https://cw4p.herokuapp.com https://github.com/gvcm/cw4p
CWLY https://cw.gl/0 https://github.com/gvcm/cwly

Source: adapted from [10].

4. Conclusions

Justified by the lack of proper didactic tools, state-of-the-art research revealed enhancement
opportunities in the development of a novel crystallographic software focused on the educational
support to materials science and engineering curricula. CrystalWalk’s functional requirements were
determined by classroom iterations amongst students and professors, which were later investigated
and confirmed by a thorough systematic review of existing crystallographic software. Systematic
review revealed opportunities for the development of a new crystallographic software, but also a more
broad educational opportunity for an online platform that could be generalized to broader educational
uses for 3D content creation, delivery, editing, and annotation.

https://crystalwalk.herokuapp.com
https://github.com/gvcm/cwapp
https://cw4p.herokuapp.com
https://github.com/gvcm/cw4p
https://cw.gl/0
https://github.com/gvcm/cwly

Multimodal Technologies and Interact. 2018, 2, 56 11 of 12

CrystalWalk’s functional requirements led architectural strategy towards an exploratory research
aiming at identifying state-of-the-art technologies for the development of interactive web applications,
leading to the use of HTML5/WebGL technology and ThreeJS high-level library. Exploratory research
led to the adoption of the reactive manifesto, free software philosophy and other paradigms and
technologies proposed by state-of-the-art. A solid architectural strategy was seemed fundamental not
only to support a complex challenge demanded by application’s functional requirements, but also
projects strict budget restrictions which demanded team efficiency and the use of free services.

In order to test and verify the proposed application architecture, software components were
deployed and evaluated: CWAPP was implemented as an extension of the CW4P framework,
implementing the AMD specification using the RequireJS library; the publish-subscribe pattern through
the PubSubJS library and the WebGL technology through ThreeJS library. CWLY demonstrated the
storage and recovery of JSON documents from the database, implementing specified data persistence
mechanisms for saving users’ models and sessions. Hybrid (NoSQL/Relational) PostgreSQL
implementation using Heroku’s partitioned virtualization environment although experimental e
non-orthodox at the time of deployment, has satisfactory supported application’s requirements of
availability, elasticity, costs and performance.

Sporadic instabilities were experienced during certain intensive tasks, although application
performed well even on the most resource restricted devices - such as smartphones. User alerts
and confirmations were implemented as means to mitigate primitive HTML5/WebGL support and
minimize undesirable effects. Despite of these restrictions, all specified software requirements were
successfully implemented, demonstrating the effectiveness of architecture’s principles of elasticity,
resilience, responsiveness and message driven communications.

Performance assessments and preliminary user testing indicated that the proposed architecture
was deemed capable of exerting effective and positive impact as an accessible didactic platform
for building accessible 3D interactive educational applications for the web, supporting classes
with collaborative persistence mechanisms and didactic features. The CrystalWalk application was
evaluated under action-research premises and has successfully solved most of the problems identified
in the systematic review, delivering a didactic package has effectively enhanced support for teaching
and learning activities.

Author Contributions: R.M.L.N. is the head of the research group and idealizer of the CrystalWalk Project. F.B.
is the main researcher, idealizer, developer and maintainer of the CrystalWalk Project. A.M.R. is a researcher
and contributor of the CrystalWalk Project. R.C.d.M., A.K. and T.S. are technical developers of the CrystalWalk
Project. A.G.d.S is a contributor of the CrystalWalk Project. All authors contributed on the writing, reviewing and
submission of this manuscript.

Funding: This research had the financial support of the following institutions: the Brazilian National Council for
Scientific and Technological Development (CNPq), the National Nuclear Energy Commission (CNEN) and the
Institute of Nuclear Power and Energy Research (IPEN) by the use of its facilities, funding of staff and equipment
used in this research.

Acknowledgments: The authors would like to thank all the students, professors and researchers involved in the
project, the Brazilian National Council for Scientific and Technological Development (CNPq), the National Nuclear
Energy Commission (CNEN), the Institute of Nuclear Power and Energy Research (IPEN) by their institutional
and financial support to this research.

Conflicts of Interest: The authors declare no conflict of interest.

Availability of Data and Material: CrystalWalk project applications’ source codes and documentations are
released under the MIT License and is available from its official website at http://gvcm.ipen.br/CrystalWalk.

Ethics Approval and Consent to Participate: Not Applicable to this research.

References

1. Bardella, F.; Montes Rodrigues, A.; Leal Neto, R. The use of crystallographic software as educational support
to materials science and engineering. J. Mater. Ed. 2018, 40. in press.

http://gvcm.ipen.br/CrystalWalk

Multimodal Technologies and Interact. 2018, 2, 56 12 of 12

2. UNESCO. Information and Communication Technologies in Teacher Education: A Planning Guide; UNESCO: Paris,
France, 1998.

3. UNESCO. World Education Report: Teachers and Teaching in a Changing World; UNESCO: Paris, France, 1998.
4. What Is Free Software. Available online: https://www.gnu.org/philosophy/free-sw.en.html (accessed on

3 June 2018).
5. The Reactive Manifesto. Available online: http://www.reactivemanifesto.org (accessed on 3 June 2018).
6. Lampesberger, H. Technologies for web and cloud service interaction: A survey. Serv. Oritented Comput. Appl.

2015, 10, 71–110. [CrossRef]
7. Pattrasitidech, A. Comparison and Evaluation of 3D Mobile Game Engines. Master’s Thesis, University of

Gothenburg, Gothenburg, Sweden, 2014.
8. CrystalWalk Official Project Page. Available online: http://gvcm.ipen.br/crystalwalk/ (accessed on

3 June 2018).
9. Waerner, M. 3D Graphics Technologies for Web Applications: An Evaluation from the Perspective of a Real

World Application. Master’s Thesis, Institute of Technology, Linköping University, Linköping, Sweden, 2012.
10. Bardella, F. Crystalwalk: An Educational Interactive Software for Synthesis and Visualization of Crystal

Structures. Ph.D. Thesis, Nuclear and Energy Research Institute (IPEN-CNEN/SP), University of São Paulo
(USP), São Paulo, Brazil, 8 July 2016.

11. Parisi, T. WebGL: Up and Running; O’Reilly Media: Sebastopol, CA, USA, 2012.
12. Barbosa, J.F.V. Ambientes Urbanos Virtuais Para a Web. Master’s Thesis, Universidade do Porto, Porto,

Portugal, 2013.
13. Three.js. Available online: https://github.com/mrdoob/three.js (accessed on 3 June 2018).
14. Reactive Programming versus Reactive Systems. Available online: https://www.lightbend.com/reactive-

programming-versus-reactive-systems (accessed on 3 June 2018).
15. Philip, G.C. Software design guidelines for event-driven programming. J. Syst. Softw. 1998, 41, 79–91.

[CrossRef]
16. Patterns for Large-Scale JavaScript Application Architecture. Available online: http://addyosmani.com/

largescalejavascript (accessed on 3 June 2018).
17. Zakas, N.C. Maintainable JavaScript: Writing Readable Code; O’Reilly Media Inc.: Sebastopol, CA, USA, 2012;

pp. 53–122.
18. Amazon Route 53 Pricing. Available online: http://aws.amazon.com/route53/pricing/ (accessed on 3 June 2018).
19. Heroku Dyno Types. Available online: https://devcenter.heroku.com/articles/dyno-types (accessed on

3 June 2018).
20. Why AMD? Available online: https://requirejs.org/docs/whyamd.html (accessed on 3 June 2018).
21. RequireJS Official Project Page. Available online: https://requirejs.org (accessed on 3 June 2018).
22. PubSubJS Repository. Available online: https://github.com/mroderick/PubSubJS (accessed on 3 June 2018).
23. PostgreSQL JSON Data Typs. Available online: http://www.postgresql.org/docs/current/static/datatype-

json.html (accessed on 3 June 2018).
24. Heroku Dyno Limits. Available online: https://devcenter.heroku.com/articles/limits (accessed on 3 June 2018).
25. Heroku Postgres Addon. Available online: https://addons.heroku.com/heroku-postgresql (accessed on

3 June 2018).
26. Can I Use? WebGL 3D Canvas Graphics. Available online: https://caniuse.com/#feat=webgl (accessed on

17 April 2016).
27. CrystalWalk IUCR Software Database. Available online: https://www.iucr.org/resources/other-directories/

software/crystalwalk (accessed on 3 June 2018).
28. Bardella, F.; Montes Rodrigues, A.; Leal Neto, R. CrystalWalk: Crystal structures, step by step. J. Appl. Cryst.

2017, 50, 949–950. [CrossRef]
29. CWAPP Codebase. Available online: https://github.com/gvcm/CWAPP (accessed on 3 June 2018).
30. CW4P Codebase. Available online: https://github.com/gvcm/CW4P (accessed on 3 June 2018).
31. CWLY Codebase. Available online: https://github.com/gvcm/CWLY (accessed on 3 June 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

View publication statsView publication stats

https://www.gnu.org/philosophy/free-sw.en.html
http://www.reactivemanifesto.org
http://dx.doi.org/10.1007/s11761-015-0174-1
http://gvcm.ipen.br/crystalwalk/
https://github. com/mrdoob/three.js
https://www.lightbend.com/reactive- programming-versus-reactive-systems
https://www.lightbend.com/reactive- programming-versus-reactive-systems
http://dx.doi.org/10.1016/S0164-1212(97)10009-7
http://addyosmani.com/largescalejavascript
http://addyosmani.com/largescalejavascript
http://aws.amazon.com/route53/pricing/
https://devcenter.heroku.com/articles/dyno-types
https://requirejs.org/docs/whyamd.html
https://requirejs.org
https://github.com/mroderick/PubSubJS
http://www.postgresql.org/docs/current/static/datatype -json.html
http://www.postgresql.org/docs/current/static/datatype -json.html
https://devcenter.heroku.com/articles/limits
https://addons.heroku.com/heroku-postgresql
https://caniuse.com/#feat=webgl
https://www.iucr.org/resources/other-directories/software/crystalwalk
https://www.iucr.org/resources/other-directories/software/crystalwalk
http://dx.doi.org/10.1107/S160057671700560X
https://github.com/gvcm/CWAPP
https://github.com/gvcm/CW4P
https://github.com/gvcm/CWLY
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.
https://www.researchgate.net/publication/327510324

	Introduction
	Materials and Methods
	CrystalWalk Design Pattern (CW4P)
	CrystalWalk Client Application (CWAPP)
	CrystalWalk’s URL Shortener and Persistence API (CWLY)

	Results
	Conclusions
	References

