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ABSTRACT
Artificial neural networks represent an alternative to traditional multivariate techniques, such as
principal component and discriminant analysis, which rely on hypotheses regarding the normal
distribution of the data and homoscedasticity. They also may be a powerful tool for multivariate
modeling of systems that do not present linear correlation between variables, as well as to
visualize high-dimensional data in bi- or trivariate structures. One special kind of neural
network of interest in archaeometric studies is the Self-Organizing Map (SOM). SOMs can be
distinguished from other neural networks for preserving the topological features of the
original multivariate space. In this study, the self-organizing maps were applied to
concentration data of chemical elements measured in archaeological ceramics from Central
Amazon using instrumental neutron activation analysis (INAA). The main objective was
testing the chemical patterns previously identified using cluster and principal component
analysis, forming groups of ceramics according the multivariate chemical composition. It was
verified by statistical tests that the chemical elemental data was not normally distributed and
did not present homogeneity of covariance matrices for different groups, as requested by
principal component analysis and other multivariate techniques. The maps obtained were
consistent with the patterns identified by cluster and principal component analysis, forming
two chemical groups of pottery shards for each archaeological site tested. Finally, it was
verified the potential of SOMs for testing if failures in underlying hypotheses of traditional
multivariate techniques might be critically influencing the results and subsequent
archaeological interpretation of archaeometric data.
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1. Introduction and theoretical background

Artificial neural networks (ANN) represent an alterna-
tive to traditional multivariate analysis methods, such
as principal component and discriminant analysis.
They provide a useful tool for multivariate modelling
of systems with non-linear correlation among vari-
ables. Two main applications of ANN may be ident-
ified: function approximation by retropropagation
algorithms, and grouping or classification of input vec-
tors (Merdun, 2011).

The main applications of artificial intelligence to
archaeometric studies regards the comparison of geo-
chemical data classification by traditional algorithms,
such as hierarchic cluster analysis (CA) and principal
component analysis (PCA), and neural networks
based methods. One main advantage is that the latter
do not depend on any specific data distribution (Bell
& Croson, 1998). A recurrent method for such a pur-
pose is the application of self-organizing maps
(SOMs) (Toyota, 2009), developed by Teuvo Kohonen.
Those maps are based in AAN in a frequently non-
supervised leaning strategy, and do not need a previous

set of test samples of an already known structure
(Lopes-Molinero, et al., 2000). A graphical represen-
tation of a SOM is presented in Fig. 1. The method is
partially based in the way sensorial information are
processed in separate parts of the human brain cortex.

As in the case of principal components and discri-
minant functions, those maps are a useful tool for
graphical visualization of high dimensional data in
bi- or tridimensional structures. The maps are formed
by nodes, or neurons, and every node has a weigh vec-
tor with the same dimension as the data, or inputs. The
neuronal geometry may be hexagonal or rectangular,
which influences the number of neighbors. SOMs can
be distinguished from other ANNs by the preservation
of the topological properties of the original space, by
using neighborhood functions.

In the SOM method, an input vector is allocated in
the neuron unit that has the most similar weigh vector,
or the nearest, based in an adequate metric to measure
the distances between vectors. The general idea is that
the weigh vectors representative of each neuron are
spatially correlated, so that near representative vectors
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in the grade are more similar between them when com-
pared to distant vectors.

The SOM training consists in a competitive unsu-
pervised learning, which assign input vectors to the
most similar neuron, represented by its weigh vector.
In this way, this method aids in identifying grouping
patterns in the data set. As a new input vector is pre-
sented to the net, its Euclidean distance to every
weigh vector associated to a neuron is calculated. The
“winning” neuron, called best matching unit (BMU),
and neighboring vectors have their weigh adjusted
due to the input vector. The magnitude of the adjust-
ment decreases over time and with the distance to
the BMU, according the following updating equation
(adapted from Lopez-Molinero, et al., 2000)

Wv(t + 1) = Wv(t)

+ u(v, t, d)a(t)[D(i)−Wv(t)] (1)

where t is the iteration or epoch of the algorithm, D(i)
is the input vector (i is the sample size of the data set for
training, varying from 1 to n), θ(v,t,d) is the neighbor-
hood function (frequently Gaussian or Triangular)
depending on the distance d to the BMU, and α(t) is
the monotonically decreasing learning coefficient.

The learning process initiate with large neighbor-
hoods to the point where its definition turns more
restrict, and the weigh vector of each neuron converge
to local estimates in the map. An epoch of training is
complete when all input vectors are presented once to
the net for correction of neuronal weigh vectors. At
the end of the procedure, the neurons, or output
nodes, may be associated to the groups present in
the multidimensional space of input by graphical
visualization, with color scales representing the Eucli-
dean distances between the neurons, stored in a U
matrix.

The batch version of SOM algorithm, where all the
input vectors are presented simultaneously to the net

in a unique update is more recent. In the literature,
there are still few works dealing with the application
of self-organizing maps to archaeometric data
(Lopez-Molinero, et al., 2000; Toyota, 2009).

2. Archaeological background

This work comprises the analysis of pottery shards data
from two large and important archaeological sites in
Central Amazon, namely Lago Grande and Osvaldo.
The main archaeological objective is the verification
of potential cultural and commercial exchange net-
works in the region. Once confirmed, it would have
impact on the traditional theories about the occupation
of pre-colonial Amazon, based on environmental
determinism, which concluded that large sedentary
settlements and hierarchical and complex human
organizations could not emerge in the tropical rain for-
est environment (Meggers, 1996; Lima, 2008; Hecken-
berger & Neves, 2009 and references therein).

Previous archaeometric analysis of data from Lago
Grande and Osvaldo led to the determination of two
chemical groups of pottery for each archaeological
site. They presented pairwise superposition, which
were further explored seeking for archaeological cor-
relations regarding territorial integration, commercial
exchange and exogamic marriage between the inhabi-
tants of the region (Hazenfratz-Marks, 2014). The
statistical significance of the chemical groups was
tested indirectly by comparison with variation coeffi-
cients found in archaeometric studies of pottery
around the world (Harbottle, 1982; Bishop, 2003),
by discriminat analysis and by multivariate analysis
of variance.

Table 1 present the average concentrations of nine
chemical elements used in previous studies for each
chemical group defined for the two archaeological
sites. Fig. 2 presents a refined projection of the multi-
variate data in the two first principal components.

Figure 1. Graphical representation of a self-organizing map (SOM) showing the neurons represented by vertical columns. The num-
ber of levels of each neuron corresponds to the dimensionality of the data set. The structure surface corresponds to the map which
is visualized after the application of the method. Source: Tanevska et al. (2007).
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3. Methods

In this work, a study with self-organizing maps was
developed for comparison with multivariate patterns
identified by CA and PCA of geochemical data of pot-
tery shards from two large archaeological sites in cen-
tral Amazon. The results may be found in other
publications (Hazenfratz-Marks, 2014; Hazenfratz,
et al., 2016). The total data set comprises the concen-
trations of 9 chemical elements (Sc, Cr, Fe, La, Ce,
Eu, Yb, Lu, Th) in 141 samples, measured by instru-
mental neutron activation analysis (INAA).

INAA is a nuclear analytical technique for elemental
analysis. It comprises the bombardment of chemical
elements in a sample with neutrons, producing artifi-
cial radioactive isotopes, which are identified and
measured by the gamma radiation emitted in their
decay. Many archaeometric studies employ INAA to
determine the concentration of chemical elements in
many materials due to its advantages, like the possi-
bility of using small amounts of sample and high sen-
sibility for trace elements (Guinn & Lukens, 1965;
Bode, 1996; Glascock et al., 2004).

In a previous work, which generated the data set
used in this paper, INAA was applied to measure 24
chemical elements in the pottery shards (As, K, La,
Lu, Na, Nd, Sb, Sm, U, Yb, Ba, Ce, Co, Cr, Cs, Eu,
Fe, Hf, Rb, Sc, Ta, Tb, Th, Zn). Fifteen elements
were selected from the original data set by means of
analytic quality control based on analysis of relative
standard deviation, bias and tests with z- and u-scores
(Hazenfratz-Marks, 2014), yielding the exclusion of
Nd, Sb, Sm, U, Ba, Rb, Ta, Tb and Zn. Furthermore,
sodium and potassium were excluded due geochem-
ical contamination in the depositional context, prob-
ably due to enrichment by intemperism of feldspars
as the main geochemical mechanism. Geochemical
alterations due to potential diagenetic effects in the
concentration profiles of As, Cs and Hf were also
identified. Such alterations could hide geochemical
patterns and influence the archaeological interpret-
ation of data and were excluded from further statisti-
cal analyzes. The final variable set was comprised of
the chemical elements Cr, Fe, La, Ce, Eu, Yb, Lu, Sc
and Th.

Table 1. Mean concentrations of nine chemical elements in the chemical groups of pottery defined for Lago Grande and Osvaldo
archaeological sites. Concentrations are in μg.g-1.

Element

Lago Grande Osvaldo

A (n = 61) B (n = 28) A (n = 37) B (n = 15)

Sc 14.8 ± 1.9 18.6 ± 2.1 13.8 ± 2.0 18.7 ± 2.3
Cr 64.3 ± 8.3 79.1 ± 10.2 59.0 ± 7.4 75.3 ± 9.6
Fe 36543 ± 7991 44197 ± 6505 32432 ± 5723 39165 ± 3728
La 38 ± 5 50 ± 5 38 ± 4 47 ± 7
Ce 75 ± 11 104 ± 17 71 ± 12 107 ± 24
Eu 1.1 ± 0.2 1.7 ± 0.2 1.1 ± 0.2 1.5 ± 0.2
Yb 2.7 ± 0.4 3.5 ± 0.4 2.9 ± 0.4 3.3 ± 0.4
Lu 0.45 ± 0.07 0.56 ± 0.07 0.47 ± 0.07 0.55 ± 0.06
Th 13.7 ± 1.5 16.6 ± 2.0 13.8 ± 2.2 17.2 ± 2.4

The parameter n represents the number of samples in each group.

Figure 2. PCA scores of elemental concentration data from Lago Grande and Osvaldo archaeological pottery combined after classi-
fication refinement. Ellipses represent the 95% confidence region. Source: Hazenfratz-Marks (2014).
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In order to analyze the refined data set selected for
archaeological pattern recognition, the computational
packages Kohonen and CP-ANN (implemented in
Matlab 7.6.0 R2008a with the function newsom) were
employed to calculate the SOMs (Ballabio, et al.,
2009; Ballabio & Vasighi, 2012). It was adopted the
non-supervised algorithm so that the previous classifi-
cations of samples by CA and PCA might not interfere
in the learning procedure. After the convergence of
maps, comparisons between the classifications of
samples were made. The parameters selected for the
algorithm were (Lopez-Molinero, et al., 2000;
Tanevska, et al., 2007; Toyota, 2009; Ballabio &
Vasighi, 2012):

▪ Model: non-supervised Kohonen map
▪ Net geometry: hexagonal
▪ Number of neurons: 7 × 7
▪ Number of epochs: 500
▪ Neighborhood function: Gaussian
▪ Training algorithm: batch
▪ Initialization of neuronal weighs: linear (from data

eigenvectors)

▪ Data transformation: base-10 logarithm
▪ Initial learning rate: 0.5
▪ Final learning rate: 0.01

4. Results and discussion

In Fig. 3 and 4 the SOMs for Lago Grande and Osvaldo
are presented, respectively. Fig. 3 shows that the SOM
converged to a configuration where the samples from
different chemical groups were allocated in different
regions of the map. The white and hachured neurons
represent approximately the different group domains.
The group g1 has a higher number of neurons associ-
ated to it, and it may be correlate of a higher geochem-
ical variation in the samples. In fact, by comparison of
Fig. 2 and 3, regarding the refined PCA results, it is
possible to observe that the 95% confidence ellipse
associated to the group A (called g1 here) is larger
than the ellipse associated to group B (called g2
here), which may be interpreted as another indication
of the same higher geochemical variability. The same
interpretation may be claimed for Fig. 4, regarding
the SOM for Osvaldo archaeological site.

Figure 3. Kohonen Map for the chemical groups of Lago Grande archaeological site. The symbols g1 and g2 represent different
groups identified by CA and PCA analysis.
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The higher chemical variability of group g1 in Lago
Grande was interpreted as possible superposition of
different clay recipes, and it was hypothesized that it
may represent pottery shards from other archaeologi-
cal sites in the region that might have participated in
larger exchange networks than previously thought
initially, and not only between Lago Grande and
Osvaldo (Hazenfratz-Marks, 2014).

Fig. 5 refers to the application of SOM algorithm for
the samples of pottery shards from Lago Grande and
Osvaldo in a combined fashion. It was observed that
the map converged to a configuration where the pottery
shards of group g1 of Lago Grande and group g3 of
Osvaldo presented superposition and were allocated in
a common region in the map (white hexagons). This
region is distinct from the region where the pottery
shards from groups g2 of Lago Grande and g4 from
Osvaldo were allocated, presenting the same superposi-
tion observed for groups g1 and g3 (blue hexagons). The
three neurons highlighted in orange represent a tran-
sition region, with different mixing of samples. How-
ever, they represent the smallest portion of the map.

The results of the data sets from Lago Grande and
Osvaldo combined are in agreement with the combined
CA and PCA analysis which identified at least two
chemical groups of pottery shards for each archaeolo-
gical site, with pairwise superposition, as it can be
observed in Fig. 2.

5. Conclusion

The Kohonen maps, a type of neural network, were
applied to INAA data regarding the concentration
of chemical elements in pottery shards from Lago
Grande and Osvaldo, two large and important
archaeological sites in central Amazon. The chemical
grouping patterns identified here agreed with the
results of previous multivariate statistical methods
using cluster and principal component analysis,
which identified two chemical groups of pottery
shards for each archaeological site, with pairwise
superposition. It indicates that the archaeological
community can rely on the chemical groups of cer-
amic artifacts defined for those archaeological sites

Figure 4. Kohonen Map for the chemical groups of Osvaldo archaeological site. The symbols g1 and g2 represent different groups
identified by CA and PCA analysis.
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so far, and can use them for archaeological interpret-
ation and basis for planning further archaeometric
research regarding the pre-colonial Amazonian
occupation.

It was also verified the potential of the self-organiz-
ing maps for archaeometric data analysis and compari-
son with multivariate statistical methods which rely
upon hypotheses regarding the normal distribution of
data and the homogeneity of the covariance matrices.
Such a comparison could indicate if the deviation of
underlying hypotheses of more traditional multivariate
analysis would affect the results in pattern recognition,
used frequently to analyze archaeometric data sets with
the objective of identifying chemical groups of artifacts
and/or identifying provenance.
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