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The linearity characteristic in radiation dosimetry presents a growing interest. Glasses have been applied to high
radiation doses. In this work, materials will be analyzed and compared in relation to their linearity ranges.
Lithium diborate, sodium diborate and commercial glass were irradiated with doses from 10 Gy to 10 kGy using
a ®°Co Gamma-Cell system 220 and evaluated with the UV-vis technique. The sensitivity analyses were applied
through four methodologies, searching for linear regions in their response. The results show that all four applied

analyses indicate linear regions for the tested radiation detectors. The materials with higher linearity range, in
descending order, were lithium diborate, sodium diborate and commercial soda-lime glass. The radiation de-
tectors present potential use for radiation dosimetry in intermediate and high doses.

1. Introduction

The search for new materials that can be used as radiation detectors
is of great technological importance. This is especially true in the food
industry and medicine, where there are large demands for obtaining
measurements in situ, often impossible due to the fragility and size of
the conventional sensors (Fedorov and Viskanta, 2004; Keeffe et al.,
2008; Kowatari et al., 2016; Oliveira et al., 2018). The employment of
sensor elements based on ceramic, glass and/or glass-ceramics is in-
teresting due to their low production costs and to their good mechanical
properties. Glasses become of interest to be used as active elements in
gamma ray sensors due to their changes in the optical spectra when
exposed to gamma radiation (Ehrt and Vogel, 1992; Sheng et al., 2009;
Kaur et al., 2014).

Numerous authors have tried to explain the mechanism by which
glasses become colored in the presence of gamma radiation (Bishay,
1970; Abbas and Ezz-Eldin, 1994; Rojas et al., 2006; Baydogan and
Tugrul, 2012; Du et al., 2013; Maeder, 2013; Kaur et al., 2014). The
ionizing radiation induces characteristic absorption bands in the glass
samples depending on the irradiation conditions. There is a variation in
color due to the exposure to radiation. The color change is believed to
be related to the oxidation mechanism which may create color centers
that can absorb light (Baydogan and Tugrul, 2012).

One explanation for the formation of color centers is credited to the
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production of electron-hole pairs, which then may be individually
trapped in numerous local defects in the glass structure (Abbas and Ezz-
Eldin, 1994). However, the increase in optical density with increasing
gamma radiation dose is also attributed to the presence of impurities
inherent in the glass, such as the ratio Fe*>* /Fe?*. Therefore, the full
understanding of the real effect of the gamma radiation exposure of the
glass is still the subject of studies, and it remains without a definitive
explanation (Quezada and Caldas, 1999; Rodrigues and Caldas, 2002;
Caldas and Teixeira, 2002; Bahri et al., 2014)

In this work, the UV-vis spectrophotometry, a non-destructive
technique, was applied to study the color centers of the gamma irra-
diated glass samples. The linearity analysis was utilized, and it can be
viewed as the characterization of the possible sensor transfer function
(Wyatt, 1978). The glass compositions used for the irradiation studies
were commercial soda-lime, and lithium and sodium diborate.

2. Materials and methods

The glass samples of lithium diborate and sodium diborate, and of
commercial soda-lime glass have dimensions of 1 x 1 X 4mm?. They
were irradiated with absorbed doses between 10 Gy and 10 kGy using a
%0Co Gamma Cell-220 system (dose rate of 1.089 kGy/h). A spectro-
photometer Genesys 10S/Thermo Scientific was used for response
evaluation. The spectra were obtained for wavelengths from 190 to
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Fig. 1. UV-vis spectra for glass samples irradiated with absorbed doses from 10 Gy to 10 kGy (°°Co source): absorbance versus wavelength. a) lithium diborate; b)
sodium diborate and c¢) commercial soda-lime glass. The average of 3 samples was evaluated for each curve, and the uncertainty obtained was lower than 1%.

400 nm, a scanning interval of 1 nm, and a spectral band of 1.8 nm.
Nine samples without irradiation were evaluated for reference mea-
surements and 30 samples were irradiated, triplicates were made for
each absorbed dose. The parameters for the irradiation procedure were:
source-detector distance of 15 cm, maximum dose depth of 3.0 mm; the
glasses were placed in front of an acrylic cylinder with 6.4 mm of dia-
meter and 20 cm of height.

Linear relationships establish some useful properties that are im-
portant to model properly physical systems, which are easy to perform
analyses on the model dynamics, supplying mathematical interpreta-
tions towards the experimental data that obey the linear relations.
These properties include associative, cumulative and superposition
features, which reinforce the capabilities to predict and extrapolate new
values, based only in a few measurements of the planned experiment.
As an example, this is suitable and useful when trying to predict the
absorbed dose in biological tissue at high dose rates, since its rapid
response fading cannot allow properly prediction of the effect of the
color changing of the sample as function of the absorbed dose.

Then, to assess linear relationships among experimental results, the
linear regression technique appears as the most used, consisting on the
analytical implementation of the Least Square Residual Minimization
Method (Montgomery et al., 2012). Then, the linear regression uses the
explanatory variable and the independent variable to create a linear
model, based on some measured values of the explanatory variable, x,
and its respective response on the independent variable, y. This method
consists in y to be any outcome, and x to be any explanatory variable,
and then it may possible express the structural model using Eq. (1):

EQlx) =By + Bx (€]

where E (“the expected valued”) indicates a population mean; ylx,
which is read “y given x”, indicates the possible values of y when x is
restricted to a single value; and (3, read as “beta zero”, is the intercept
parameter; and §,, read as “beta one”, is the slope parameter.

In this work, the linear regression was applied to evaluate the
possible linear relations established into a multivariable system,
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counting with two input variables and one response. The system con-
sisted to verify the linear response of the absorbance of the Lithium and
Sodium Diborate, and Soda-lime commercial glasses, irradiated with
gamma rays, which will allow measuring the linear behavior of ab-
sorbance in each of these glasses under irradiation procedures. The first
input variable was the wavelength spectrum, between 290 and 400 nm,
and the second response was discrete absorbed dose, varying discretely:
10 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 500 Gy, 700 Gy, 1kGy, 5kGy
and 10kGy. The response was the spectral absorbance measured as
function of wavelength and absorbed dose then making a two input
system, or multivariable system.

Nevertheless, before the implementation of the linear regression,
the variable reduction of the system was first performed, to reduce the
multivariable regression into a single variable regression, using the area
Under the Curve Method (UCM) and the Wavelength Method (WM),
and similar procedure can be used performing a Principal Component
Analysis (PCA). In addition, in this work, the accuracy comparison
between the area Under the Curve and the Wavelength Methods was
made. Basically the area Under the Curve Method calculates the area
under the curve of the absorbance from each one of the discrete ab-
sorbed dose as function of wavelength; each integral area consisted of a
point, at the graph of Integral Area versus Absorbed Dose; then a linear
regression is performed. Alternatively, the Wavelength Method only
takes a wavelength at a time and uses as the single absorbance response
associated from discrete absorbed dose to create a graph of Absorbance
versus Absorbed dose; then a linear regression is applied.

An innovation of this work consists to evaluate the Wavelength
Method over all points from 290 nm up to 400 nm, with the optical step
of 1nm, then making possible to find the best optimal wavelength
automatically. This was made, using a Matlab script configured to
perform a linear regression and to save the Person R? correlation index,
that allows a quick inspection of the linearity of the linear regression,
since a R? value nearest to the unity shows a more linear model.
Otherwise, the same occurs from the area Under the Curve Method. In
addition, to get a comparison on the linear response of all three glasses,
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Fig. 2. Integral area for spectra for glass irradiated versus wavelength, using the UV-vis technique and irradiation from 10 Gy up to 10 kGy of absorbed doses (°°Co
source) for: a) lithium diborate; b) sodium diborate; and c¢) commercial soda-lime glass.

the cumulative probability curve from the linearity result expressed by
the R* was implemented using the Matlab; this cumulative probability
curve was built since the R® date were assumed within a Gaussian
distribution.

3. Results

The spectra of all these materials show in Fig. 1 absorbance values
associated to the absorbed doses received by the samples. These results
show that it is possible to use the UV-vis technique to determine if the
glass samples were irradiated or not. The color variation in relation to
absorbed dose was verified and indicates that the glasses may be used
as YES/NO dosimeters.

The results were divided in two parts, the first part with analyses of
area Under the Curve Method and the second part with the Wavelength
Method, both used to evaluate the linearity performance of the lithium
diborate, sodium diborate and the commercial soda-lime glass samples.

In Fig. 2, the integral area from Fig. 1 curves versus wavelength of
the three materials are shown. These results indicate in which region of
the wavelength polynomially occurs; in this case, for lithium diborate
between 250 nm and 400 nm, for sodium diborate between 220 nm and
400 nm, and for commercial soda-lime glass between 190nm and
270 nm.

The integral areas of the material absorbance curves versus absorbed
dose are shown in Fig. 3. For lithium diborate samples, there is linearity
up to 1kGy and another linear region between 1 kGy and 10 kGy; for
sodium diborate sample a linear region between 10 Gy and 1 kGy can be
observed, and for commercial soda-lime glass the linear region occurs
between 10Gy and 100Gy, and then a non-linear region between
500 Gy and 10kGy. Then, on the first linear regions from 10 Gy to
1kGy, a regression procedure was applied, obtaining R® values of
0.98336, 0.95957 and 0.25882 for lithium diborate, sodium diborate
and commercial soda-lime samples respectively. These values show that
using the Area Under the Curve Method the lithium and sodium

diborate samples present potential use as dosimeters, but the soda-lime
glass samples do not, due to their lower linearity (very low R? value).

In Fig. 4 are presented the dose-response curves (at 250 nm) of all
materials, exposed to gamma radiation (°°Co sources). The results show
that lithium diborate response presents the best linearity behavior up to
1 kGy. The materials of lithium diborate, sodium diborate and com-
mercial soda-lime glass samples, have R? linearity coefficients of
0.9888, 0.9843 and 0.6316 respectively. In this case, the nonlinear
behavior of the commercial soda-lime glass is evidenced, being prac-
tically linear only in the region up to 500 Gy.

Fig. 5a shows the linearity as a function of wavelength, associated to
all absorbed doses of the dosimeters, using the Wavelength Method, to
produce the regression and from it acquire the linearity R? value. It
should be noted that the dosimeter closest to the linearity (nearest to 1)
in the entire region of the analyzed spectrum 190-400 nm is lithium
diborate, followed from sodium diborate and commercial soda-lime
glass. The region between 225-275nm indicates the region with the
highest sensitivity for linearity for the dosimeters lithium diborate,
sodium diborate and commercial soda-lime glass, respectively.

The cumulative probability as a function of linearity may be ob-
served in Fig. 5b, in which the best dosimeter in terms of linearity can
be identified. By inspection on the cumulative probability, it is possible
to affirm that the lithium and sodium diborate samples present 90%
linearity, greater than 0.80 and 0.73 respectively over the range of
190-400 nm. On the other hand, only 10% of the samples of the wa-
velength in the soda-lime has linearity above 0.60, showing therefore
that the commercial soda-lime glass is not recommended for use as
dosimeter. It must be noted at the specific wavelength that the lithium
and sodium diborate samples show linearity close to the unity, with
potential use as dosimeters.

Finally, comparing the area Under the Curve and the Wavelength
Methods, they showed good agreement, since both ranked the lithium
diborate material as the most promisor dosimeter followed by the so-
dium diborate material; in addition, both methods showed that the
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Fig. 3. Integral area of the material absorbance curves versus absorbed dose, using the UV-vis technique and wavelength interval from 190 nm up to 400 nm for: a)
lithium diborate; b) sodium diborate and c¢) commercial soda-lime glass.
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Fig. 4. Dose-response curves of the glass samples (°°Co source) for 250 nm: a) lithium diborate; b) sodium diborate and ¢) commercial soda-lime glass.

commercial soda-lime glass does not present good dosimetric proper- 4. Conclusions
ties.

Another material, Ethylene Vinyl-Acetate Copolymer (EVA), pre- The UV-vis spectra lithium borate, sodium diborate and commercial
sented also a linear relationship with the absorbed dose (Oliveira et al., glass samples were obtained. The UV-vis measurements may be useful
2018). in gamma radiation dosimetry, using the spectra of irradiated glasses;
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Fig. 5. Linearity analyses of lithium diborate, sodium diborate and commercial glass: a) Linearity versus wavelength; and b) Cumulative probability versus linearity.

the dose-response curves showed good linear relationships at 250 nm;
the highest linearity was shown in order respectively for lithium borate,
sodium diborate and commercial glass; the glass samples changed their
coloration proportional to the absorbed doses, and they may be used as
Yes/No detectors.
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