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A B S T R A C T

Increasing the radial distance, the accuracy of the Sievert Integration Model (SIM) decreases in a nonlinear
manner, adding errors up of 10% into the dose rate calculations; a similar fact occurs to the 2D anisotropy
function where the errors may achieve 30% as already was related. For that reason, this paper sought an in-
novative approach to optimize the error variance and its biases of dose rate calculations around a Nucletron
brachytherapy source of 192Ir from 0 to 10 cm taken in the radial distance, using an improved SIM through a
hybrid coupling of Artificial Neural Networks (ANNs) and Inverse Problem Theory (IPT). Since the traditional
approach relies into the use of a small data set of dose rate, the ANNs generalized these doses, making possible to
search more broadly optimum parameters to SIM using the IPT. The results showed excellent accuracy evaluated
with the Root Mean Square Percentage Error (RMSPE). In conclusion, the low RMSPE values indicate that the
methodology is consistent, showing an excellent agreement with the state of art of dosimetric measurement
techniques.

1. Introduction

The Sievert Integration Method (SIM) relies as one of the most im-
portant analytical modelling techniques in the radiation physics with
direct applications in dosimetric fields (Williamson et al., 1983). Thus,
this importance has had established since the 20th century when the
lack of computers boosted the analytical methods to a highlighted place
of significance, as example, many tables of daily routine of Bra-
chytherapy treatments used the Sievert model to calculate the equiva-
lent doses. However, few attempts had tried to improve the analytical
Sievert method, since other methods like Monte Carlo (MC) appeal to
be a more manageable and easy to perform calculations.

Contrary to this, several researchers had shown that the SIM can
describe the accurate dose rate distribution for many brachytherapy
sources, and the small computational execution time and the easy to
perform implementations are the core advantages compared with the
traditional Monte Carlo codes (Pantelis et al., 2002a, 2002b;
Williamson, 1996).

Williamson and Li (1995) and Karaiskos et al. (2000) pointed al-
ready out that with the increase of the radial distance, the accuracy of
SIM decreases in a non-linear manner, adding errors of 10% or larger
for the dose rate calculations. For the anisotropic function, for a range
of angles varying from 14 to 30 degrees, the errors can achieve 30% and

26%. For that reason, this work aims to minimize and dissipate these
errors over the range from 0 to 10 cm.

Therefore, Artificial Neural Networks (ANNs) and non-linear opti-
mization methods are gaining expressive applications on radiation do-
simetry. Numerous papers have tried to use the classification, predic-
tion, clustering and universal approximation features of neural nets, to
identify tumors (cancers) in the early stages of development or even
trying to predict the probability of cancer appearance as a function of
the behavioral and historical records of previous diseases (Álvarez
et al., 2010).

Nevertheless, these applications are not exhaustive to the previous
cited ones; this paper brings a new kind of use of the ANNs. It will be
used to improve the well consolidated analytical methods through a
hydric coupling between the experimental and simulated data, used in
the references protocols, regulated under the Task Group Activities.
These improvements consisted on the updates of the modelling equa-
tions, using the state of art experimental measurements to attach a more
accurate model, and then updating the equations used in brachytherapy
sources.

2. Methods

To improve the SIM, seeking for more accuracy and error
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dissipation towards larger radial distances, this work was structured
into four main parts, implemented in a straightforward manner,
showing the motivations in each section to use the models.

2.1. Consensus data set

There are tremendous efforts by the national politics and interna-
tional regulatory agencies to get standards to the measurements pro-
cedures and data visualization representation in radiation treatments.
These efforts are linked, in this work, to the contribution of the
American Association of Physics in Medicine (AAPM) on its Task Group
No. 43 (AAPM TG-43), and its update (AAPM TG-43U1) and supple-
mentation (AAPM TG-43U1S1) (Rivard et al., 2004, 2007) where
mathematical equations allowed researchers to get standard results to
their experimental or simulated results in front of benchmarked pro-
tocols. Those protocols facilitate the comparison among different data
sets.

The TG-43 formalism defined expressions for brachytherapy source,
around water, such as the air-kerma strength, geometry function, radial
dose function and the 2D anisotropy function. These expressions apply
for cylindrically symmetric dose distributions along the longitudinal
axes of the sources.

After the proper definition of the TG-43 formalism, the reference
data of the dose rate was collected to measure the quality of the SIM
model against this reference. Ever since, a previous version of the
Sievert Method compared its accuracy with different data sets, like did
the models made by Williamson and Li (1995) and Karaiskos et al.
(2000), that compared the quality of their models with experimental
data in the case of Karaiskos et al. (2000) and with simulated data
through Monte Carlo, as did Williamson and Li (1995). In this work,
these same models were evaluated, comparing them with a third data
source, preventing then a biased analysis of which model was the best
to modelling the dose rate distribution with greater accuracy.

Then, the AAPM Consensus, supplied by Perez-Calatayud et al.
(2012) served as the reference dimensional (2D) dose rate distribution
for the Nucletron Micro-Seletron source data set and geometrical fea-
tures, like nuclei diameter and length as so materials and their dis-
position on the source model. Initially the 192Ir sources came from
different manufactures; it includes the Nucletron and Varian sources.
The Monte Carlo (MC) calculations presented at the AAPM Consensus
data were calculated using the EGSnrc user-code (Perez-Calatayud
et al., 2012).

2.2. Mathematical models

Williamson and Li (1995) proposed an approach to implement an
analytical solution of the Sievert Equation model, dividing the original
model into two components (the scatter and primary dose rate); this set-
up was called the isotropic scatter model. They were applied success-
fully in the High Dose Rate (HDR) sources of 125Ir, 169Yb and 192Ir with
clinical acceptable errors. Then, Karaiskos et al. (2000) proposed Eq.
(1), which combines the scattering and primary dose rate function
(SPR), into a single equation; they also proposed to use a correction
factor into the SPR function. Karaiskos et al. (2000) affirmed that their
model required few inputs to its implementation and it was computa-
tionally efficient in terms of time execution.
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where N is a finite number of small segments in which the active length
L is discretized; Sk is the air-kerma strength; μs, μf and μw are the ef-
fective filtration coefficients of the source, encapsulation and the water

medium respectively. rSPR( ) is the scatter to primary dose rate ratio:
Eq. (2); r θC( , ) is a correction factor: Eq. (3); r is the radial distance and
θ the angular displacement to the point of calculation; ri is the distance
between the ith segment in the Ni segment in the center of the source
relative from the measurement point. The si, fi and wi are the traveled
distances of photon from the mid of the source center, encapsulation

Fig. 1. Schematic representation of the SIM method, this figure shows the re-
ference distances presented at Eq. (1). Adapted from Karaiskos et al. (2000).

Fig. 2. Distance on transverse axis – y versus the dose rate multiplied by
squared radial distance. This figure shows the nonlinear mapping of the doses,
used as the input data to the trained ANN.

Fig. 3. Normal percentiles versus estimation error. This figure shows the esti-
mation error using an ANN to approximate the dose rate from the Consensus
data set. The samples are the dose rate multiplied by the squared radial distance
as a function of the z - and y - coordinates taken from the Consensus data set.
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material and the calculation point respectively, F r( )c is the normal-
ization of dose: see Eq. (4); μ ρ( / )en air

water is the ratio mass-energy ab-
sorption coefficient.
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where ′si , ′fi and ′ri
2 are the distances within source and encapsulation

material from the ith segment to the calibration distance rc. Fig. 1 shows
the distances defined in Eqs. (1) and (4). The computational solution of
Eq. (1) required the construction of a virtual source model with the
dimensions of the mHDR Nucletron Selectron v1 and its geometrical
features. The Matlab© software serves as the computational developing
environmental to the model.

However, Karaiskos et al. (2000) and Pantelis et al. (2002a, 2002b)
showed that with the increase of radial distance the accuracy decreases
in a non-linear manner, adding errors of 10% or larger for the dose rate
calculations. For the anisotropic function, for a range of angles varying
from 14 to 30 degrees the errors can achieve 30% and 26% as related,
indicating consequently that the SIM model, Eq. (1), needed adjust-
ments on these improvements. Therefore, these improvements can be
achieved using the Artificial Neural Networks and the Inverse Problem

methodology, which are described in Sections 2.3 and 2.4 respectively.

2.3. Artificial Neural Networks

In this work, the ANNs performed a multidimensional approxima-
tion on the dose rate data set published as the Consensus data from the
AAPM report, for the Nucletron source 192Ir. A homemade code used
the Matlab toolbox of Neural Networks, the ‘nntool’ (Mark et al., 2014)
to model the network topology.

The input data were the Cartesian coordinates (z, y) for the dis-
tances along the source representing the z-axis and the distance from
away the source that stands for the y-axis. The z-axis was delimited
from − 7–7 cm, while the y-axis from 0 cm to 7 cm; the output was the
dose rate, a function of the coordinate (z, y). The two hidden layers
were set to have twenty neurons on each one; the activation functions
in the hidden layers were set as the sigmoidal function, and the output
layer the linear function. Then, the ANNs were trained in a supervised
scheme, using the error back propagation algorithm optimized by the
Levenberg-Marquardt Training (Hagan and Menhaj, 1994), applied on a
Multilayer Perceptron (MLP) (Russell and Norvig, 1995), architecture,
resulting in a MLP 2–20-20-1.

Since the dose rate distribution relies on a certain type of Gaussian
distribution, in the nearest region of the seed nuclei the dose tends to
high values, such as 3.18× 108 Gy at the origin (0, 0) cm, contrary,
lower doses for larger radial distances as 2.20×10−4 Gy at 10 cm
which is approximately in the (−7, 7) cm coordinate position.
Consequently, a pre-processing was required to eliminate possible sin-
gularities and to improve the ANN training performance, so the input
data were scaled into the range of − 1 to + 1 in non-dimensionally
units; the output was first scaled into a non-linear mapping from 0 to 1
and then to a linear mapping from − 1–1 a-dimensionally units. The
non-linear mapping was performed by the multiplication of the dose
rate at the point (z, y) by its squared radial distance, of z and y, cal-
culated as the bi-dimensional Euclidean distance, r= (z2 + y2)1/2,
where “r” is the radial distance.

After defined the topology and the training phase, the input data
were set in the training, validation and tests groups, in the 80%, 10%
and 10% proportion respectively. The data were allocated randomly on
these three groups regarding its proportion from the inputs and output
pairs. The performance training function was set as the Mean Squared
Error (MSE) and the Pearson R2 correlation coefficient (Mark et al.,
2014); both of these functions were evaluated between the target value
and the estimated output obtained after the training. The stop training
criterions were defined: maximum 1000 numbers of epochs; limit time
of training of 360 s; if the incremental change in the gradient was
smaller than 1.00× 10−10; and finally if the performance function MSE
hit the 1.00×10−10 value the training phase stops.

2.4. Sv improvement

The traditionally employed techniques to error minimization be-
tween two different systems with the same output is to apply a fitting
procedure, to adjust one in front of another. The non-linear regression
plays an important role when it comes to the improvement of the ac-
curacy; this approach to get the constituent parameters from the ob-
servations on a model function passes through a Nonlinear Least
Squared Fitting procedure, which relies on an optimization problem
and on an Inverse Problem Theory (IPT) method perspective (Edwin
and Stanislaw, 2013). At this work, the cost function, Eq. (5), performs
an evaluation on the residual value between the set of the observation
and the set of the estimated-based model. Williamson (1996) applied a
similar procedure to the 60Co source, to get two parameters for the
filtration coefficients based on the MC simulations.

However, Williamson (1996) obtained its results from a small data
set of the discrete tabulated results following the TG43 formalism re-
presentation. In the present work, the ANNs proved to be an alternative

Fig. 4. Comparison between two surfaces: a) Product of the SPR and C ex-
pressions originally proposed in Eq. (1) and the flat plan of Eq. (7). b) Residual
difference of the SPRC product relative to the plan surface, highlighting the
distortions presented at extreme angles.

Fig. 5. Comparison of the radial dose function plot from different methods. This
figure captured the result of ISIM method, showing a good agreement with the
literature data.
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to generalize the results from the AAPM Consensus data (Perez-
Calatayud et al., 2012), which contain a larger range of doses and
distances, then allowing the search for better parameters for Eq. (1).
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where σ μ μ% ( , )RMSPE 1 2 is the cost function, taken as the Root Mean
Squared Percentage Error (RMSPE), μ1 and μ2 are the parameters under
optimization, D r θ S([ ̇ ( , )/ ] )k EGSnrc ANN is the ANN approximation of the
MC code EGSnrc, presented in the AAPM Consensus data [9]; μ μ( ˆ , ˆ )1 2
are the estimated parameters that will minimize the error, Eq. (5). The
expression D r θ μ μ S[ ̇ ( , ; , )/ ]k ISIM1 2 stands for the Improved Sievert In-
tegration Model (lSIM) that was achieved by substituting the product of
SPR and C functions at the Eq. (1) by the expression at Eq. (7):

= +CF r θ μ r μ θ( , ) 1 2 (7)

where CF r θ( , ) is the Correction Function.
The computational implementations were performed in Matlab©

software, version R2014a, applying the inline functions of the optimi-
zation toolbox, optimtool (Matlab, 2014). The adjustment parameters
μ1 and μ2 used the Levenberg-Marquardt algorithm and the Trust-Re-
gion Reflection method was configured according to the Matlab© de-
faults.

3. Results and discussion

Fig. 2 shows the dose rate per unit air kerma versus the radial dis-
tance for the mHDR Nucletron Selectron v1. These data served as the
reference data from the AAPM, as set in Section 2.1. In addition, Fig. 2
shows the non-linear mapping performed on the dose rate; it is possible
to verify that any singularities related with high dose rates at small and
large distances were dissipated. Consequently, with the singularities
disappearance the training performance of the ANN was greatly up-
graded, then collaborating to find a final ISIM model with clinical

acceptable errors as discussed at the Section 2.3.
Fig. 3 shows the approximation error performed by the ANN gen-

eralization on the (z-axis, y-axis; Dose rate) data from the nonlinear
mapping. The approximation error was the relative percentage error
with the reference data from the AAPM MC simulated data (Perez-
Calatayud et al., 2012). The statistical parameters of this error were:
standard deviation value of 0.2035%, mean value of − 0.017%,
minimum error of − 1.4419% and maximum error of 1.2302%; these
qualifiers prove that the ANN performed an excellent approximation,
due to its small error descriptors, with low standard deviation and mean
value.

Fig. 4a reveals, accordingly with was stated on Section 2.4, that the
ISIM method attached its improvement relative with the substitution of
the SPR and C product, on Eq. (1), by only a new surface, expressed by
Eq. (7). Therefore, Fig. 4b shows only extreme angles, from 0 to 10
degrees and from 170° to 180° of the SPR and C product, curved the
surface response. In relation to the new Eq. (7), this modification of
curvature at the extremes angles, leaving only a flat plan, shall not be
taken.

With the good results of the ANN approximation, the improvement
of the SIM to the ISIM was straightforward, with the implementation of
the IVT through Eq. (5), to adjust the optimal parameters of Eq. (7) that
were obtained as μ1=0.1647 and μ2=6.4499. Then, to certify the
accuracy of the obtained results from the new ISIM modelling equa-
tions, the TG-43 formalism was evaluated using other sources besides
mHDR Nucletron Selectron v1; the sources were BEBIG Ir-192 HDR,
Varisource VS2000 HDR just adjusting the filtration coefficients.

Fig. 5 shows the Radial Dose Function plot against the results from
the literature data of the BEBIG 192Ir HDR (Granero et al., 2005),
Varisource VS2000 HDR (Casado et al., 2010) and microSelectron HDR
(Perez-Calatayud et al., 2012). The ISIM method was performed with a
RMSPE of 3.29% when compared to the results presented by
Williamson and Li (1995), indicating excellent results, since there are
no significant discrepancies at the modelled curves.

In the Fig. 6a complete inspection into the radial distance from 0 up
to 10 cm was made; these graph prove that the proposed methodology
successfully dissipated and mitigated the higher errors as the radial

Fig. 6. Model response of the proposed ISIM and comparison with the literature data using MC techniques, evaluated at: a) z= 0 cm, b) z= 2 cm, c) z= 5 cm and d)
z=7 cm.
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distance increase. In summary, the RMSPE value for these doses taken
at the distance of z (along the source) in the range of 0, 0.5, 1, 2, 3, 4, 5,
6 and 7 cm were respectively 2.54%, 2.48%, 1.66%, 2.16%, 2.71%,
2.57%, 2.75%, 2.65% and 2.74%.

4. Conclusions

A new improved model for the Sievert Integration was obtained
using a hybrid couple between neural nets and the inverse problem
theory. The ANN successfully approximated the dose rate distribution
along the mHDR Nucletron Selectron v1 source with maximum error of
1.21%. The ISIM method from the range of 0–10 cm of radial distance
regularized the approximation errors, measured with RMSPE error of
2.47 ± 0.35%. The radial dose rate calculation using the ANN and the
ISIM method benchmarked against the TG-43 formalism showed ex-
cellent results with an approximation error of only 3.29%. These results
show that the ISIM may be a promising tool for dosimetry evaluations
with clinical acceptable errors.
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