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ABSTRACT

We reported herein a systematic investigation on how the nature of the support

affected the catalytic performances of Rh nanoparticles. The prepared catalysts

were denoted as Rh/MxOy, where M corresponded to Ce, Ti, Si, Zn, and Al, and

Rh was Rh3? reduction to Rh nanoparticles on the surface of oxides. This

strategy was performed in a single step using urea as a mediator and in the

absence of any other stabilizer or capping agent. The Rh nanoparticles displayed

relatively similar sizes, shapes, and uniform distribution over the supports,

differing only in terms of the nature of the support. This strongly affected the

metal–support interaction between Rh nanoparticles and the respective oxides,

leading to significant differences in their catalytic performances toward the

ethanol steam reforming. Here, not only the catalytic activity (in terms of

ethanol conversion) was affected, but both the selectivity and stability were also

influenced by the nature of the oxide support. Interestingly, the reaction paths as

well as the deactivation profile were completely changed as function of the

employed support. Such differences were associated with differences in the

oxygen storage, oxygen mobility, and acidity/basicity of the supports. We

believe that our results can contribute to the development and understanding of

Rh-supported catalysts for the applications toward gas-phase transformations

such as the ethanol steam reforming reaction.
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Introduction

Ethanol steam reforming is an important chemical

transformation that makes possible the conversion of

a renewable liquid raw material to hydrogen (H2) in

the presence of water (H2O), having carbon dioxide

(CO2) as a coproduct [1–4]. However, under real

experimental conditions, not only stoichiometric H2

and CO2 are obtained as products, but a relatively

complex reaction mixture containing compounds

formed by a variety of parallel reactions that can also

take place, including ethanol dehydrogenation,

dehydration, and decomposition, coke deposition,

among others [5, 6]. Nevertheless, a variety of pre-

vious work has shown that the selectivity can be

controlled/optimized in order to direct the reaction

process for the maximum of H2 production. In this

context, the main strategies used to improve the

performance of ethanol vapor reforming system

include the systematic manipulation of process

parameters such as temperature, stoichiometry of the

reagents and/or their feeding flows, and gas hourly

space velocity (GSHV) [1–3, 5–8]. Moreover, the

synthesis of supported nanocatalysts has evolved

into an important strategy for the development of

increasingly efficient ethanol steam reforming pro-

cesses [6, 9–13].

Typically, the structure of supported nanocatalysts

for catalysis is described by the active phase and the

solid support. The active phase is usually based on

noble metal nanoparticles such as Au [14], Pd [15], Pt

[16], Rh [17, 18], Ru [19], and among others, having

higher activity, selectivity, and resistance against

deactivation. Non-noble metals such as Ni and Co

[6, 9, 20] have also been employed, which are more

accessible, with great potential for reforming, but

they are not so active, selective, and stable and tend

to deactivate in short times of reaction. On the other

hand, the solid support represents much more than

only a carrier or disperser of the active phase. Some

previous studies have shown that the support,

according to their chemical nature, can effectively

enhance the catalytic activity and manipulate the

reaction pathways for desired reactions and prevent

the deposition of carbon-based compounds that tends

to deactivate the catalyst [8, 9, 13, 21–25].

In order to produce supported nanocatalysts, two

main strategies are usually employed. The first is the

synthesis of nanoparticles and their further

incorporation over the surface of solid supports after

steps of purification that include washing and cen-

trifugation or filtration [26–31]. This method is

extremely interesting due to the possibility of the

precise control over the properties that defined the

nanoparticles (size, shape, structure, composition,

etc.) and the amount of metal loaded in respective

nanocatalyst. However, some issues in this strategy

can also be pointed such as the need for two or more

steps of synthesis, limitation of scale in the synthesis

of the nanoparticles, difficulty in the purification, loss

of nanoparticles during washing, and the presence of

organic and inorganic compounds usually employed

in the synthesis of the desired nanoparticles [26–31].

The second strategy consists in the synthesis of

nanoparticles in the presence of support as a physical

template for deposition, which implies in the forma-

tion/growth of the respective nanoparticles on the

surface of the support on which it ends up depositing

on it [32–34]. In this strategy, the main limitations are

the poor control over the properties of the nanopar-

ticles and the amount of metal loaded onto the sup-

ports (depending on the affinity between metal and

support). However, this procedure can be performed

in a single step and the purification and washing

steps are easier, can be performed in the absence of

organic compounds (templates, stabilizers, capping

agents, etc.), and provide catalysts with enhanced

metal–support interactions which tends maximize

their activities and prevent against agglomeration

and metal loss during purification and catalytic

experiments [32–37].

In this paper, we describe a systematic investiga-

tion on how the nature of the support affects the

overall performance of Rh/MxOy catalysts (where

M = Ce, Ti, Si, Zn, and Al) toward ethanol steam

reforming. To this end, we firstly employed an urea-

assisted deposition protocol, which was responsible

for Rh3? reduction to Rh its and further incorporation

on commercial oxide supports in the absence of any

other stabilizer and/or capping agent. After their

synthesis and characterization, the catalytic perfor-

mance of the Rh/MxOy catalysts was investigated

toward the ethanol steam reforming, which was

chosen as a model reaction due to its importance in

the production of hydrogen from a renewable raw

material. More specifically, we were particularly

interested in investigating how different activity

supports would influence the catalytic performance

of the nanocatalyst in terms of activity, selectivity,
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and stability. We found herein that the nature of the

support was imperative in the catalytic behavior

toward ethanol steam reforming, in which the activ-

ity, selectivity, stability, and deposition of carbon-

based compounds were strongly influenced by each

employed catalytic support.

Experimental

Materials and instrumentation

Analytical-grade cerium(IV) oxide (CeO2, 99.9%,

Evonik), silicon(IV) oxide (SiO2, 99.9%, Sigma-

Aldrich), zinc(II) oxide (ZnO, 99%, CAAL), alu-

minum(III) oxide (Al2O3, 99%, CAAL), titanium(IV)

oxide (TiO2, 99%, CAAL), rhodium(III) chloride

(RhCl3, 99.99%, Sigma-Aldrich), urea (CH4N2O,

99.75%, Vetec), ethanol (C2H6O, 99.5%, Sigma-

Aldrich), and silicon carbide (SiC, C 97.5%, Sigma-

Aldrich) were used as received.

Scanning electron microscopy (SEM) images were

obtained using a JEOL field emission gun microscope

JSM 6330F operated at 5 kV. Samples were prepared

by drop-casting an aqueous suspension containing

the nanostructures over a silicon wafer, followed by

drying under ambient conditions. The high-resolu-

tion transmission electron microscopy (HRTEM)

images were obtained with a Tecnai FEI G20 micro-

scope operated at 200 kV. Samples for HRTEM were

prepared by drop-casting an aqueous suspension of

the materials over a carbon-coated copper grid, fol-

lowed by drying under ambient conditions. The Rh

weight percentages were measured by inductively

coupled plasma optical emission spectrometry (ICP-

OES) using a Spectro Arcos equipment. Specific sur-

face areas were determined by the Brunauer–Em-

mett–Teller equation (BET method) using a

Quantachrome ChemBET Pulsar instrument equip-

ped with a thermal conductivity detector. Typically,

0.05 g of a catalyst was pretreated with He flow at

300 �C for 3 h and then cooled down to room tem-

perature. After this step, the specific surface areas

were determined from nitrogen adsorption at

- 196 �C using liquid nitrogen under atmospheric

pressure. Temperature-programmed reduction with

hydrogen (H2-TPR) and CO chemisorption studies

were carried out in the Quantachrome ChemBET

Pulsar instrument equipped with a thermal conduc-

tivity detector right after a cold trap containing liquid

nitrogen. Typically, 0.05 g of a catalyst was dried

with He flow at 200 �C for 20 min and then cooled

down to room temperature. The TPR profiles were

obtained between 50 and 1100 �C in a flow of 10%

H2/N2, the temperature increasing linearly at a rate

of 10 �C min-1. The CO chemisorption data and

carbon monoxide temperature-programmed desorp-

tion profiles (CO-TPD) were carried out on both fresh

and spent catalysts. The area of gas-exposed Rh was

measured by CO pulse chemisorption at 50 �C using

pulses of 5% CO in He. Prior to the chemisorption,

0.05 g of the catalyst was pretreated at 450 �C under a

10% H2/N2 flow and the temperature increased lin-

early at a rate of 10 �C min-1 and kept at 450 �C for

1 h, and then cooled down to 50 �C. Sequentially,

temperature-programmed desorption was performed

by heating in a stream of He at 75 cm3 min-1 between

50 and 1100 �C with a heating rate of 10 �C min-1.

The X-ray diffraction (XRD) data were obtained using

a Rigaku Miniflex II equipment and Cu K-alpha

radiation. The diffraction patterns were measured in

the range of 20�–90� 2h with a 1� min-1 angular speed

scan. Thermogravimetric (TGA) measurements were

carried out using a Setaram-LabSys equipment in the

range of temperature of 25–1000 �C using a heating

rate of 5 �C min-1 under synthetic air flow. Before the

analyses, the samples were pretreated under vacuum

at 25 �C for 1 h. Raman spectra were collected using a

Renishaw InVia Reflex coupled to a Leica DM 2500 M

microscope and a CCD detector. The laser excitations

used were 632.8 nm (He/Ne source), and the objec-

tive was a 50 9 objective (NA = 0.9).

Synthesis of Rh/MxOy (M = Ce, Ti, Si, Zn,
and Al) catalysts

The incorporation of Rh onto the commercial sup-

ports was performed using a urea-mediated deposi-

tion method approach [32, 34]. Typically, 2 g of the

respective support, 100 mL of deionized water and

0.616 g of urea were stirred at 70 �C for homoge-

nization. After that, 400 lL of Rh3? aqueous solution

0.25 M was added, and the reaction mixture was

stirred at 90 �C for 4 h. After their synthesis, the

products were collected by centrifugation and

washed five times with water (40 mL) and three

times with ethanol (40 mL) by successive rounds of

centrifugation and removal of the supernatant.

Finally, the resulting products were dried at 120 �C
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for 2 h under air and calcined at 500 �C for 2 h with a

heating rate of 5 �C min-1.

Catalytic ethanol steam reforming

Catalytic experiments were carried out at atmo-

spheric pressure in a fixed-bed quartz tubular reac-

tor, 5 mm of inner diameter, packed with 1 cm of

pure support or 1 cm of catalyst with 0.28 mmol of

active metal (Rh) diluted in silicon carbide, if neces-

sary, placed in a vertical oven equipped with a

thermocouple in the middle for the control of tem-

perature. Prior to reaction, the catalyst was pre-re-

duced under hydrogen atmosphere at 450 �C for 1 h

under a flow rate of 30 cm3 min-1. With the oven at

550 �C, water and ethanol were fed into the reactor

using a system with two saturators to obtain a H2O/

CH3CH2OH molar ratio = 3. Nitrogen was used as a

carrier gas at a total flow rate of 20 cm3 min-1.

Herein, the residence time and gas hourly space

velocity corresponded to 0.59 s and 6115 h-1,

respectively. The reactants and the reaction products

were analyzed by gas chromatograph (Agilent

7890A), equipped with a thermal conductivity

detector (TCD) and a flame ionization detector (FID)

connected in series.

The catalytic performances were evaluated by the

profiles of conversion of ethanol (CCH3CH2OH), selec-

tivity for hydrogen (SH2
), and selectivity for the car-

bon-based products (SX, where X represents CO2,

CO, CH4, C2H4, CH3CHO, or CH3COCH3) as a

function of the reaction time, which were calculated

by Eqs. 1–3 as follows [38]:

CCH3CH2OH ð%Þ ¼
molCH3CH2OH; in � molCH3CH2OH; out

� �

molCH3CH2OH; in

� 100

ð1Þ

SH2
ð%Þ ¼ molH2

=6ð Þ
ðmolCH3CH2OH; in � molCH3CH2OH; outÞ

� 100

ð2Þ

SX ð%Þ ¼
molX=

2
C

� �� �

ðmolCH3CH2OH; in � molCH3CH2OH; outÞ
� 100

ð3Þ

Herein, C is the number of carbon atoms in these

respective species.

Results and discussion

Our studies started with the synthesis of Rh/MxOy

(M = Ce, Ti, Si, Zn, and Al) catalysts, which can be

described as Rh-based nanoparticles supported over

a variety of commercial oxides that include CeO2,

TiO2, SiO2, ZnO, and Al2O3. Herein, we employed a

facile method for the preparation of metal-supported

heterogeneous catalysts, in which the deposition–

precipitation of Rh nanoparticles is achieved in a

single step using urea as reductant [34, 39]. Interest-

ingly, by using this strategy, catalysts displaying

cleaner surfaces can be produced after their purifi-

cation step. The purification consisted of washing

with water and ethanol (responsible for removal of

residual urea, Cl- ions, and Rh species not adhered to

the support) followed by the calcination (responsible

for the removal/decomposition of urea adhered to

the support), which is extremely desired in the con-

text of heterogeneous catalysis [34]. In this context, to

determine the degradation temperature of urea, we

performed thermogravimetric analyses under the

same conditions of the calcination procedure. As

shown in Fig. 1a, pure urea was completely decom-

posed after 500 �C and no more significant weight

loss was observed after this temperature. This

behavior was also observed for Rh/CeO2 catalyst

(Fig. 1b), which was selected as the model sample

due to its wide use as catalyst in several chemical

processes and presented only 0.3% of weight loss

after 500 �C. Figure 1d shows the Raman spectrum of

the Rh/CeO2 catalyst after 2 h of calcination at 500 �C
under air, and a single peak at 463 cm-1 associated

with CeO2 is observed [40, 41]. Thus, no peaks asso-

ciated with urea were observed (the Raman spectrum

for pure urea is depicted in Fig. 1c for comparison)

[42], illustrating its complete degradation/removal

under our experimental conditions.

Figure 2 shows the scanning electron microscopy

(SEM), energy-dispersive X-ray spectroscopy (SEM–

EDX), and high-resolution transmission electron

microscopy (HRTEM) images for the Rh/MxOy

(M = Ce, Ti, Si, Zn, and Al) catalysts: Rh/CeO2

(Fig. 2a–e), Rh/TiO2 (Fig. 2f–j), Rh/SiO2 (Fig. 2k–o),

Rh/ZnO (Fig. 2p–t), and Rh/Al2O3 (Fig. 2u–y),

respectively.

In the first column, we can observe that all Rh/

MxOy catalysts kept the typical features of their

respective commercial solid supports (Figure S1)

such as poor control over shape and size, and no
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morphological changes could be detected after Rh

deposition, as corroborated by the HRTEM images

(third column). On the other hand, as depicted by the

low-magnification SEM–EDX images (second col-

umn), a homogeneous distribution of the Rh-based

nanostructures (green) over the surfaces of all

employed supports (yellow) was observed. This

behavior is very important in the context of catalytic

applications as a better metal distribution usually

leads to an increase in the metallic surface area and

thus catalytic activities. The fourth column depicts

zoom-in images of the areas highlighted in red in the

third column. Here, as indicated by the red arrows,

due to the less bright mass–thickness contrast we

could identify the formation of Rh nanoparticles with

sizes corresponding to 2.7 ± 0.4 nm for Rh/CeO2

(Fig. 2e), 4.8 ± 1.5 nm for Rh/TiO2 (Fig. 2j),

1.9 ± 0.5 nm for Rh/SiO2 (Fig. 2o), 4.7 ± 1.1 nm for

Rh/ZnO (Fig. 2t), and 2.1 ± 0.3 nm for Rh/Al2O3

(Fig. 2y). Figure S2 shows the histograms of size

distribution of Rh nanoparticles over all employed

oxide supports.

The XRD patterns for the pure commercial oxide

support and Rh/MxOy catalysts are depicted in

Fig. 3. Here, all pure supports (Fig. 3a, left column)

presented profiles composed by well-defined peaks

assigned to only their crystalline phases without any

detected impurities [43–45]. After Rh incorporation,

the XRD profiles for the resulting Rh/MxOy catalysts

(Fig. 3b, right column) remained mostly unchanged

suggesting that no destruction/modification of sup-

ports was observed after the process, in agreement

with the SEM data (Figs. 2 and S1). In addition, no

peaks assigned to Rh-based species could be detec-

ted, in agreement with their small sizes and low

loadings in the samples [46].

Table 1 shows the values of the features for the

Rh/MxOy catalysts measured by ICP-OES, EDX, N2

physisorption, and CO chemisorption.

The Rh weight percentages in the Rh/MxOy cata-

lysts were determined by ICP-OES analyses and

corresponded to 0.023, 0.020, 0.163, 0.476, and 0.040%

for Rh/CeO2, Rh/TiO2, Rh/SiO2, Rh/ZnO, and Rh/

Al2O3, respectively, which were very similar to the

Figure 1 Thermogravimetric analyses of pure urea (a) and Rh/CeO2 catalyst (b), and Raman spectra of pure urea (c) and d Rh/CeO2

catalyst.
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values obtained by chemical analysis by EDX (Fig-

ure S3). Even though the same amount of Rh was

used for the preparation of all obtained catalysts, we

could observe a significant variation in the Rh load-

ing among the samples depending on the oxide

employed as support. This behavior can be associated

with the nature of the oxides, which presents differ-

ent points of zero charge under the same experi-

mental condition. Thus, the interaction of the Rh

precursor with the surface of the metal oxides occurs

in different magnitudes, and consequently, the level

of Rh deposition over their surfaces is affected

[47, 48]. The specific surface area for all Rh/MxOy

catalysts varied in the range of 4.6–154.5 m2 g–1.

Here, these differences are associated with the nature

of the commercial supports; after Rh incorporation,

no significant variation in their surface areas was

bFigure 2 SEM (first column), SEM–EDX elemental map (second

column), and HRTEM (second and third columns) images for the

Rh/MxOy catalysts obtained from the urea-assisted Rh deposition

method. a–e Rh/CeO2, f–j Rh/TiO2, k–o Rh/SiO2, p–t Rh/ZnO,

and u–y Rh/Al2O3 catalysts.

Figure 3 XRD patterns for

the pure commercial oxide

supports (a) and Rh/MxOy

catalysts (b).
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detected for all obtained Rh/MxOy catalysts, showing

the robustness of our employed approach for the

synthesis of supported catalysts, in agreement with

SEM (Figs. 2 and S1) and XRD (Fig. 3) results. The

metallic surface area and Rh dispersion were mea-

sured by CO chemisorption analyses and decreased

as follows: Rh/TiO2[Rh/CeO2[Rh/ZnO[Rh/

Al2O3[Rh/SiO2. Here, the values for both the

metallic surface area and Rh dispersion were rela-

tively higher compared with other reported Rh sup-

ported over commercial supports and these superior

values are consistent with the small sizes and fine

distribution of Rh nanoparticles onto the surface of

the commercial oxide supports [25, 49], as observed

by SEM–EDX and HRTEM results (Fig. 2).

Figure 4 depicts the H2-TPR and CO-TPD profiles

for all Rh/MxOy catalysts. In the profiles for the pure

commercial supports (Fig. 4a, first column), we could

observe that CeO2, TiO2, and SiO2 presented peaks of

H2 consumption. More specifically, pure CeO2 pre-

sented two peaks centered at 612 and 890 �C assigned

to the reduction of surface and bulk cerium oxide

species, respectively [50, 51] .TiO2 presented two

intense peaks at 681 and 1008 �C with a shoulder at

810 �C peaks attributed to the reduction of TiO2 to Ti

[52, 53], and pure SiO2 presented two peaks centered

at 803 and 984 �C both assigned to the reduction of

SiO2 phases [29, 53]. In contrast, ZnO and Al2O3

showed no peaks of H2 consumption being

stable even after 1100 �C, in agreement with previous

reports [54–56]. Herein, different reduction profiles

were observed for each employed oxide due to their

intrinsic properties such as their reducibility in the

presence of H2 flow. After addition of Rh onto the

surface of the commercial oxides, which led to the

formation of Rh/MxOy catalysts, the reduction peaks

associated with the pure supports were shifted to

lower temperatures indicating an increase in their

reducibility properties [57]. Moreover, in all cases we

could observe peaks centered in the range of

130–615 �C associated with the reduction of Rh-based

species to zero-valent Rh [58, 59]. Here, the differ-

ences in the temperature of reduction can be associ-

ated with the magnitude of the metal–support

interaction, which is specific for each employed oxide

as support. This hypothesis is reinforced by the CO-

TPD profiles (third column), in which the tempera-

ture of CO desorption varied as a function of nature

of the employed support [60, 61].

After the synthesis and characterization of the Rh/

MxOy catalysts, we turned our attention to their cat-

alytic evaluation toward the ethanol steam reforming,

which is considered one of the most sustainable,

green, and renewable routes for hydrogen produc-

tion [62–64]. Presently, the main limitations in the

ethanol steam reforming are the production of

heterogeneous catalysts, which can promote high

levels of ethanol conversions with high selectivities

for hydrogen production and low amounts of carbon-

based compounds (which deposit over the structure

of the catalysts and tend to decrease their activities)

and toxic products as carbon monoxide. Thanks to its

recognized performance for ethanol steam reforming,

Rh was selected as the active phase of a series of

catalysts, in which the catalytic behavior was inves-

tigated as a function of nature of the support in terms

of activity and selectivity [11, 25, 65].

Figure 5 depicts the ethanol conversion percent-

ages and products selectivities in the presence of Rh/

CeO2 (Fig. 5b), Rh/TiO2 (Fig. 5c), Rh/SiO2 (Fig. 5d),

Rh/ZnO (Fig. 5e), and Rh/Al2O3 (Fig. 5f) catalysts

using the H2O/CH3CH2OH molar ratio = 3 (theo-

retical stoichiometric ratio, Eq. 4) and 550 �C, which

Table 1 Surface properties of the obtained catalysts measured by ICP-OES, N2 physisorption and CO chemisorption

Sample Rh content (wt%) Surface area (m2 g-1 catalyst) Metallic area (m2 g-1 metal) Rh dispersion (%)

Rh/CeO2 0.023 (0.05)a 77.4 (85.9)b 130.9 29.7

Rh/TiO2 0.020 (0.02)a 17.9 (19.4)b 168.7 38.3

Rh/SiO2 0.163 (0.10)a 154.5 (164.1)b 48.4 11.0

Rh/ZnO 0.476 (0.38)a 4.6 (5.6)b 105.5 24.0

Rh/Al2O3 0.040 (0.05)a 14.5 (16.6)b 65.7 14.9

aEDX measurements
bPure support

J Mater Sci (2019) 54:11400–11416 11407



is considered as the best condition in terms of both

ethanol conversion and H2 selectivity [20, 66, 67].

Herein, pure commercial oxides were also tested

for comparison and the results are depicted in Fig-

ure S4. Among the pure commercial oxide supports

(Figure S4), in terms of ethanol conversion, the cat-

alytic performances decreased in the following order:

Al2O3[ SiO2[ZnO[TiO2[CeO2. However, after

addition of Rh and thus the formation of the Rh-

based catalysts (Fig. 5), the tendency was completely

changed and corresponded to: Rh/CeO2 = Rh/TiO2-

[Rh/SiO2[Rh/ZnO[Rh/Al2O3. Interestingly, as

well as ethanol conversion, selectivity/product

distribution showed a strong dependence on the

nature of the catalyst support. More specifically, in

the presence of Rh/CeO2 (Fig. 5b) and Rh/TiO2

(Fig. 5c), H2 and CO2 were detected as products

derived from ethanol steam reforming (Eq. 4) with

the formation of CO and low amounts of CH4 as by-

products (Eq. 5).

CH3CH2OH gð Þ þ 3H2O gð Þ ! 2CO2 gð Þ þ 6H2 gð Þ ð4Þ

CH3CH2OH gð Þ ! CO gð Þ þ CH4 gð Þ þ H2 gð Þ ð5Þ

Even though both catalysts were stable with the

complete ethanol conversion at 550 �C over the entire

period of 24 h of reaction, the best result can be

Figure 4 H2-TPR profiles for the pure commercial oxide supports (a) and Rh/MxOy catalysts (b), and CO-TPD profiles for the Rh/MxOy

catalysts (c).
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Figure 5 a Scheme for ethanol steam reforming employing Rh/

MxOy as catalysts. Ethanol conversion and product selectivities

obtained in the presence of b 100 mg of Rh/CeO2, c 150 mg of

Rh/TiO2, d 20 mg of Rh/SiO2, e 10 mg of Rh/ZnO, and f 206 mg

of Rh/Al2O3 catalysts. The experiments were performed at 550 �C
and H2O/CH3CH2OH molar ratio = 3.

J Mater Sci (2019) 54:11400–11416 11409



considered those obtained over Rh/CeO2 catalyst, in

which almost 40% of H2 selectivity was observed, in

contrast to Rh/TiO2 that presented only 20% of

selectivity for this product. This behavior agrees with

previous reports, which show that CeO2 is one of the

best supports for improving the ethanol steam

reforming reaction, not only for prevention against

carbon deposition/deactivation but also for enhanc-

ing the formation of H2 [28, 36, 51, 68, 69]. In this case,

it is well established that CeO2 shows a great oxygen

storage capability and oxygen mobility at its surface

due to the presence of Ce3? and Ce4? ions, which are

associated with the prevention against deposition of

carbon compounds and the enhancement of catalytic

reactions. [28, 51, 68, 69] When Rh/SiO2 (Fig. 5d) was

employed as catalyst, a drop in the ethanol conver-

sion to below 80% was observed after 3 h of reaction

and a more complex reaction mixture was observed.

In this experiment, other products such as ethene

(C2H4), acetaldehyde (CH3CHO), and traces of ace-

tone (CH3(CO)CH3) were formed, as described by

Eqs. 6–8:

CH3CH2OH gð Þ ! C2H4 gð Þ þ H2O gð Þ ð6Þ

CH3CH2OH gð Þ ! CH3CHO gð Þ þ H2 gð Þ ð7Þ

2CH3CH2OH gð Þ ! CH3 COð ÞCH3 gð Þ þ CO gð Þ þ 3H2 gð Þ

ð8Þ

This behavior can be attributed to the neutral and

slightly reactive character of SiO2, which allows the

active phases of Rh to catalyze a variety of parallel

reactions leading to the formation of several reaction

products [70]. On the other hand, in the presence of

Rh/ZnO (Fig. 5e) and Rh/Al2O3 (Fig. 5f), the domi-

nant reaction in the processes was the ethanol

dehydrogenation leading to the formation of

acetaldehyde (Eq. 6), which tends to occur preferen-

tially to the steam reforming of ethanol in supports

such as ZnO and Al2O3, as also observed in previous

works [8, 70, 71]. Interestingly, when pure commer-

cial supports were employed as catalyst (Figure S4),

even presenting relatively high values for ethanol

conversion at 550 �C over the entire period of 24 h of

reaction, low values for H2 production were observed

in all cases, illustrating the need of Rh to put forward

the ethanol steam reforming process (Eq. 4). Instead

of the steam reforming of ethanol, the main products

observed were ethylene and acetaldehyde, which are

derived from the ethanol dehydration (Eq. 6) and

dehydrogenation (Eq. 7), respectively. More specifi-

cally, for solids with basic and slightly acidic char-

acters such as TiO2, SiO2, and ZnO, the main reaction

was the dehydrogenation of ethanol. However, in the

presence of Al2O3, an oxide of recognized acidic

properties, the dehydration of ethanol was the most

favored reaction, according to the literature

[8, 24, 70]. In summary, we can point that the catalytic

activity, selectivity, and stability were strongly

affected by the nature of the oxide support, due to

their significant and remarkable differences in their

oxygen storage, oxygen mobility, and acidity/

basicity.

After the catalytic experiments, all Rh/MxOy cata-

lysts were then characterized by XRD (Figure S5, first

column), TGA (Figure S5, second column), SEM

(Fig. 6), and HRTEM (Fig. 6). The XRD analyses

indicated the presence of well-defined peaks

assigned to their respective oxide supports suggest-

ing that the overall structures of all Rh/MxOy cata-

lysts remained unchanged after the catalytic

experiments. Here, Rh/CeO2 (Figure S5A), Rh/SiO2

(Figure S5G), and Rh/ZnO (Figure S5J) showed

diffraction peaks associated with SiC, which was

employed as a diluent in catalytic experiments with

these catalysts. For the specific case of Rh/SiO2

(Figure S5G), only peaks associated with SiC were

observed due to its superior crystallinity compared to

our commercial SiO2 [72], which was partially crys-

talline with the presence of a-cristobalite and tridi-

mitte phases. For the experiments using Rh/TiO2

(Figure S5D) Rh/Al2O3 and (Figure S5M) catalysts, as

no SiC was demanded, only peaks associated with

TiO2 and Al2O3 were observed.

TGA analyzes were also performed to investigate

the formation of solid carbon-based structures, which

are possible to be formed in the presence of Rh cat-

alysts supported over oxides. Herein, some probable

reactions can be pointed as the sources of the for-

mation of carbon structures: decomposition of

methane (Eq. 9) and polymerization of ethene

(Eq. 10), acetaldehyde (Eq. 11), and acetone (Eq. 12)

as follows [21, 22].

CH4 gð Þ ! C sð Þ þ 2H2 gð Þ ð9Þ

C2H4 gð Þ ! C sð Þ ð10Þ

CH3CHO gð Þ ! C sð Þ ð11Þ
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CH3 COð ÞCH3 gð Þ ! C sð Þ ð12Þ

In the TGA analysis for the Rh/CeO2 (Figure S5B)

and Rh/TiO2 (Figure S5E), low and no significant

weight loss was observed after heating up to 1000 �C,

indicating the low deposition of carbon structures

over their surfaces, which is in agreement with the

catalytic experiments that showed their stabilities

Figure 6 HRTEM images for

the Rh/MxOy catalysts after the

ethanol steam reforming

experiments. a–c Rh/CeO2, d–

f Rh/TiO2, g–i Rh/SiO2, j–

l Rh/ZnO, and m–o Rh/Al2O3

catalysts.
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during all reaction period. Interestingly, the TGA

profile for Rh/ZnO (Figure S5K) also suggested the

low deposition of carbon structures (0.19%). How-

ever, a deactivation process after only 2 h of reaction

was observed, which can be associated with the

selective carbon deposition over the Rh nanoparticles

and chemisorption of poisoning compounds such as

CO. In contrast, Rh/SiO2 (Figure S5H) and Rh/Al2O3

(Figure S5N) presented total weight loss of 4.50 and

2.06%, respectively, which justifies their deactivation

during the catalytic experiments [73, 74]. For com-

parison, XRD patterns (left column) and TGA profiles

(right column) for the pure commercial oxide sup-

ports after the ethanol steam reforming experiments

are depicted in Figure S6.

Thus, to identify the type of the formed carbon-

based structures during the ethanol steam reforming,

we performed HRTEM analyses of the Rh/MxOy

catalysts after their catalytic studies (Fig. 6). Firstly,

we can highlight that all Rh/MxOy catalysts pre-

sented good stabilities against aggregation under the

experimental conditions and no morphological

changes could be detected in the samples compared

with the fresh catalysts (Fig. 2) in agreement with the

XRD results. Such fact indicates the promising

application of these materials as catalysts for gas-

phase catalytic transformations. Interestingly, we

could also observe the formation of carbon-based

nanostructures and identify their morphologies in the

presence of each employed catalyst. More specifi-

cally, after the catalytic ethanol steam reforming in

the presence of Rh/CeO2 (Fig. 6b, c), carbon-based

nanosheets could be detected, even in low amounts,

in agreement with the TGA profile, which showed a

weight loss of only 0.24% up to 1000 �C. On the other

hand, in the presence of Rh/TiO2 (Fig. 6e, f), no

carbon structures could be detected, which also agree

with the TGA result. In the presence of Rh/SiO2

(Fig. 6h, i), Rh/ZnO (Fig. 6k, l), and Rh/Al2O3

(Fig. 6n, o), the formation of carbon nanotubes and

carbon onions was observed. Herein, the amount of

carbon-based structures also accompanied the ten-

dency indicated in the TGA analyses and decreased

as follows: Rh/SiO2[Rh/Al2O3[Rh/ZnO.

Interestingly, the catalytic results agreed with the

TGA and HRTEM results for the catalyst after the

catalytic experiments. In this case, the catalysts that

presented lower carbon deposition (Rh/CeO2 and

Rh/TiO2) showed superior stabilities toward ethanol

steam reforming. And Rh/Al2O3 and Rh/SiO2, which

presented superior values of weight loss, presented

lower values of ethanol conversion and deactivation

profiles. The exception to this tendency is Rh/ZnO,

which showed only 0.19% of weight loss but, even in

low amount, the deposited carbon structures led to

the catalyst deactivation.

Conclusions

In summary, we have demonstrated the synthesis of

Rh-supported catalysts, which can be described by

Rh nanoparticles anchored over the surface of a

variety of commercial inorganic oxides that include

CeO2, TiO2, SiO2, ZnO, and Al2O3. To this end, a

single-step approach based on the reduction and

further deposition of Rh3? to Rh was successfully

employed using urea and mediator in the absence of

any other stabilizer or capping agent. Interestingly,

the obtained catalysts were relatively similar in terms

of nanoparticle size distribution, shape, and surface

distribution, differing only in terms of the nature of

support. Herein, their properties were strongly

dependent on the nature of the support as well as

their catalytic behavior toward ethanol steam

reforming, which decreased in the following order:

Rh/CeO2 = Rh/TiO2[Rh/SiO2[Rh/ZnO[Rh/

Al2O3 in terms of ethanol conversion. On the other

hand, their selectivities and stabilities were also

strongly influenced by the nature of the catalytic

support. More specifically, in the presence of differ-

ent supports, four main reaction paths could be

observed: (1) ethanol steam reforming (Rh/CeO2 and

Rh/TiO2), (2) ethanol dehydration (Rh/SiO2), (3)

ethanol decomposition (Rh/CeO2 and Rh/SiO2), and

(4) ethanol dehydrogenation (Rh/SiO2, Rh/ZnO, and

Rh/Al2O3). In terms of stability, their deactivation

profiles were also affected by nature of the support,

in which the reactions with superior deposition of

carbon-based compounds led to faster deactivation.

Thus, our results suggested that the correct choice of

the support for the synthesis of heterogeneous

nanocatalysts is a key element to prepared nanoma-

terials with enhanced catalytic performances. We

believe that our reported results may represent an

important contribution in the synthesis of Rh-sup-

ported catalysts for gas-phase transformations such

as the ethanol steam reforming reaction.
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