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A B S T R A C T

Rice geographical traceability requires analytical procedures and data evaluation capable of linking its com-
position to the producing area. In this work, major and trace elements in soil and rice grains and husk from 9
cities and 17 producers were evaluated. Arsenic species were measured solely in rice grains. The rice mineral
profile evaluated by principal component analysis allowed the identification of controlling variables and origin
fingerprints. Vectors controlling data variability were linked to the geographical area, to crop management,
producers and in a lower extent to soil composition. Elemental discrimination through 3D models was proposed.
Arsenic species in the grains and elemental husk composition were decisive to achieve the required dis-
crimination. Rice discrimination was obtained by cities, producers and varieties. The present work model was
compared with others from similar studies.

1. Introduction

Rice is one of the most consumed cereals in the world (FAO, 2018).
Worldwide consumers are becoming more aware of food safety and
intrinsic product characteristics, such as traceability, the guarantee of
origin, and quality certificates (Arisseto-Bragotto, Feltes, & Block,
2017). Rice elemental composition is influenced by environmental and
genetic factors (Kelly et al., 2002; Kokot & Phuong, 1999;
Kumarathilaka, Seneweera, Bundschuh, & Meharg, 2018; Tuli,
Chakrabarty, Trivedi, & Tripathi, 2010). Soil composition, crop man-
agement, season variability can influence elemental and isotopic con-
tent in rice grain. Therefore, it is necessary to go beyond chemistry and
geochemistry of rice crop to understand how the elemental content is
finally expressed.

In 2017, Brazil produced circa 12 million tons of rice. Rio Grande do
Sul state was responsible for 60% of this production (SOSBAI, 2010),
mostly by flooding irrigation (IBGE, 2017). South Region of Brazil has a
complex rice production chain, which is formed by crop production
industries, rice producers, storage and drying, processing, wholesaler,

retailer, and consumer. The processing food companies receive grains of
rice from several producers. Meaning the rice commercialized by one
producer may be cultivated in different regions. Further, the rice from
the same producer may sometimes present different elemental sig-
natures, due to the characteristics of the soil where it has been grown.
In a matter of production traceability, to know the origin of the grains
allows the correct nutritional labeling, crop control and mitigation of
potentially toxic elements, such as As, Cd, Pb, and other.

The mineral content and chemometric pattern recognition have
been used as an important tool for the discrimination of the source or
geographical origin of food (Cheajesadagul, Arnaudguilhem,
Shiowatana, Siripinyanond, & Szpunar, 2013), as metal content is
generally stable. Once the sampling was carried out, sample prepara-
tion is simple and, therefore, multielemental determinations can be
obtained by using atomic spectrometric techniques (Paniz et al., 2018).

According to Callao and Ruisánchez (2018), the exploratory ana-
lysis provides information about the relationship between samples,
variables, and/or both. Principal components analysis (PCA) is a well-
known technique of exploratory analysis and generates new variables as
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a linear combination of the original variables, which associates max-
imum information from the original data.

In one hand, other countries such as Taiwan (Wang, Hsu, & Lu,
2011), Spain (Gonzálvez, Armenta, & Guardia, 2011), Thailand
(Kukusamude & Kongsri, 2018) and Italy (Brandolini et al., 2006) tra-
ceability of rice is under development, and for some kinds of rice, it has
already been adopted. On the other hand, few studies were developed
in Brazil (Borges, Gelinsky, Souza, Barbosa, & Batista, 2015; Kato,
Fernandes, Bacchi, & Sarriés, 2018; Maione, Batista, Campiglia,
Barbosa, & Barbosa, 2016). In all these studies, PCA proved to be a
suitable tool to identify geographical origin (Brandolini et al., 2006;
Cheajesadagul et al., 2013; Chung, Kim, Lee, & Kim, 2015), to dis-
criminate organic and conventional grains (Borges et al., 2015;
Brandolini et al., 2006), to find association maps of rice physiological
disorders (Agrama & Yan, 2009).

In this scenario, the present study aimed to evaluate the main ele-
mental content in 35 soils and 70 rice grains and husk samples from
producers of the state of Rio Grande do Sul, Brazil. Inorganic and or-
ganic As content were also determined in the grains The potentially
toxic elements (PTE) content of rice grains were compared with na-
tional and international regulations. Moreover, PCA was applied in
order to i) evaluate how the rice elemental composition was affected by
soil, ii) investigate the husk influence on rice discrimination and iii)
establish which parameters could be used for rice geographical dis-
crimination in a rice producing area of approximately 20 km2.

2. Hypothesis

Soil, rice grain, and husk mineral profile can provide a set of vari-
ables capable of rice geographical discrimination.

3. Material and methods

3.1. Rice sampling

Seventy rice samples were provided by 17 producers from 9 cities in
the state of Rio Grande do Sul, in the southern Brazilian region, as
presented in Table S1. Fig. 1 shows the cities included in this study.
Itaqui is the most dislocated city from Pelotas producing area. All the
other remaining cities are located in an approximated area of 20 km2

around Pelotas. Most samples came from Pelotas (n=49), Arroio
Grande (n=30), and Santa Vitoria do Palmar (n= 28). The sample
group included Puita (n=96), Irga 424 (n=38), and Puitainha CL
(n=2) varieties.

3.2. Soil sampling and characterization

A total of 35 topsoils (0–20 cm) samples were collected in the region
of the study (Fig. 1). Soil samples were disaggregated and air dried at
room temperature and, then, sieved using a 2mm nylon-mesh, homo-
genized and packed in polyethylene bags. These samples were char-
acterized for particle size, pH (H2O), total acidity (H+Al), available P
and K, extractable S, total nitrogen according to the procedures de-
scribed by Tedesco, Gianello, Bissani, Bohnen, and Volkweiss (1995).

3.3. Reagents and materials

Deionized water (resistivity 18.2MΩ cm) was used in all experi-
ments (Gehaka, Master System All, SP, Brazil). All reagents and media
used were of analytical grade, and all the solutions were stored in
amber bottles at −20 °C. Plastic bottles (Nalgene®), vials and glassware
were cleaned by soaking in 15% (v v−1) HNO3 for 24 h, rinsed five
times with deionized water and then, dried in class 100 laminar flow
hood (Filter flux, Piracicaba, Brazil).

3.4. Determination of major and trace elements in soil and rice

For rice analysis, the husk was manually separated from the grain.
Grains and husks samples were milled, sieved (< 250 µm) and homo-
genized. All samples (in triplicate) were weighted (∼200mg) in 50mL
conical tubes (Falcon Corning, Tamaulipas, Mexico), closed and pre-
digested for 24 h with 2mL of sub-boiled HNO3. Then, 1mL of
H2O2+8mL of deionized water were added, and the mixture was
heated at 150 °C during 1 h in a microwave oven (Ethos Easy,
Milestone, Italy). After cooling, the volume made up to 30mL with
deionized water and analyzed by ICP-MS (Paniz et al., 2018).

For soil analysis, the determination of chemical elements was based
on U.S. EPA. 3051A extraction procedure (Suda & Makino, 2016;
USEPA, 2007), with some modifications according to Segura et al.
(2016), as follows: 0.5 g of each sample was placed into Teflon vessel
(Savillex, USA) containing 10mL of sub-distilled HNO3 and closed.
After, the vessels were heated at 175 °C in a digestion block during
5min (EasyDigest®, Analab, France). After cooling, the volume made up
to 50mL with deionized water and analyzed by ICP-MS and then, 5-fold
diluted and analyzed by ICP-MS (ICP-MS Agilent7900, Hachioji,
Japan).

3.5. Sample preparation for quantification of total and species of As

Arsenic speciation was performed according to the procedure de-
scribed by Batista, Souza, Souza, and Barbosa (2011). The As extraction
procedure was performed by adding 10mL of 0.28mol L−1 HNO3 to
200mg of sample and then heated in a water bath (Solab, Sab, S3) to
200mg of sample and then heated in a water bath (Solailtered on a
cellulose filter (0.2 mm, Sartorius, Germany) and analyzed by HPLC-
ICP-MS.

3.6. Statistics

PCA and statistical tests were performed using Statistica version 8.0
from Stat Soft (Tulsa, OK, USA). When the number of samples under
each grouping variable (Cultivar, City, and Producer) allowed, F-test
was applied to data. Usually, F-test is applied to identify if two groups
of samples have or not equivalent variances. The t-test was used to
compare averages and decide if they are statistically equal or not, as-
suming they have equivalent variances. These tests were used to verify
if rice samples from Puita and IRGA424 cultivar have statistically si-
milar mean and variances. Also, if grouped samples by city and by
producer lead to statistically similar or different results.

To perform PCA, analytical variables were auto-scaled to correct
differences in concentration range for each element. By that way, each
variable had the same opportunity to be modeled (Bro & Smilde, 2014).
No difference in species or elemental concentration influence the
variable contribution to the model (Bro & Smilde, 2014).

Rice data set was composed of 70 duplicated samples (n= 140),
where a total of 43 variables were analyzed. Three qualitative variables
were used for sample classification (City, Producer, and Variety).
Quantitative variables were measured in rice grains (n=26) and rice
husk (n=12). These variables were named as “_g” and “_h” to designate
rice grain and husk, respectively. After the first exploratory evaluation,
non-discriminating elements and outlier samples were removed to im-
prove PCA model.

Outlier removal was performed, and 140 cases were validated to
principal component analysis. In most cases, outliers were removed due
to missing variable values, and by exceeding sample replicate criteria.
PCA was also applied to soil samples to understand the geochemical
behavior of the studied area (Fig. 1). A matrix of 35 cases by 26 vari-
ables was evaluated to soil samples. Loading factors above 0.5 were
considered.
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4. Results

The statistical summary of Astot, Asorg, Asinorg, major and trace ele-
ments measured in rice grains and husk is presented at Table S2. Table
S2 presents values by cultivar (Puita and Irga), as well as per quadrant
separation obtained in the PC. Mean, standard deviation and number of
samples in each group is presented by variety (n=2), by city (n= 9)
and by producer (n=17).

4.1. Exploratory analysis on rice traceability

The exploratory PCA was performed on a data matrix of 43 variables
and 140 cases. Such large matrices are reduced to the main components
that explain the variability of the whole group of samples. In this ex-
ploratory analysis, 8 principal components were found explaining
72.7% of all matrix variability (Table S3).

4.1.1. By variables
A summary of the elemental association in rice by principal com-

ponent is presented in Table 1. Factor 1 (F1) explained 21.95% of the
matrix variability. The correlated elements under F1 resume more
substantial effects on the data matrix than the remaining ones. A po-
sitive correlation was observed between Mn (Loading > 0.9), Ni, Cu,
Ba (> 0.8), and Fe (> 0.5) in grains and Ba, Co (> 0.7) and Mn (>0.5)
in the husk. This factor also presented a negative correlation with Astot,
Asorg (<−0.7), Asinorg, Na, Sr (<−0.5) in grain and Astot (<−0.5) in
husk samples. Magnesium present in the husk had a correlation value,
close enough to be included in the association ellipse (0.5) with As
species, as presented in Fig. 2A. These elements were responsible for the
samples separation and clustering observed on case plot.

An inverse correlation observed between elements of F1 could be
linked to changes in the elemental uptake. In the husk, exchanges of Mg
and As by Mn, Ba and Co could occur. In the rice grain, exchanges of As
species, Na and Sr by Mn, Cu, Ba, and Ni are also possible (See Fig. 2A).

Factor 2 associated with strong positive correlation Mg, P, and K

(approximately 0.8) in grain and with good correlation B, Na, and Fe
(> 0.5) in grain. Factor 2 covered only elements present in rice grain
with 12.16% of matrix variability.

Factor 3 associated elements such as Zn (> 0.7) Cu, Ni, Mg, and Mn
(>0.5) in rice husk. Important variables such as Astot, Cd, Pb, and Fe
also measured in husk showed correlation values around 0.5. Therefore,
these elements were separated from the core and included in the as-
sociation ellipse, as presented in Fig. 2B. Factor 3 associated only ele-
ments present in the husk, therefore 10.31% of all matrix variability
was linked to husk conditions.

Some of the elements that did not contribute clearly to explain the
matrix variability were Cr, Zn, Cd, Sb, Pb and Bi in the grain and Fe, Se,
Cd, and Pb in the husk. However, only Se in the husk could be excluded
from Factor 3 (loading values≪ 0.5). This fact could reflect a local
trend, and these elements could be important to discriminate samples
from other geographical areas with different soil composition.

4.1.2. By cases
Fig. 2C and D presents samples mean centered distribution by fac-

tors according to the city and to the variety. Then, one of the easiest
ways to evaluate the discrimination power is by the case distribution on
each quadrant of the score plot (Bro & Smilde, 2014). The farther
samples are from the axis center (x, y= 0, 0) coordinates and the
closest from each other, the easiest will be the group discrimination.
Then, the geographical distribution was partially discriminated by
quadrants (see also Table S2). Samples from Pelotas were concentrated
in 1st and 4th quadrants on F1× F2 score plot. Samples from Santa
Vitoria do Palmar and from Arroio Grande were most frequently ob-
served in 2nd and 3rd quadrants respectively. In 1st and 4th quadrants,
86% of cases were originated in Pelotas. When higher loading values of
Factor 1 were considered (F1≥ 3), all identified samples (n=27) were
from Pelotas and producer P1.

In the 2nd quadrant of F1XF3 (Fig. 2D), 48% of samples were from
Santa Vitoria do Palmar, and 21% were from Pelotas. While in 3rd
quadrant, 58% of samples were from Arroio Grande and 15% from

Fig. 1. Geographical location of the studied cities and soil sampling points.
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Table 1
Principal components loading summary from rice grain and husk.

Factor % variance Positive Correlation Inverse Correlation Evaluation

High Low High Low

Grain
PC1 21.95 Ba, Mn, Ni,

Cu,
Fe Astot,

Asorg
Asinorg, Na,
Sr

As is known to interfere in nutrient uptake and distribution in the plant. PC1 seems to be
linked to this effect. Presence of Fe, Mn and As in this factor suggests influence of redox
conditions

PC2 12.16 Mg, P, K Na, B, Fe – – Related to main plant nutrients. PC2 could be linked with fertilizers and crop management.
Almost a component discriminated by grain effects

PC3 10.31 – – – – No contribution from the grain

Husk
PC1 21.95 Ba, Co Mn, Mg – Astot Same as PC1 for grain components
PC2 12.16 – Mg, Ni – – Almost no contribution on the husk
PC3 10.31 Zn Cu, Mn, Mg, Ni,

Pb, Cd, Fe
– – Exclusively discriminated by elements from husk

PC3 could be linked with soil due to PTE presence

Bold elements are present at the same PC for Grain and husk.

Fig. 2. Principal component analysis with (A) Factor 1 versus Factor 2 and (B) Factor 1 versus Factor 3 loading plots by elements; (C) Factor 1 versus Factor 2 and (D)
Factor 1 versus Factor 3 loading plots by cities. Cities: Arroi grande (light blue); Itaqui (brown); Pelotas (green); Santa Vitória do Palmar (red). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Pelotas. Regarding geographical discrimination, these percentages
could seem not enough; however, all cities but Itaqui are in the same
geological formation (Althaus et al., 2018). Distance between Arroio
Grande and Pelotas is 96 km. Therefore, the main effect of dis-
criminating rice between these cities is related to crop management and
producers' practices.

A small cluster that concentrated samples from Itaqui was also ob-
served linked to lower positive values of F1 and F3 (0≤ Factor 1≤ 2
and 0≤ Factor 3≤ 4) as observed in Fig. 2C. Itaqui samples were
discriminated by the high content of Zn in the husk.

First and 4th quadrants grouped samples with lower Astot values,
that seems to be the signature of samples from Pelotas and Itaqui. While
2nd and 3rd quadrant corresponded to samples with higher Astot values,
those correspond to samples from Arroio Grande, and Santa Vitoria do
Palmar.

At the same time, that factor 2 discriminate samples by its content of
Mg, P, and K. Then, Santa Vitoria do Palmar, Itaqui and some samples
from Pelotas were placed in 3rd and 4th quadrants due to the lower
values of these elements.

Some samples of Irga 424 variety were discriminated from others by
factor 4 (Factor 4≥ 2) as presented in Fig. S1. The discrimination was
associated with high Co content samples with higher Astot values, those
correspond to samples from Arroio Grande, and Santa Vitoria do
Palmar.

At the same time, that factor 2 discriminate samples by its content of
Mg, P, and K. Then, Santa Vitoria do Palmar, Itaqui and some samples
from Pelotas were placed in 3rd and 4th quadrants due to the lower
values of these elements.

Some samples of Irga 424 variety were discriminated from others by
factor 4 (Factor 4≥ 2) as presented in Fig. S1. The discrimination was
associated with high Co content.

4.2. Soil results

The data obtained on soil geochemical composition is reported in
Table S4. In general, the Brazilian lowland soils have the following
characteristics, considering agricultural recommendations for the irri-
gated rice crop (SOSBAI, 2010): low total organic carbon
(5.2–28 g kg−1), clay (36.1–510 g kg−1) and nitrogen contents
(0.61–3.2 g kg−1). Most of the samples presented pH bellow to the 5.5
recommended value (SOSBAI, 2010). The pH ranged from 4.4 to 6.6
with very low H+Al content ranging from 1.19 to 9.75 cmolc dm−3

and also low potassium levels (0.050–0.75 cmolc dm−3); high calcium
(0.7–20.4 cmolc dm−3), magnesium (0.20–8.3 cmolc dm−3) availability;

wide variability of S-SO4
2− (4.05–61.3 mg dm−3), available phos-

phorus (2.84–40.1mg dm−3); and base saturation (2.07–93.7%); and
average 14.4 cmolc dm−3 of CEC.

Overall, regarding potentially toxic elements (As, Cd, Co, Cu, Pb,
and Zn) content in the soil samples, the pseudo-total concentrations
obtained were below the maximum limits for soil quality. The only
exception was the Co concentration at sampling point 44 from Itaqui
(18.5 mg kg−1), which was expected considering that this region has a
distinct geological formation from the other points. Since the permis-
sible Co concentrations for soil quality are< 13mg kg−1 for quality
reference, 25mg kg−1 for prevention, and 35mg kg−1 for the inter-
vention of agricultural activity, this sampling point Co concentration
can be classified as safe for agricultural purpose.

4.2.1. Soil variables association
The PCA of the soil data (26 variables× 35 cases) had components

that explained 84.3% of the total variance. Parameters with high cov-
ariance were linked and were interpreted by similar chemical behavior
or process (Tables S5 and S6). With 49.4% variability, Factor 1 in-
dicated a positive correlation between Naexc, Mgexc (Loading > 0.9),
Ca, Caexc, CEC, Mg, S-SO4

2–(> 0.8), Cd, N, Se (> 0.7), As, pHwt (> 0.6),
Kexc and Clay content (> 0.5) in lowland soils from Rio Grande do Sul.
In this factor a very tight cluster of exchangeable elements (Ca, Mg, Na
and S-SO4

2−) and CEC was observed, probably these elements had the
same source. CEC is usually linked to different clay types and blends.
Therefore it is very dependent on soil clay content and organic matter
(Bini et al., 2014). Accounting for 16% of the total variability, F2
correlated pH(wt+smp), and base saturation directly and inversely
H+Alexc, Zn, P, Clay, Kexc. Accounting for 13.4% of total variability, F3
showed the high loading factor for Fe, Mn, Co, Cu, and Pb. With 5.5% of
total variability, F4 linked Paval and TOC, most probably linked to soil
management practices. From mineral or organic fertilizers, P helps to
maintain and optimize crop production, and it has been widely applied
in Brazil. Since in tropical and subtropical regions, P is low due to
strong phosphate adsorption on mineral soils (Fink, Inda, Tiecher, &
Barrón, 2016). The soil data set had no clear discrimination by geo-
graphical region. Apart from Itaqui, all cities in the studied region be-
long to the same soil formation zone, which can explain no dis-
crimination regarding the soil composition.

4.3. Simplified discrimination model

Samples from Pelotas were separated into two spatial regions. The
first region, with low Astot content, correspond to the space of samples

Fig. 3. Simplified 3D model of rice geographical discrimination.
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Fig. 4. Spatial distribution of soil composition.

C.N. Lange, et al. Food Chemistry 300 (2019) 125145

6



from producer P1. The remaining samples from Pelotas did not exhibit a
distinct pattern. The rice from Santa Vitoria do Palmar and from Arroio
Grande were very similar, in a 3D volume, very close to each other.
However, a small degree of discrimination was found between samples
from Santa Vitoria do Palmar and from Arroio Grande, as presented in
Fig. 3, mainly due to Mg content in grain. Arroio Grande had smaller
Mg and Ni values than samples from other cities. Samples from Santa
Vitoria do Palmar and from Pelotas from different producers than P1
were mostly superposed.

5. Discussion

5.1. PTEs content in rice grains

The concentrations of As, Asinorg, Cd, and Pb in the husked grains of
the present study were compared with the maximum levels of reg-
ulating agencies (ANVISA, 2013; Commission, 2016). All measured
concentrations, except for Pb in 5 rice samples from a total of 140 (3.6%
of samples), complied with reference levels (See Table S7). Therefore,
the rice from this region poses no concern for human health, con-
sidering these analytes content.

Usually, the content of Cd and As is related to the soil redox po-
tential (Guo, Zhang, Wang, & Shen, 2010). Where As is more available
under reductive conditions and Cd requires more oxidant environment
to be soluble. However, grain and husk PCA by variables did not in-
dicate an evident opposite trend between As and Cd Fig. 2, as reported
previously by Kokot and Phuong (1999).

5.2. Geographical origin discrimination

In this present study, 25 elements and Asorg and Asinorg were mea-
sured in 70 rice grain, and husk samples from two varieties (IRGA424
and Puita) from nine different cities in the state of Rio Grande do Sul.
The mean concentrations of major elements were similar from those
obtained in previous studies of Brazilian rice (Borges et al., 2015; Kato
et al., 2018). Inorganic composition and characterization of soil sam-
ples were also determined, and the obtained results were similar to
previous studies results (Althaus et al., 2018).

The findings of the present study indicated that Pelotas, Arroio
Grande, Itaqui, and Santa Vitoria do Palmar presented a distinct profile
of elemental compositions in rice grain and husk. PCA results showed
that there was some difference between the other studied regions. No
discrimination was obtained among varieties, except IRGA424 variety
in Pelotas region. Recently, Kato et al. (2018) reported a study of
geographical discrimination of rice from 4 regions of the state of Rio
Grande do Sul by determining 11 chemical elements (As, Br, Cd, Co, Cs,
Fe, K, Mo, Na, Rb and Zn) in 4 different varieties (IRGA424, IRGA424
RI, Guri Inta, Puita Inta). These authors concluded that As, Br, Co, Cs,
Na, Rb, and Zn presented potential to be used to distinguish rice grains
from different regions, while no discrimination was obtained amongst
varieties.

The first hypothesis that rice grains mineral profile from the nine
cities could be differentiated by the soil composition and properties of
each city was only partly supported. After applying the PCA on soil
samples, the results suggested that the measured elements and the soil
characteristics determined were not considered as discriminating
parameters within the soil sampling region.

In general soil characteristics play an important role on elements
mobility and translocation to plant systems; however, no remarkable
soil pattern that could distinguish a specific region/city with an evident
influence on grain mineral profile was identified by the soil statistical
approach. The majority of soils analyzed were collected from areas of
similar geological formation, except Itaqui samples. Therefore, the
geographical origin of soil samples was not discriminated by PCA.
Although the soil and rice samples did not match temporally in this
study, the elemental concentration was considered representative of the

sampled areas. In a first attempt to assess the elemental associations in
the soil–husk–grain system presented interesting trends identified by
PCA of soil variables. Arsenic had high loading values in the PCA, in-
dependent if the data set was composed of soil or rice samples.
Therefore, this element has a strong potential to discriminate the rice-
producing region.

Arsenic soil spatial distribution (Fig. 4) was closely matched with
the As rice grain and husk content, and therefore matched with the
quadrant discrimination obtained by F1× F2 on the grain and husk
PCA. Other authors reported the As discriminating power for rice origin
(Cheajesadagul et al., 2013; Chung et al., 2018; Kato et al., 2018).

The geographical distribution of As was also similar to the clay and
the Mg patterns (Fig. 4), as expected by the PCA association of these
variables under factor 1. The content of Mg plays an important role on
the discrimination of rice grains (factor 2) and husks (factor 1), as re-
ported in previously by several authors (Borges et al., 2015;
Cheajesadagul et al., 2013; Chung et al., 2015, 2018; Kelly et al., 2002;
Wang et al., 2011).

Our results highlighted the use of husk for rice origin discrimina-
tion. This observation is especially true considering the Zn content,
which was one of the main elements of discriminating rice origin (factor
3). The Zn variability is probably linked to its distribution in the soil-
sampling region (Fig. 4). In soil statistical evaluation, an inverse cor-
related between Zn and soil pH was observed. This negative correlation
indicates that pH could significantly affect the Zn distribution in the
analyzed soils. Alloway (2008) reported the reactions of Zn sorption in
primary or secondary minerals as pH-regulated. Then, slightly acid soils
with high base saturation, phosphate content, highly weathered (e.g.,
tropical soils) and very prolonged waterlogging or flooding may lead to
zinc deficiency in crops. Low zinc contents were detected in rice grains.
In Table S2 Supplementary material, grain Zn mean concentrations by
region were satisfactory (21.3–27.7 mg kg−1), compared to the re-
commended target of 28 mg kg−1 for human nutrition (Alloway, 2008).

Several studies of tropical soils have indicated that Fe oxyhydr-
oxides are important soil components in the sorption of trace metals
(John, 2007). This element is well-known to regulate different me-
chanisms of PTEs uptake by rice plants, especially As (Yamaguchi,
Ohkura, Takahashi, Maejima, & Arao, 2014). Associated with Mn, Co,
and Cu, Fe was one of the main elements to explain soil variability
observed in factor 3 of soil PCA. The association of these elements is
consistent with geochemical affinity. Husk and grain Fe content pro-
vided discriminating power to factor 3 and factor 2, respectively. Iron
distribution on soil sampling region (Fig. 4) was very similar to As
distribution.

Manganese and Fe oxides are capable of binding various cations.
According to Suda and Makino (2016), in most cases, Pb is the most
strongly bonded element, followed by Cu. A strong affinity between soil
Mn/Fe oxides with As and Cd in soil was also reported. Lead in husk
was significant for rice discrimination (factor 3). Lead geographical
distribution was illustrated in Fig. 4.

5.3. Discrimination between As species

Considering the As species can be affected by a more complex sce-
nario during rice production, the content of Asorg and Asinorg were ex-
pected to contribute more significantly to samples discrimination.
However, the similar behavior among studied cities could be related to
a local pattern from the state of Rio Grande do Sul. Therefore, As
species could have geographical discriminating power in other location.
However, some interesting trends were identified. Among Puita sam-
ples, a clear correlation was observed between Astot and Asorg (Fig. S2 in
Supplementary material). This correlation indicates that a significant
amount of As in the sample is present in the organic form (approxi-
mately 50%). Among Irga424 samples, Asorg no significant correlation
to Astot was present/clear (Fig. S3 Supplementary material). This trend
was maintained to both varieties of all studied cities. The correlation
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suggests the increase of As lead to a correspondent increases on Asorg on
Puita rice, which does not seem to affect Irga424 grains.

5.4. What to traced in rice?

Brazilian rice has been monitored concerning organic and tradi-
tional cultivation systems (Borges et al., 2015), mineral composition
and daily intake (Da Silva Iago, Ana, & da Silva Maria, 2018; Silva &
Ferreira, 2013). Da Silva Iago et al. (2018) discriminated white, par-
boiled, and brown rice mostly by essential element content. Two rice
production regions in Brazil, Goias, and Rio Grande do Sul, were stu-
died in order to classify samples by geographical origin (Maione et al.,
2016). Commercially available rice samples from Brazil were used to
test geographical traceability of Spanish samples under Protected
Geographic Indication (PGI) of “Arros de Valencia” (Gonzálvez et al.,
2011). In most of these studies, PCA was used as a reliable tool to group
similar samples and to discriminate significant differences that later
were linked to location. Some traceability studies used simplified
models that derived from PCA data reduction, such as (Kelly et al.,
2002) in biplots or radar plots (Cheajesadagul et al., 2013; Chung et al.,
2018; Kelly et al., 2002).

Elements capable of discriminating the geographical origin were
identified in several studies, as presented in Table 2. The present study
and other authors (Kokot & Phuong, 1999; Wang et al., 2011) linked the
elemental signature to fertilizers (P, K, Mg). Kokot and Phuong (1999)
linked high levels of P, K, and Mg with sticky rice variety, and to the
high content of amylopectin and phytins. Kelly et al. (2002) proposed
rice discrimination from USA, Europe, Japan, India, and Pakistan solely
by the content of B and Mg.

By PCA, several elements are modeled in a linear combination of
each factor or principal component. The correlation loading is used to
adjust the matrix and to show a new distribution of samples in the
space. This model accounts for several elements and is quite complex to
express. Therefore, most authors (Kelly et al., 2002; Kokot & Phuong,
1999) search for a simplified model, expressed by a minimal number of
elements or variables.

The present work evaluated some simplified 3D plots as presented in

the Supplementary material. One of the studied 3D models was based
on the 2D model proposed by Kelly et al. (2002). Fig. 3A shows B and
Mg scatter plot of Rio Grande do Sul rice samples, where a certain
degree of coincidence with European rice was found, mainly due the
coincidence of Rio Grande do Sul samples with Spanish rice values.
Another 3D model was defined by the rice grain and husk PCA results
(Fig. 3B), where better discrimination was found among samples from
Rio Grande do Sul.

Pelotas, Santa Vitoria do Palmar, Arroio Grande and Itaqui were the
cities with significant number of cases. Therefore, both PCA dis-
criminating model and the 3D simplified model have a higher pre-
dictive accuracy to those cities. Herval, Capao do Leao, Jaguarao, and
Rio Grande were the cities with few evaluated samples. However, the
data from these cities allow testing the discriminating power of the
proposed model, as presented in Fig. 3.

Chung et al. (2018) achieved rice geographical discrimination with
34S, Mg, and Mn among Cambodia, China, Japan, Korea, Philippines,
and Thailand. However, stable isotopes such as 34S can suffer un-
desirable seasonal change (Kelly et al., 2002). However, Mg and Mn
seem to fit the model in several studies. Rare earth elements (REEs) like
Yb, La, Eu, Pr, Er and Gd, Ho provided more specific rice discrimination
identified by Gonzálvez et al. (2011) and by Kelly et al. (2002) re-
spectively. REEs occur with phosphoric rocks and suffer low anthropic
interference (Chung et al., 2018). The trace content of La and Ce in
fertilizers allowed some degree of discrimination on organic and con-
ventional crops (Borges et al., 2015; Rommel et al., 2016). Also, Rb and
Cs were considered as useful tracers of agricultural products, as they are
ready to be transported from the soil to the plant (Kelly et al., 2002).
The As and Cd oppose trend was reported by several authors (Chung
et al., 2018; Kokot & Phuong, 1999). The content of REEs, Cd, As is
related to the soil redox potential (Guo et al., 2010). Where REEs and As
are more available under reductive conditions and Cd requires more
oxidant environment to be soluble. Table 2 presents a summary of these
studies.

Table 2
Discriminating elements found in origin and geographical identification studies of rice samples.

Sample characteristics Location (Countries, regions, etc.) Discriminating elements Source Reference

Asian rice Cambodia, China, Japan, Korea,
Philippines and Thailand

34S, Mn and Mg
K, Mn, Mg
Se, Cd, Cu, Zn
As, Ba, Sr,

Soil
Crop management

Chung et al. (2018)

Organic and conventional
cultivated rice

Several cities in 5 states in Brazil Ca, Cd, La, Ce Fertilizers Barbosa et al. (2016)

Organic and conventional
cultivated rice

Brazil Ba, Mn, P, Ca, Rb,
Cd, Co, Cu
Mg, Ce, La

Fertilizers and soil
composition

Borges et al. (2015)

Brown rice Korea (Suwon), China (Shanghai) and
Philippines (Los Banos)

K, Mg
Rb, Cs
Cu, Ag, Zn, Cr, Ca, Ba, Cd, Bi, Pb,
In, Mn, Ni

Fertilizer and crop
management
Sol conditions

Chung et al. (2015)

Polished rice Thailand, France, Japan, Italy, India,
Pakistan

B, Co, Sr, Mo, Rb, Se
B, Mg, Co, Cu, Zn, As, Rb, Sr, Mo,
Cd, Cs and Ba

Concentration in soil and plant
uptake

Cheajesadagul et al. (2013)

Arros de Valencia Japan, India, Tarragona, Brazil,
Murcia, Valencia, Extremadura

Yb, Cd, Ti, La, Pr, Er, Ti, Eu, Co Soil
Anthropic conditions
Plant uptake

Gonzálvez et al. (2011)

Taiwan traceability system 7 districts in 4 geographic regions in
Taiwan

Ca, Mg, K, P
Fe, Mn, Zn, Cu

Crop management
Soil characteristics

Wang et al. (2011)

Italian rice 4 cities in Italy K, Mn, Fe Brandolini et al. (2006)
Premium long rice India, Pakistan, USA, Europe Mg, B

Se
Rb, Gd, Ho, W

Soil composition Kelly et al. (2002)

Vietnamese rice Vietnam, Australia P, K, Mg, Ca, Fe and Mn
Zn, Cu, Cd
Mn and Mo

Fertilizers and soil
composition

Kokot and Phuong (1999)
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5.5. How to trace rice in Brazil?

The present study evaluated samples provided by rice producers
from the Rio Grande do Sul. However, no comparison with other dis-
criminated geographical areas was performed. As an exploratory study,
the goal was to evaluate analytical and statistical procedures.

In a future traceability study, the seasonal variability, crop man-
agement, authentic rice from other countries, and other productive
regions in Brazil (Goias, Pará, and other) should be evaluated. A similar
number of samples from each city also could provide a more reliable
model, with the same predictive capability to all geographical regions
(Maione & Barbosa, 2018).

Due to the complex producing chain, where several farms could
adopt different crop management systems and send the rice to different
processing and distribution centers, to trace these routes are also re-
quired. Particularly important is to identify the crop management
procedures adopted by larger producers. As an example, the practices
adopted by producer P1 could provide valuable information on As-
mitigation in rice.

5.6. Why trace Brazilian rice?

Food safety and authenticity has been an increasing concern for
many producers and governments. International legislation has been
approved in order to establish trade requirements on safety and quality
of the products, protecting consumers against fraud and imitation.

In Brazil, the rice market is growing, emerging to the world market.
On international trades, frequently As monitoring in rice is mandatory
and corresponds to an important step in risk assessment. Due to changes
in soil conditions and composition As content suffers variation ac-
cording to geographical localization and crop management.
Geographical discrimination was not previously evaluated among the
Rio Grande do Sul producers and cities.

However, the monitoring of nutritional and toxic content in rice
involves knowing the whole production chain (origin, storage, and
processing of the grains). The farming conditions provide a unique
signature that could be linked to a city or a particular producer and its
procedures. To initiate rice traceability in Rio Grande do Sul allows
identifying strengths and weaknesses in a product to be improved. A
step further to provide confidence to Brazilian rice in a very competitive
market.

6. Conclusion

Considering the first 9 cities and 17 producers in the present work,
three cities had enough data to allow rice traceability. PCA proved to be
a useful tool to perform data reduction and to identify the main para-
meters that could explain rice variability among cities. Pelotas, Arroio
Grande, Itaqui and Santa Vitoria do Palmar presented a remarkable
degree of discrimination based on the elemental content in rice grain
and husk. One particular producer from Pelotas was individually dis-
criminated from remaining cities and producers. Even though with a
smaller number of samples, the discrimination between other geo-
graphical areas is promising by using husk variables. Especially when
considering the cities in Rio Grande do Sul were in the same geological
formation with no significant soil differences. The soil redox conditions
have affected the rice and husk elemental content. Therefore, in future
studies, the elemental and isotopic measurement of REEs could help to
provide a more robust dataset for traceability.
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