
ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR

2019International Nuclear Atlantic Conference 
Santos, SP, Brazil, October 21-25, 2019 

 
NUMERICAL MODEL FOR CALCULATION OF HYDRAULIC 

TRANSIENT AND FLUID

Rafael S.P. Almeida

1 Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN 

 

 
In this study the effects of 
precisely water hammer events, in fluid transport systems are investigated. For this purpose, a 
numerical model was developed to simulate the effects of 
system composed of a reservoir with
coupled downstream, which can be rigidly fixed or free to move. The transfer of energy from 
the fluid to the structure associated with pressure waves and their effects, that is, the efforts 
and displacements generated, is taken into account. The Method of Characteristics is used for 
solving the hyperbolic partial differential equations system, associated with finite differences 
and linear interpolations procedures. Three coupling mechanisms are 
Poisson, and junction coupling. The proposed numerical procedure is validated by simulation 
of a benchmark problem and compared to analytical solutions found in the literature. The 
results indicated that the model is able to reproduce the main ef
Interaction during hydraulic transients in a pipe conveying fluids.

List of symbols 
A - cross-sectional area, m2 
c - classical wave speed, celerity, m/s
c˜ - FSI wave speed, celerity, m/s
D - inner diameter of pipe, m 
E - Young modulus of pipe wall, Pa
e - pipe wall thickness, m 
FSI - Fluid-Structure Interaction
G - shear modulus of pipe wall material, Pa
H - pressure head, m 
K - fluid bulk modulus, Pa 
L - length, m 
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ABSTRACT 

In this study the effects of Fluid-structure Interaction during hydraulic transients, more 
precisely water hammer events, in fluid transport systems are investigated. For this purpose, a 
numerical model was developed to simulate the effects of Fluid-structure Interaction
system composed of a reservoir with upstream constant level, a straight pipe and a valve 
coupled downstream, which can be rigidly fixed or free to move. The transfer of energy from 
the fluid to the structure associated with pressure waves and their effects, that is, the efforts 

ments generated, is taken into account. The Method of Characteristics is used for 
solving the hyperbolic partial differential equations system, associated with finite differences 
and linear interpolations procedures. Three coupling mechanisms are 
Poisson, and junction coupling. The proposed numerical procedure is validated by simulation 
of a benchmark problem and compared to analytical solutions found in the literature. The 
results indicated that the model is able to reproduce the main effects of 

during hydraulic transients in a pipe conveying fluids. 

MOC - Method of Characteristics
classical wave speed, celerity, m/s P - pressure, Pa 

celerity, m/s R - inner radius of pipe, m 
 T - period, s 

Young modulus of pipe wall, Pa t - time, s 
u - pipe displacement, m 

Structure Interaction u̇ - pipe velocity, m/s 
modulus of pipe wall material, Pa V - cross-sectional  fluid velocity, m/s

x - axial coordinate, m 
g - constant, m/s 
𝜇 - Poisson ratio 

 

NUMERICAL MODEL FOR CALCULATION OF HYDRAULIC 
STRUCTURE INTERACTION IN FLUID 

SP) 

during hydraulic transients, more 
precisely water hammer events, in fluid transport systems are investigated. For this purpose, a 

structure Interaction in a 
upstream constant level, a straight pipe and a valve 

coupled downstream, which can be rigidly fixed or free to move. The transfer of energy from 
the fluid to the structure associated with pressure waves and their effects, that is, the efforts 

ments generated, is taken into account. The Method of Characteristics is used for 
solving the hyperbolic partial differential equations system, associated with finite differences 
and linear interpolations procedures. Three coupling mechanisms are modeled: Friction, 
Poisson, and junction coupling. The proposed numerical procedure is validated by simulation 
of a benchmark problem and compared to analytical solutions found in the literature. The 

fects of Fluid-structure 

Method of Characteristics 

sectional  fluid velocity, m/s 
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1. INTRODUCTION 
 
Fluid transport systems are widely used in many fields of engineering such as nuclear and 
electric power industries, petroleum and chemical process industries, Water supply systems 
and in many other applications. Those systems are often subject to large pressure fluctuations 
due to, for example, the rapid closing or opening of valves, or to the stopping or starting of 
pumps. This phenomenon is called hydraulic transients, being the worst scenario a water 
hammer event, when great magnitude pressure surge may occur [1], [2], [3].  
 
The classical water hammer theory [4] is accurate to predict extreme loadings on a system, 
only if it is rigidly anchored. When a piping system has certain degrees of freedom, severe 
deviations from classical theory may occur due to motion of the system [1], [5], [6].  Motion 
of the system causes the fluid to interact with pipe structure. That interaction highly 
influences the extreme pressures during water hammer occurrences.  
 
To accurately predict hydrodynamic loads in the fluid, as well as pipe stress and vibrations, 
the analyses of fluid and pipe movements must be conducted simultaneously in a coupled 
manner. This approach is referred in the literature as Fluid-structure Interaction (FSI) [5], [6].  
FSI has been the subject of intense research in recent years. Excellent review work may be 
found in [2], [3], [7], [8], [9].  
 
Fluid-structure Interaction deals with the transfer of momentum and forces between a 
pipeline and its contained fluid. In this case, interaction mechanisms have to be taken into 
account. Three interaction (coupling) mechanisms occur during FSI in straight pipes [1], 
[3],[5]: Friction coupling is due to friction between pipe wall and the fluid; Poisson coupling 
relates the pressures in the fluid to the axial stresses in the pipe via the contraction or 
expansion of the pipe wall; Junction coupling takes place at pipe boundaries that can move, 
either in response to changes in fluid pressure or because of external excitation [5],[10]. 
 
In some cases, FSI may be responsible for engineering critical operational behavior 
(vibrations, oscillations, etc.), or even failure of the tube or its entire system. When the safety 
of the system in question is very critical such as, for example, nuclear power plants, which 
are subjected to extreme conditions of pressure and temperature, it is significant to know the 
exact operating conditions during transients and, for this reason, it is very important the 
development specific computational codes to do so. 
 
The main goal of this work is to develop a computational tool, based on the four equation 
model [1],[2],[6] to simulate the effects of FSI during water hammer events in filled straight 
pipes conveying fluid. 
 
State of art FSI codes takes into account torsional, lateral and axial motion, as well as the 
effects of pipe wall radial stress and displacement [9],[11]. Generally the fourteen equation 
model is solved. More complex systems of fluid-filled pipes with straight, curved and branch 
pipes may be analyzed.  
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2. BASIC EQUATIONS AND ASSUMPTIONS 
 
In the analysis of the hydraulic transients and FSI, it is desired to determine the fluid pressure  
P (or pressure head H), fluid velocities V (or flow rates Q), pipe axial stresses σ and axial 
pipe velocities 𝑢̇ , as a function of position (x) and time (t), that is, P(x,t), V(x,t), σ(x,t) and 
𝑢̇(x,t). 
 
Longitudinal pressure waves are essentially the relevant hydrodynamic loads in an FSI 
model. These models are described by partial hyperbolic differential equations. Two 
equations for the liquid are coupled to two equations for the pipe [3]. 
 
Assumptions: the pipe is straight, prismatic, of circular cross-section, slender and thin-walled. 
The liquid and the pipe-wall material are assumed linearly elastic. For the fluid it is assumed 
that the long wave length and the acoustic approximation are valid.  
 
2.1 Equations for the fluid 
 
The equations for momentum and continuity are applied to the mean flow. Two equations for 
fluid velocity (V) and fluid pressure head (H) are provided by the momentum balance and the 
mass balance [2]. 
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V୰ୣ୪ = V − u̇୶         (4) 

 

Equations (1) and (2) describe the propagation of pressure waves under the influence of 
axial pipe vibrations and govern the unknowns of fluid pressure, fluid velocity, and axial 
pipe velocity (u̇୶).  

 

2.2 Equations for pipe axial motion  
 
The governing equations for the axial motion of the pipe are provided by the momentum 
balance and the stress-strain relation. The pipe is described by its axial velocity (u̇୶) and axial 
stress (σ୶) [6].  
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Equations (1) and (5) are coupled via terms proportional to Poisson's ratio. These terms 
represent the Poisson coupling. Equations (2) and (6) are coupled via terms proportional to 
the friction coefficient, f. These terms govern the friction coupling. Junction coupling is a 
result of local forces and therefore modelled via boundary conditions [6]. The friction is 
modelled as if the flow were steady.  
 
The Four equation model is presented. It consists of a system of hyperbolic partial differential 
equations that simultaneously describe the propagation of pressure waves in the liquid and 
axial stress waves in the pipe. Due to its hyperbolic character, the system can be converted to 
a set of four ordinary differential equations by the MOC transformation [10].  
 
 
2.3 Initial and boundary conditions 
 
 
2.3.1 Boundary Conditions  
 
Reservoir – the reservoir is considered to have constant level with a pipe rigidly connected to 
it: 

 
H(0, t) = H୙      (8) 
u̇(0, t) = 0      (9) 

 
Valve - the valve is modelled as being rigidly fixed or free to move axially. The following 
relationships satisfy these conditions:  
 

a) instantaneous closure of a valve rigidly fixed to the ground: 

 
V(x = L, t) = 0      (10) 
u̇(x = L, t) = 0      (11) 

 
b) instantaneous closure of a valve free to move axially: 

 
V(x = L, t) = u̇(x = L, t)     (12) 
ρ୤. g. A୤. ΔH = A୲. Δσ୶     (13) 

 
c) noninstantaneous closure of a valve, equations (10) and (12) are replaced by:   
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∆H = Hୈ + K୴
୚౨౛ౢ|୚౨౛ౢ|

ଶ୥
     (14) 

 
In which Kv is the load loss coefficient in the valve and Cd is the valve discharge 
coefficient [4]: 
 

Kv =
ଵ

େୢమ
− 1      (15) 

 
 
2.3.2 Initial Conditions 
 
The initial conditions are the steady-state conditions just before the hydraulic transient.  
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୚౨౛ౢ|୚౨౛ౢ|

ସୖ
− ρ୤. g. senθቃ x    (16) 

V(x, 0) = constant        (17) 

σ(x, 0) = σ(0,0) − ቈ
ଵ

ቀଵା
భ

మ౎
ୣቁୣ

ρ୤f
୚౨౛ౢ|୚౨౛ౢ|

ସୖ
ρ୲. g. senθ቉ x    (18) 

u̇(x, 0) = 0         (19) 
 
 
 

3. NUMERICAL SOLUTION AND RESULTS 
 
3.1 Numerical Solution 
 
Equations (1), (2), (4) and (5) form a pair of hyperbolic equations of partial derivatives. 
Method of the Characteristics (MOC) [10] transforms these equations into total differential 
equations.  
 
The MOC is a powerful method to deal with wave phenomena. With respect to water hammer 
the method has many advantages: stability is firmly established, boundary conditions can be 
programmed easily, and complex systems can be handled [1]. 
 
After MOC procedure, the so called equations of compatibility [1] [6] are obtained. 
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In which a୤ഥ  and a୲ഥ  are the adjusted values for the celerity of fluid and stress waves 

respectively: 
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The following characteristic lines complete the system, respectively for equations: 

+𝑎௙തതത, −𝑎௙തതത, +𝑎௧ഥ  e −𝑎௧ഥ         (27) 

The compatibility equations (20)-(23) can now be easily integrated. The left-hand sides are 
integrated exactly, the nonlinear right-hand sides numerically [1],[2]. The integrations take 
place on a computational grid, which is based on the characteristic lines along which the 
pressure waves propagate, as shown in Figure 1. The mesh spacings Δx and Δt are constant. 
In this grid the points A1 and A2 are grid points. Points A3 and A4 fall between two grid 
points. In this cases interpolations are necessary. 
 
The ultimate result is to determine the variables of interest (P, V, σ and 𝑢̇), at any point, P, in 
the interior (z, t)-plane, expressed in its values at four former points, A1, A2, A3, A4.  
 

 

Interpolations are necessary when numerical data is required in between grid points (A3, A4). 
The distance–time plane is covered with rectangular mesh spacing. 
 

The standard approach is to cover the distance–time plane with equidistantly spaced grid-
points and to time-march from a given initial state [1],[6]. 
 
The formulation presented gather conditions to create a numerical procedure. A 
computational code, named FSI_01, was developed.  
 
3.2 Results  
 
The methodology used to validate FSI_01 code was to compare the results obtained with 
those of existing analytical solutions in the literature. For that, data from the exact solution 
presented by Tijsseling [6], who kindly yielded the files of the answers obtained for the Delft 
Benchmark problem "A", were used. It is assumed that the valve is free to move in the axial 
direction and has negligible mass. It is considered instant closure of the valve. 

Figure 1 - Time X space plan. Characteristic lines feedind point “P” to determine the 
unknowns. 
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The Delft Hydraulics Benchmark Problems (A to F) have been defined and used to test 
numerical methods and FSI software [6]. It is noted that the benchmark problems are 
numerical test cases only; experimental data does not exist. Problem A concerns a reservoir-
pipe valve system defined by Figure 2. The characteristics of the test case are resumed in 
Table 1. 
  

 

Figure 2 - Reservoir pipe valve system 

 

L 20 m 
μ 0.3 - 
D 0,798 m 
f 0,02 - 
e 0,008 m 

Tc 0 s 
tmax 0,10 s 

V 1 m/s 
Hd 0 m 
VOi 100 % 

 
 
Figures 3 to 5 validate results of FSI_01 against exactly solution [6] for Delft Hydraulics 
Benchmark Problem A. Fluid pressure, pipe wall stress and Fluid Velocity are calculated at 
valve section. The agreement between exactly solution and FSI_01 calculation is excellent.  
 

Table 1 - Delft Hydraulics Benchmark Problem A 
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Figure 3 - Validating results against exactly solution. Pressure at valve section for Delft 
Hydraulics Benchmark Problem A. Valve free to move. Tc=0. 

 
 

 

Figure 4 - Validating results against exactly solution. Pipe axial Tension at valve section. 
for Delft Hydraulics Benchmark Problem A. Valve free to move. Tc=0.   
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Figure 5 - Validating results against exactly solution. Fluid velocity at valve section for 
Delft Hydraulics Benchmark Problem A. Valve free to move. Tc=0. 

 
Figures 6 to 8 show other comparison of classic water hammer result (no FSI) against 
Poisson coupling and Poisson and Junction coupling results.  

 

Figure 6 – Comparison of classic water hammer result vs Poissom coupling. Pressure at 
valve for Delft Hydraulics Benchmark Problem A. Valve free to move. Tc=0. 
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Figure 7 – Comparison of classic water hammer result vs Poissom coupling vs Poisson 
and junction coupling.  Pressure at valve for Delft Hydraulics Benchmark Problem A. 

Valve free to move. Tc=0. 

 

Figure 8 – Results for different sections. Poisson and junction coupling. Pressure at 
valve for Delft Hydraulics Benchmark Problem A with free valve. 
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4. CONCLUSIONS  
 
The FSI four equation model has been implemented. The agreement obtained between 
exactly solution results and simulation is good. This fact indicates that FSI_01 code is able to 
reproduce the main effects of Fluid-structure Interaction during hydraulic transients in a pipe 
conveying fluids, that is, friction Poisson and Junction couplings. For future work the author 
suggests the implementation of the eight [5] and the fourteen [2] equations models. 
 
 

ACKNOWLEDGMENTS 
 
The authors would like to thank the Nuclear and Energy Research institute of the National 
Nuclear Commission (IPEN/CNEN) and the Brazilian Navy for the support during the 
research and development of this work.  
 
 

REFERENCES 
 
1. C. S. W. Lavooij and A. S. Tijsseling, “Fluid-Structure Interaction in Liquid Filled Piping 

Systems,” Journal of Fluids and Structures, 5, pp.573-595 (1991). 
2.  “Fluid transients and fluid-structure interaction in flexible liquid-filled piping”, 

https://www.win.tue.nl/~atijssel/pdf_files/Wiggert-Tijsseling_2001.pdf  (2001).  
3. A.S. Tijsseling, “Fluid-Structure Interaction in Liquid-Filled Pipe Systems: a Review,” 

Journal of Fluids and Structures, 10, pp.109-146 (1996). 
4. J. P. Tullis, Hydraulics of pipelines: pumps, valves, cavitation, transients, John Wiley & 

Sons, 1989. 
5. R. G. ROCHA, “Fluid-Structure Interaction in Piping Systems conveying Liquids via 

Glimm Method,” 2011. 97 p. Doctorate thesis (Mechanical Engineering) – Universidade 
Federal Fluminense, UFF/RJ.  

6. A. S Tijsseling, “Exact solution of linear hyperbolic four-equation system in axial liquid-
pipe vibration,” Journal of Fluids and Structures, 18, pp.179–196 (2003).  

7. S. Li, B. W. Karney, G. Liu, “FSI research in pipeline systems – A review of the 
literature,” Journal of Fluids and Structures, 57, pp.277–297 (2015). 

8. D. Ferras, P. A. Manso, A. J. Schleiss, D. I. C. Covas, “One-Dimensional Fluid–Structure 
Interaction Models in Pressurized Fluid-Filled Pipes: A Review,” Applied 
Sciences(Acoustics and Vibrations), 8, 1844 (2018).  

9. A. S. Tijsseling’, “An overview of fluid-structure interaction experiments in single-elbow 
pipe systems” Journal of Zhejiang University-SCIENCE A (Applied Physics & 
Engineering), 20, pp. 233-242 (2019).  

10. L. Zhang, A. S. Tijsseing, and A. E. Vardy, “FSI Analysis of Liquid- Filled Pipes,” 
Journal of Sound and Vibration, 224(1), pp.69-99 (1999). 

11. S. Li, Y. Chen, C. Wang, “FSI Vibration Analysis Method of Complex Fluid-Filled 
Piping Systems,” INTER-NOISE and NOISE-CON Congress and Conference 
Proceedings, Chicago, IL, 26-29 august, pages 1 - 993, pp. 538-543(6), (2018). 
 

4742


