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ABSTRACT

A new approach for the development of a coarse-mesh numerical spectral nodal method is presented in
this paper. This method, referred to as the Spectral Deterministic Method – Constant Nodal (SDM–CN),
is based on a spectral analysis of the multigroup X,Y-Geometry, linearly anisotropic scattering neutron
transport equations in discrete ordinates ( SN )formulation for fixed-source calculations in non-multiplying
media. In this paper we present typical model problems to illustrate the accuracy and the efficiency for
coarse-mesh energy multigroup SN calculations of the SDM-CN method. The numerical results obtained
are compared with the traditional fine-mesh Diamond Difference (DD) method and the results obtained
by DOT–II and TWOTRAN codes. The numerical results are also compared with the spectral nodal
method, spectral Green’s function (SGF).

1. INTRODUCTION

The computational neutronic modeling within nuclear reactor engineering, has made a
significant contribution to new nuclear projects. Developing codes and calculation models
this modeling allows an accurate description of the neutron dynamics and thermohydraulic
behavior of the current and future nuclear reactors, since they allow to simulate some
processes that take place at the reactor’s operation. It also has applications in radiation
protection, agriculture, industry, nuclear medicine, making an essential economy and
guaranteeing the safety of the installations through the use of simulators built by using
high-performance programming languages.

The description of the neutron migration through a host medium, with the probability of
interaction with the nuclei of the atoms of this medium, constitutes the physical modeling
of the neutron transport phenomenon [1]. Once the physical modeling is done, it is
performed the mathematical modeling of the problem to be able to simulate the neutron
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distribution within the region of the physical space where it must analyze the neutron
behavior. To made the mathematical modeling, is used the linear Boltzmann equation [2],
that represents a balance between the production and loss of these particles, and in
its generality, a partial integral-differential equation dependent on seven independent
variables: three spatial, two angular, the particle energy, and time.

Due to the complexity in the analytical treatment to find a solution for the linear neutron
transport equation, numerical methods have been developed to obtain approximate so-
lutions for the neutron shielding problem and global nuclear reactor calculations. These
numerical methods allows to make computational modeling using a deterministic ap-
proach. Generally, these methods use the discrete ordinates formulation SN [2]. The
SN formulation made a collocation scheme for the angular variables in prescribed direc-
tions (discrete ordinates) and use an angular quadrature set for the approximation of the
integral source terms [3].

This paper is organized as follows: Section 2. presents the spectral analysis of multigroup
transport equations in discrete ordinates formulation. In Section 3., is described the
iterative methodology of the multigroup Spectral Deterministic Method – Constant Nodal
(SDM − CN) in X, Y – geometry geometry. Numerical results for one and two groups
linearly anisotropic scattering SN problems are given in Section 4. A brief discussion of
the results and suggestions for future work are presented in Section 5.

2. MATHEMATICAL PRELIMINARIES

Considering the SN equations in a rectangular domain D of width X and height Y with
linearly anisotropic scattering:

µm
∂

∂x
ψm,g(x, y)+ηm

∂

∂y
ψm,g(x, y)+σTg(x, y)ψm,g(x, y) =

1

4

G∑
g′=1

{σ(0)
sg′→g

(x, y)
M∑
n=1

ψn,g′(x, y)ωn+

3σ(1)
sg′→g

(x, y)µm

M∑
n=1

µnψn,g′(x, y)ωn + 3σ(1)
sg′→g

(x, y)ηm
M∑
n=1

ηnψn,g′(x, y)ωn}+Qg(x, y),

g = 1 : G, m = 1 : M. (1)

For each region analyzed in D, the term σTg(x, y), describe the g-th group macroscopic
total cross section, σ(0)

sg′→g
(x, y), represents the zero’th component of the macroscopic g-

th isotropic differential scattering cross section from group g’ to group g, σ(1)
sg′→g

(x, y), is

the first–order component of the macroscopic g-th isotropic differential scattering cross
section from group g’ to group g and Qg(x, y), represent the isotropic neutron source in
energy group g. It is assumed that these quantities are piecewise constant functions in
D [4].

In Eq.1 are considered as isotropic prescribed boundary conditions of the domain those
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represented in the form

ψg(0, y) = pg(y) , µm > 0,

ψg(X, y) = qg(y) , µm < 0,

ψg(x, 0) = ug(x) , ηm > 0,

ψg(x, Y ) = vg(x) , ηm < 0. (2)

The quantities M represents the total number of discrete directions, which for the x, y
geometry case, is calculated by the expression

M =
N(N + 2)

2
, (3)

N is the SN quadrature order. In this work we use the quadrature level LQN (Level
Symmetric Quadrature) [2], where ωm are the weights of the angular quadrature associated
to the discrete directions represented by the pair (µm, ηm),

Now we consider an arbitrary spatial grid on the domain D, as shown in Fig.1, where
each spatial cell Γj have width hxi

and height hyj , constant cross sections σ(0)ij
sg′→g

, σ(1)ij
sg′→g

,

σij
Tg

and constant interior source Qij
g .

hxi

h
y
j Γij

x
i− 1

2
x
i+1

2

y
j− 1

2
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Figure 1: Discretization of the two-dimensional domain D in I × J spatial
cells Γij of width hxi

and height hyj .

In order to obtain the one-dimensional transverse - integrated SN nodal equations with
linearly anisotropic scattering, the transverse-integration operators, are defined

1

hus

u
s+1

2∫
u
s− 1

2

(·)du , (4)

where u = x (or y) and s = i (or j).
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At first we choose to integrate Equation (1) in the y direction, where u = y and s = j, to
obtain the one-dimensional transverse-integrated SN nodal equation for the x direction

µm
d

dx
ψ̃j
m,g(x) +

ηm
hyj

(
ψ

j+ 1
2

m,g (x)− ψj− 1
2

m,g (x)
)

+ σij
Tg
ψ̃j
m,g(x) =

1

4

G∑
g′=1

{σ(0) ij
sg′→g

M∑
n=1

ψ̃j
n,g′(x)ωn

+ 3σ(1) ij
sg′→g

µm

M∑
n=1

µnψ̃
j
n,g′ωn + 3σ(1) ij

sg′→g
ηm

M∑
n=1

ηnψ̃
j
n,g′(x)ωn}+Qij

g ,

x ∈ Γij, i = 1 : I, j = 1 : J, m = 1 : M, g = 1 : G . (5)

Similarly, is applied the operator (4) to Eq. (1) considering u = x and s = i and Eq. (1)is
integrated over x to obtain the one-dimensional transverse-integrated SN nodal equation
for the y direction

µm

hxi

(
ψ

i+ 1
2

m,g (y)− ψi− 1
2

m,g (y)
)

+ ηm
d

dy
ψ̂i
m,g(y) + σij

Tg
ψ̂i
m,g(y) =

1

4

G∑
g′=1

{σ(0) ij
sg′→g

M∑
n=1

ψ̂i
n,g′(y)ωn

+ 3σ
(1) ij
s1g′→g

µm

M∑
n=1

µnψ̂
i
n,g′(y)ωn + 3σ(1) ij

sg′→g
ηm

M∑
n=1

ηnψ̂
i
n,g′(y)ωn}+Qij

g ,

y ∈ Γij, i = 1 : I, j = 1 : J, m = 1 : M, g = 1 : G , (6)

where the group mean angular fluxes in each coordinate direction inside the Γi j node are
defined by

ψ̃j
m,g(x) =

1

hyj

y
j+1

2∫
y
j− 1

2

ψm,g (x, y) dy (7)

and

ψ̂i
m, g(y) =

1

hxi

x
i+1

2∫
x
i− 1

2

ψm, g (x, y) dx . (8)

The equations (5) and (6) represent two systems of GM ordinary differential equations
in coordinate directions x and y, respectively. Each system has 2GM unknowns, GM
unknowns represented by ψ̃j

m,g(x) (or ψ̂i
m,g(y)) and GM unknowns represented by the

transverse leakage terms. We assume that these transverse leakage terms are constant
along the edges in each Γi j nodes, constituting the only approximation performed at
calculations in this work [5] [6]. Then, these transverse leakage terms approximation are
presented as

ηm
hyj

(
ψ

j+ 1
2

m,g (x)− ψj− 1
2

m,g (x)
)

(9)

and
µm

hxi

(
ψ

i+ 1
2

m,g (y)− ψi− 1
2

m,g (y)
)
. (10)

Considering this, it is assumed that these constants correspond to the mean values of the
angular fluxes along the sides of the analyzed node, therefore

ψ
j± 1

2
m,g (x) ≈ ψ̂

i,j± 1
2

m,g (11)
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and

ψ
i± 1

2
m,g (y) ≈ ψ̃

i± 1
2
,j

m,g . (12)

After assuming these approximations, the terms of transverse leakage can be defined as

ηm
hyj

(
ψ̂

i,j+ 1
2

m,g − ψ̂i,j− 1
2

m,g

)
= L̂i,j

m,g , (13)

and
µm

hxi

(
ψ̃

i+ 1
2
,j

m,g − ψ̃i− 1
2
,j

m,g

)
= L̃i,j

m,g . (14)

Consider constant approximations for the transverse leakage terms, the objective is to
ensure the uniqueness for the solution of the transversally integrated SN equations within
each spatial discretization node, Γij, with the boundary conditions and the conditions
of continuity at the interfaces of the nodes. In other words, obtain two systems with
GM equations and GM unknowns, coupled by the transverse leakage terms [6][8]. The
constants to approximate these terms are chosen conveniently because it is desired to
preserve the average fluxes on the sides of the node Γij. Therefore, using the definitions
(6) and (14) in Equations (5) and (6), we can rewrite the transversely integrated equations
SN in the form

µm
d

dx
ψ̃j
m,g(x) + L̂i,j

m,g + σij
Tg
ψ̃j
m,g(x) =

1

4

G∑
g′=1

{σ(0) ij
sg′→g

M∑
n=1

ψ̃j
n,g′(x)ωn

+ 3σ(1) ij
sg′→g

µm

M∑
n=1

µnψ̃
j
n,g′ωn + 3σ(1) ij

sg′→g
ηm

M∑
n=1

ηnψ̃
j
n,g′(x)ωn}+Qij

g , ,

x ∈ Γij, i = 1 : I, j = 1 : J, m = 1 : M, g = 1 : G . (15)

and

L̃i,j
m,g + ηm

d

dy
ψ̂m,i(y) + σij

Tg
ψ̂m,i(y) =

1

4

G∑
g′=1

{σ(0) ij
sg′→g

M∑
n=1

ψ̂i
n,g′(y)ωn

+ 3σ(1) ij
sg′→g

µm

M∑
n=1

µnψ̂
i
n,g′(y)ωn + 3σ(1) ij

sg′→g
ηm

M∑
n=1

ηnψ̂
i
n,g′(y)ωn}+Qij

g ,

y ∈ Γij, i = 1 : I, j = 1 : J, m = 1 : M, g = 1 : G . (16)

The equations systems (15) and (16), considering a X, Y – geometry domain, with uniform
physical material parameters in each Γij node to be analyzed, have a general solution, in
the form

ψ̃m,g(x) = ψ̃h
m,g(x) + ψ̃p

m,g , x ∈ Γij , (17)

for the equation system (15), and

ψ̂m,g(y) = ψ̂h
m,g(y) + ψ̂p

m,g , y ∈ Γij , (18)

Here the superscript p indicates the particular solution that is spatially constant in D and
the superscript h indicates the homogeneous component of the solution, which satisfies
the homogeneous equation associated with Eqs. (15) and (16). In order to determine
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the particular solution of the system (15), the fluxes ψ̃j
m,g(x) are substituted for ψ̃p

m,g,
obtaining

1

4

G∑
g′=1

M∑
n=1

(
4σij

Tg
δmnδg′g −

[
σ(0) ij
sg′→g

+ 3σ(1) ij
sg′→g
{µmµn + ηmηn}

]
ωn

)
ψ̃p
n, g′ = Qij

g − L̂i,j
m,g ,

m = 1 : M, g = 1 : G . (19)

where δa,b =

{
1 para a = b
0 para a 6= b

, represents the Krönecker delta.

Doing the same analysis for the system given in Equation (16), it is obtained

1

4

G∑
g′=1

M∑
n=1

(
4σij

Tg
δmnδg′g −

[
σ(0) ij
sg′→g

+ 3σ(1) ij
sg′→g
{µmµn + ηmηn}

]
ωn

)
ψ̂p
n, g′ = Qij

g − L̃i,j
m,g ,

m = 1 : M, g = 1 : G . (20)

The homogeneous solution of Equation (15) has the form

ψ̃hj
m,g(x) = axm,g(ν

x)e

−
(
x− xj− 1

2

)
νx , m = 1 : M, x ∈ Γij , (21)

Substituting the equation (21) into the homogeneous part of Equation (15), considering
the source Qij

g = 0 and L̂i,j
m,g = 0, is obtained

1

4µm

G∑
g′=1

M∑
n=1

(
4σij

Tg
δg′gδmn −

[
σ(0) ij
sg′→g

+ 3σ(1) ij
sg′→g
{µmµn + ηmηn}

]
ωn

)
axn,g′(ν

x) =

1

νx
axm,g(ν

x) ,

m = 1 : M, g = 1 : G . (22)

A procedure analogous to that done for Equation (15), can be performed to solve the
system of equations (16), considering for this case L̃i,j

m,g = 0, obtaining the system of
equations

1

4ηm

G∑
g′=1

M∑
n=1

(
4σij

Tg
δg′gδmn −

[
σ(0) ij
sg′→g

+ 3σ(1) ij
sg′→g
{µmµn + ηmηn}

]
ωn

)
ayn, g′(ν

y) =

1

νy
aym,g(ν

y) ,

m = 1 : M, g = 1 : G . (23)

Both equations (22) and (23), in a matrix notation, can be written in the form

Aa =
1

ν
a, (24)

where, similar to the one-dimensional case [3], A is a square real matrix, of order GM ×
GM , and the eigenvalues νx and νy are all symmetric and appear in pairs of opposite
signs, due to the symmetry of angular quadrature used.
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Therefore, the local general solution for each SN equations system within each nodeΓij,
(15) and (16), respectively, appear in the form

ψ̃j
m,g(x) =

GM∑
`=1

αx
` a

x
m,g(ν

x
` ) e

−
(
x− xi− 1

2

)
νx` + ψ̃p

m,g , m = 1 : M, g = 1 : G, x ∈ Γij

(25)
and

ψ̂i
m,g(y) =

GM∑
`=1

αy
` a

y
m,g(ν

y
` ) e

−
(
y − yj− 1

2

)
νy` + ψ̂p

m,g , m = 1 : M, g = 1 : G, y ∈ Γij ,

(26)
where the parameters αx

` and αy
` are arbitrary constants to be determined according to

the boundary conditions of the spatial discretization node.

3. THE MULTIGROUP SPECTRAL DETERMINISTIC
METHOD–CONSTANT NODAL(SDM–CN)

In this section it is described the iterative process for solving the SDM − CN neutron
transport equation, spatially and angularly discretized in the multigroup formulation.

After obtaining the αx
` and αy

` parameters, the outgoing fluxes of the analyzed node are
computed using the same equations, (25) and (26). Then, the α` parameters and the out-
going fluxes at each spatial node’s output are calculated using Eqs.(25) and (26). Reached
this point, it becomes necessary to define the concept of sweeping the spatial discretiza-
tion X, Y – geometry grid, to understand the dynamics of calculating the outgoing angular
fluxes in the SDM − CN iterative scheme. Similarly to the iterative algorithm of the
SDM method for one-dimensional problems [3], the iterative algorithm for the X, Y –
geometry case is essentially different from the transport sweeps employed by the methods
DD [2] and SGF [9].

By defining the sweeping concept for a X, Y – geometry spatial discretization grid, Figure
1, using the SDM method, the coordinate system in Cartesian plane is initially taken as
reference. The coordinate axes (µm; ηm) are oriented in the directions of (x; y) respectively.
Both axes range from negative to positive in the Cartesian coordinate system.

The numerical iterative process [7] is initiated by performing the spectral analysis of
Equations (5) and (6) at the chosen node to start the sweeping process. This node Γi, j

can be located on the first or last row of the spatial discretization grid by combining it
with the first or last column of the same grid. For this paper, we establish the starting
node at the combination, first bottom row with first column on the left side, Figure 2.
Once obtained the axm,g(ν

x
` ) and aym,g(ν

y
` ) eigenvectors with the corresponding eigenvalues

ν` together with the particular solutions ψ̃p
n, g and ψ̂p

n, g we proceed with the calculation
of the αx

` and αy
` parameters at the first node Γi, j using the Equations (25) and (26)
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Ψ̂i
m,g

Ψ̃j
m,g

Ψ̃j
m,g

Ψ̂i
m,g Ψ̂i

m,g Ψ̂i
m,g

Ψ̂i
m,g Ψ̂i

m,g

Ψ̃j
m,g

Ψ̃j
m,g

Figure 2: Bidimensional spatial grid with Γi, j nodes, where i = 1 : I e j = 1 : J

together with the pre-established boundary conditions on the left and lower sides of the
node. For the incoming angular fluxes on the upper and right interfaces of the analyzed
node, an initial estimate is made. Obtained the αx

` and αy
` parameters at the first node,

using again the Equations (25) and (26), it can be determined the outgoing angular fluxes
of first node in all energy groups.

Figure 3: Incomming and Outgoing angular fluxes of the node Γ1, 1 node

Ψ̂i
m,g

Ψ̃j
m,g

Ψ̃j
m,g

Ψ̃j
m,g

Ψ̃j
m,g

Ψ̂i
m,g Ψ̂i

m,g Ψ̂i
m,g

Ψ̂i
m,g Ψ̂i

m,g

(a) Initial estimate

Ψ̂i
m,g

Ψ̃j
m,g
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Ψ̂i
m,g Ψ̂i

m,g Ψ̂i
m,g

Ψ̂i
m,g Ψ̂i

m,g

Ψ̃j
m,g

Ψ̃j
m,g

(b) Outgoing fluxes

Advancing to the right of the starting node, applying the continuity conditions we can
use the outgoing angular fluxes in all energy groups in the right interface of this node as
initial approximation for the incoming angular fluxes for the left side of the adjacent node.
In the adjacent node, the incoming angular fluxes on the right and top interfaces continue
as initial approximations. With the approximation of the incoming angular fluxes on the
node, it is possible to calculate the α` parameters and the outgoing angular fluxes.

Figure 4: Incomming and Outgoing angular fluxes of the node Γi+1, 1
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(a) Initial estimate
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m,g

Ψ̃j
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m,g
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m,g Ψ̂i

m,g Ψ̂i
m,g

Ψ̂i
m,g Ψ̂i

m,g

Ψ̃j
m,g

Ψ̃j
m,g

(b) Outgoing fluxes

Advancing from left to right of the initial Γi, j node at the initial line, the Equations (25)

and (26) are used to determine the α` parameters and the outgoing angular fluxes, ψ̃j
m,g
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and ψ̂i
m,g, at the interfaces of the remaining nodes. When the opposite end of the exit

point is reached in the direction of x, in this case, it is switched to the next line in the
direction of y and the movement starts again from left to right on the new line. The
Equations (25) and (26) are still being used to determine the parameters α`, and the
outgoing angular fluxes ψ̃m,g and ψ̂m,g at the Γi, j cells interfaces.

Figure 5: Incomming and Outgoing angular fluxes from the last node Γ1,J at
the initial line
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(b) Outgoing fluxes

When the opposite end is reached in the direction of x, it moves to the next line in the
direction of y ( Figure 6 )

Figure 6: Incomming and Outgoing angular fluxes of the node Γi, j in nwe row
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(a) Initial estimate
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(b) Outgoing fluxes

The movement starts again from left to right on the new line( Figure 7 ). Equation (25)
and (26) continue to be used to determine α` parameters and the outgoing ψ̃m,g e ψ̂m,g

angular fluxes at the cell interfaces Γi, j.

Finishing the calculations for all nodes in the grid, it is checked whether the stopping
criterion is satisfied. This criterion establishes that the relative deviation between two
consecutive estimates for the mean scalar flux at the energy groups on the node-edge does
not exceed a pre-established ε positive value. If the stopping criterion is satisfied, the
algorithm is terminated.

The updating of the transversal leakage terms and the particular solutions in each Γij

nodes is always carried out using the physical-material parameters of these nodes together
with the boundary conditions and/or the estimates of the incoming angular fluxes at each
one of these nodes. These estimates for the angular fluxes incoming on the nodes Γij are
constantly updated as the iterative process progresses.
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Figure 7: Incomming and Outgoing angular fluxes at nodes Γi+1, j+1 in the
new row

Ψ̂i
m,g

Ψ̃j
m,g

Ψ̃j
m,g

Ψ̂i
m,g Ψ̂i

m,g Ψ̂i
m,g

Ψ̂i
m,g Ψ̂i

m,g

Ψ̃j
m,g

Ψ̃j
m,g

(a) Initial estimate

Ψ̂i
m,g

Ψ̃j
m,g

Ψ̃j
m,g

Ψ̂i
m,g Ψ̂i

m,g Ψ̂i
m,g

Ψ̂i
m,g Ψ̂i

m,g

Ψ̃j
m,g

Ψ̃j
m,g

(b) Outgoing fluxes
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4. NUMERICAL RESULTS

In this section we examine two X, Y – geometry model problems. The first is a het-
erogeneous domain developed by Barros and Larsen [4]. The results of the SGF–CN
method are compared with the results obtained through the spectral nodal methodology
SDM–CN.

This problem considers a 100 cm × 100 cm spatial domain with an isotropic unitary
neutrons source, Q1 = 1, at the center surrounded by a shielding material, Q2 = 0, con-
sidering linearly anisotropic scattering [4]. The Figure 8 (not drawn to scale), presents a
quarter of this configuration with the boundary conditions used to perform the simulation.

Tabel 1 lists the values of the physical-material parameters in each material zone.

Table 1: Physical - material parameters

Material Zone σT (cm−1) σ
(0)
S (cm−1) σ

(1)
S (cm−1)

1 0.80 0.40 0.20
2 1.00 0.95 0.50
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Figure 8: Model–problem 1.

The objective in this experiment is to determine the neutrons leakage through the right(R)
and upper(U) boundaries of the domain represented in Fig. 8. The stopping criterion
requires that the relative deviation between two consecutive estimates for the scalar flux
on the faces of the domain nodes to be less than or equal to 10−7.

The Table 2 is shown the numerical results of the right and upper boundary leakage
calculations besides the relative deviations δU(%) and (δR(%)) for the SGF − CN and
SDM − CN , using as reference the value obtained with the DD method using a 20 ×
880 × 100 nodes per region in the x and y direction. The DD method reaches the fine-
mesh at 1000 nodes; which is the mesh size that for the scalar fluxes in the seventh decimal
place do not have a significant variation.

To calculate the relative deviations δ(%), in both cases, we use the expression

δ(%) =

∣∣∣∣∣∣SDD − Sm

SDD

∣∣∣∣∣∣× 100, (27)

where SDD is the neutron leakage value obtained with the DD method used as a reference
and Sm represents the neutron leakage value generated by each of the methods used to
calculate such leakage in the specified boundaries.

As can be seen, in Table 2 the results obtained for the leaks in both boundaries are sym-
metrical and as the spatial grid becomes thinner, the results generated by both coarse
mesh methods converge to the same result. The values for the relative percentage devia-
tions of the methods SGF − CN and SDM − CN when comparing them with the DD
method, present values less than 3 %.

The second model problem is a fixed source experiment in absorbing medium, which was
suggested by the Argonne Code Center Benchmark Problems Committee and models a
realistic shielding situation [13]. This problem has been designed to provide stringent
tests for two-dimensional geometry transport codes with two energy groups [12].
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Table 2: Neutrons leakage to Model Problem 1

Ωx × Ωy Method
Upper boundary

δU(%)b
Right boundary

δR(%)
spatial grid leakage leakage
20x880x100 DD 4.99400E-06c – 4.99400E-06 –

1x17x2
SGF-CN 4.88894E-06 2.1039 4.88894E-06 2.1039
SDM-CN 5.13538E-06 2.8310 5.13538E-06 2.8310

1x26x3
SGF-CN 4.94060E-06 1.0693 4.94060E-06 1.0693
SDM-CN 5.05927E-06 1.3070 5.05927E-06 1.3070

1x44x5
SGF-CN 4.97479E-06 0.3847 4.97479E-06 0.3847
SDM-CN 4.97479E-06 0.3847 4.97479E-06 0.3847

2x88x10
SGF-CN 4.98905E-06 0.0991 4.98905E-06 0.0991
SDM-CN 4.98905E-06 0.0991 4.98905E-06 0.0991

a. Neutrons leakage : cm−2 s−1.
b. Relative deviations.
c. Read: 4.99400 x 10−6 .

The problem geometry is illustrated in Figure 9. The macroscopic cross sections for the
homogeneous material of the system and the source density are listed in Table 3.
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Figure 9: Model–problem 2.

To simulate this problem using the SDM-CN method, a spatial discretization grid it is
defined as follows, in the direction of x, where it is the region with the uniform spatial
source (0 ≤ x ≤ 65) was divided into 13 nodes and the region without source (65 ≤ x ≤
133) into 14 nodes. Similarly, in the direction of the spatial variable y, it was divided
into 12 nodes in the region with source (0 ≤ x ≤ 60) and 16 nodes in the region without
source (60 ≤ x ≤ 140).

To compare the results obtained by the SDM-CN method, we use the reported results
for this problem by Dias in [12], using the DOT-II and TWOTRAN codes together to
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Table 3: Macroscopic Cross Sections (cm−1) and source density
(neutrons/cm3) for the second model problem

g = 1 g = 2
σTg 0.092104 0.100877
Qg 0.006546 0.017701

σ(0)
s
g
′→g

(cm−1)

g′ = 1 0.006947 0.023434
g′ = 2 0.000000 0.004850

the results of the SGF-CN method reported by Menezes [13]. The Table 4 shows the

numerical results obtained for the total leakage for both energy groups, J
Tg

+ , at the right
boundary of the system shown in Figure 9. The results listed in [12] for code TWOTRAN
considering a spatial discretization grid of 6804 nodes, (39 × 42) × (36 × 48), were used
as reference for calculating the relative relative deviation of all methods addressed in this
experiment using a spatial discretization grid of 756 nodes, (13 × 14) × (12 × 16). Were
considered S8 and S12 sets of the Level Symmetric Quadrature, LQN .

Table 4: Neutron leakage a by right boundary

J
Tg

+

SN g
Fine mesh

TWOTRAN DOT − II SGF − CN SDM − CN
reference

8
1 5.7400E-04b

5.0000E-04 4.9900E-04 5.4744E-04 5.4744E-04
(12.8920 %)c (13.0662 %) (4.6272 %) (4.6279 %)

2 9.2100E-04
8.0000E-04 7.7500E-04 8.7832E-04 8.7832E-04
(13.1379 %) (15.8523 %) (4.6341 %) (4.6346 %)

12
1 5.5700E-04

4.9600E-04 4.9900E-04 5.4833E-04 5.5360E-04
(10.9515 %) (10.4129 %) (1.5566 %) (0.6110 %)

2 8.9100E-04
7.7600E-04 7.7500E-04 8.7868E-04 8.9028E-04
(12.9068 %) (13.0191 %) (1.3827 %) (0.0806 %)

a. Neutrons leakage : cm−2 s−1,
b. Read: 5.7400 x 10−4,
c. Percent relative deviation .

As can be seen in Table 4, the relative percentage deviations of the results generated
by the SDM-CN method for the right boundary leakage were always smaller than the
relative deviations generated by the DOT–II and TWOTRAN similar to the behavior
of the SGF–CN method. It may also be noted that the relative percent deviations of
the method results in the SDM-CN method decreased with increasing quadrature of the
symmetry level.

5. CONCLUSIONS

In this paper, an analytical X, Y – geometry coarse-mesh numerical method, SDM−CN ,
for multigroup fixed source linearly anisotropic SN problem in slab geometry has been
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described and developed. The multigroup SDM − CN discretization scheme preserves
the general analytic solution of the multigroup SN equation in each spatial node, con-
verges to numerical results that are continuous across each node interface and satisfies
the external boundary conditions whether the mesh size order or quadrature set used.
The SDM − CN method converges to numerical solutions ,that are free from spatial
truncation errors because their results coincide with the numerical results obtained from
the analytic solution of the analyzed SN problem regardless the definition of the spatial
grid or the angular quadrature used, same as the SGF −CN method while the fine-mesh
DD method, DOT–II and TWOTRAN solution are not. When calculating the transverse
leakage terms, in the method SDM–CN, these are approximated by constants. These
relative deviations can be attenuated if a better approximation is made for the transverse
leakage terms. We plan to report on the analytic–numerical method results after they
have been implemented and thoroughly tested.
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a Solução Numérica Dominante de Problemas de Autovalor Multiplicativo na For-
mulação de Ordenadas Discretas da Teoria do Transporte de Nêutrons, D.Sc. disser-
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