Position sensitive GEM-based neutron detector prototype <u>*L. A. Serra Filho¹</u>, M. Bregant¹, M. G. Munhoz¹, F. A. Souza², M. Moralles², H. Natal da Luz³

 ¹ Institute of Physics - University of São Paulo(IF-USP)
² Nuclear and Energy Research Institute (IPEN)
³ Institute of Experimental and Applied Physics, Czech Technical University in Prague

In response to the ³He shortage [1], alternatives for thermal neutron detection are being pursued nowadays. Elements such as ¹⁵⁷Gd, ¹⁰B and ⁶Li are commonly used to substitute ³He due to their high neutron capture cross section.

In this work, we present our thermal neutron detector prototype, which makes use of ¹⁰B as converter. This detector works under Ar/CO₂ (90/10) open flux and uses two gas electron multipliers (GEMs) [2] microstructures to multiply the charge signal. The neutrons are detected through the gas ionization generated by the products of the ¹⁰B(n, a)⁷Li reaction. The neutron capture takes place in the inside face of the aluminum cathode, which is coated with a 2.2 μ m thick ¹⁰B₄C layer (deposition kindly provided by the European Spallation Source (ESS) laboratories).

Experimental measurements obtained in the IEA-R1 nuclear research reactor, at the Nuclear and Energy Research Institute (IPEN), shown that our prototype presents high stability, position sensitivity with spatial resolution better than 3 mm and an efficiency of 2.97(25)%, allowing its application as beam profiler. Methods to increase the neutron detection efficiency will then be discussed.

References

- R. T. Kouzes, J. H. Ely, L. E. Erikson, W. J. Kernan, A. T. Lintereur, E. R. Siciliano, D. L. Stephens, D. C. Stromswold, R. M. V. Ginhoven, and M. L. Woodring, "Neutron detection alternatives to ³He for national security applications," *Nucl. Instr. Meth. A*, vol. 623, no. 3, pp. 1035 – 1045, 2010.
- [2] F. Sauli, "GEM: A new concept for electron amplification in gas detectors," Nucl. Instr. Meth. A, vol. 386, pp. 531–534, 1997.