

Radiological and mineralogical characterization of the tailings of a niobium ore treatment plant in Brazil

Rafaella Menezes Ayllon - IPEN Dr. Thammiris M. El Hajj – Unifal Dr. Paulo Sergio Cardoso da Silva - IPEN Engr. Henrique Torquato – CMOC Marcos Antonio Scapin - IPEN Rafael Henrique Lazzari Garcia - IPEN

USES OF NIOBIUM

- Steel production
- Superalloys
- Superconducting magnets
- Hypoallergenic applications: medicine and jewelry

Niobium mine

Concentration and metallurgical process

Niobium product

Country	Reserves (t)	Production (t)								
	2014	2012	2013	2014	(%)					
Brazil	10.827.843,00	82.214,00	76.899,00	88.771,00	93,67					
Canada	200.000,00	4.710,00	5.260,00	5.000,00	5,28					
Other countries	nd	375,00	1.000,00	1.000,00	1,05					
TOTAL	11.027.843,00	87.299,00	83.159,00	94.771,00	100,00					

08/10/2019

7

OBJECTIVE

 Radiologically and mineralogically characterize the carbonate concentrate due to its potential to be used as soil amendment.

METHODOLOGY

- Neutron Activation Analysis (²³⁸U and ²³²Th, REE, Ba, Zn, Zr, As, Cr, Hf, Rb, Sc, Co, Sb and Ta)
- Gamma Spectrometry (²²⁶Ra, ²²⁸Ra, ²²⁸Th, ²¹⁰Pb and ⁴⁰K).
- SEM analysis.
- X-Ray diffraction
- X-Ray fluorescence

X-RAY DIFRACTION

XRD results are compared with ICDD files using EVA software from Bruker

08/10/2019

X-RAY FLUORESCENCE

11

08/10/2019

NEUTRON ACTIVATION ANALYSIS

GAMMA-RAY SPECTROMETRY

Samples were packed in 100 cm³ polyethylene flasks, sealed and set apart for about four weeks

Measued in a gamma-ray spectrometer

Genie[™] 2000 Spectroscopy Software V3.2

08/10/2019

SAMPLES

10 SAMPLES - 100% < 0.106 MM

10/8/2019

Composition (%)

4%

5%

16%

9%

Intensity (Counts)

08/10

■ U-238 ■ Ra-226 ■ Pb-210 ■ K-40

NORM 9 G

■ Th-232 ■ Th-228 ■ Ra-228

Sm Eu Tb Yb Lu

Ba Zr Zn

As Cr Hf Rb Sc Co

$$\begin{aligned} D_{ab} &= 0,462 \times C_U + 0,604 \times C_{Th} + 0,0417 \times C_K \\ Ra_{eq} &= C_U + 1,43 \times C_{Th} + 0,077 \times C_K \\ Hex &= \frac{C_U}{370} + \frac{C_{Th}}{259} + \frac{C_K}{4810} \\ Hin &= \frac{C_U}{185} + \frac{1,43 \times C_{Th}}{259} + \frac{0,077 \times C_K}{4810} \end{aligned}$$

08/10/2019

RADIOLOGICAL HAZARD INDICES

Samala #	238	U	²²⁶ R	a	232	² Th	228-	Th	²²⁸ R	a	⁴⁰ K		Ra eq	Hex	Hin	D
	Bq/kg	<u>+</u>	Bq/kg	<u>+</u>	Bq/kg	<u>±</u>	Bq/kg	±	Bq/kg	±	Bq/kg	±	(Bq/kg)			(nGy/h)
1	210,7	19,7	191,5	3,7	2092,9	130,4	1197,5	18,5	1160,8	7,8	193,1	7,5	1866	2,5	5,6	798
2	0,0	0,0	205,6	2,7	0,0	0,0	1278,0	24,7	1219,1	8,3	270,5	8,4	1970	2,7	5,9	843
3	201,3	17,6	192,3	3,4	2122,4	132,3	1272,6	17,4	1187,4	8,1	324,6	8,2	1915	2,6	5,7	820
4	142,1	18,4	182,7	2,6	1843,7	109,0	1082,8	11,2	1013,7	7,6	197,5	7,6	1648	2,2	4,9	705
5	225,8	24,9	211,3	3,1	2049,1	127,7	2049,1	127,7	1337,3	10,8	1231,1	8,6	287	5,4	6,6	957
6	0,0	0,0	180,7	2,9	2341,6	138,4	1404,3	18,3	1306,9	7,4	321,2	9,0	2074	2,8	6,1	886
7	138,1	18,2	171,0	3,0	2303,3	143,6	1530,8	20,9	1403,6	9,0	316,9	9,4	2202	3,0	6,4	940
8	79,0	20,7	161,8	3,7	2312,4	136,7	1342,8	19,4	1282,3	8,3	306,1	8,8	2019	2,7	5,9	862
9	0,0	0,0	187,4	3,8	0,0	0,0	1374,3	20,1	1312,1	7,8	362,1	5,8	2092	2,8	6,2	894
10	180,9	18,1	152,5	3 <i>,</i> 5	1826,2	113,8	949,3	17,4	938,1	10,1	306,2	9,1	1518	2,0	4,5	650
Average 10 samples	117,8	13,8	183,7	3,2	1689,1	103,2	1348,1	29,6	1216,1	8,5	382,9	8,2	1759,0	2,9	5,8	835,4
DP 10 samples	91,5	9,7	18,3	0,4	908,0	55,4	296,5	34,7	146,7	1,1	303,0	1,1	557,1	0,9	0,6	97,5
Reference value or Global average													370	1	1	84

RADIOLOGICAL HAZARD INDICES

Sample	$\frac{Ra_{eq}}{\left[\frac{Bq}{kg}\right]}$	H_{ex}	H_{in}	$\frac{\mathrm{D}}{\left[\frac{nGy}{h}\right]}$
А	116.46	0.1570	0.4106	54.27
В	117.12	0.1579	0.4123	54.55
\mathbf{C}	114.91	0.1549	0.4063	53.61
D	116.34	0.1568	0.4105	54.22
Ε	114.99	0.1550	0.4066	53.65
\mathbf{F}	117.35	0.1582	0.4129	54.65

CONCLUSIONS

The carbonate tailing samples , resulting from niobium production analyzed in this study is characterized by :

- Calcium carbonate as main constituent;
- Iron, silica, phosphorus, magnesium, strontium, potassium and aluminum;
- Calcite and ankerite as the calcium minerals ;
- U-series nuclides activity concentration around 200 Bq/kg;
- Th-series nuclides activity concentrations around 1200 Bq/kg;
- Enriched in La, Ce, Nd and Ba;
- Carbonate samples presents Ra-228 activity concentration higher than the limit of exemption for use in agriculture stablished for phosphogypsum according to Brazilian regulation;
- Dilution factor resulting from applications of the carbonate as soil amendment results in radiological hazard indices in acceptable levels.

NEXT STEPS

Leaching study of the radionuclides from:

- Carbonate
 - Soil + carbonate

Up take of the radionuclides determination by vegetables growth in soil amended with the carbonate tailing

Thank you

Dr. Paulo Sergio Cardoso da Silva – IPEN
<u>pscsilva@ipen.br</u>

