Validation of AEOLUS L2A products using a multiwavelength lidar system at SPU Lidar Station - Brazil

Fábio Lopes ${ }^{1,5}$, Alexandre Yoshida ${ }^{2,5}$, Alexandre Cacheffo ${ }^{2,5}$, Jonatan Silva ${ }^{3,5}$, Gregori Moreira ${ }^{4,5}$, Eduardo Landulfo ${ }^{5}$

Motivation and method used

SPU Lidar Station - São Paulo - Brazil

Multiwavelength lidar system	
Nd:YAG laser -	400 mJ and 230 MJ @ 532
Brilliant B	and 355 nm
	1064 nm (FWHM 1.0 nm)
	532 nm (FWHM 1.0 nm)
Channels	530 nm (FWHM 0.5 nm)
	355 nm (FWHM 1.0 nm)
	387 nm (FWHM 0.25 nm)
	408 nm (FWHM 0.25 nm)
	Hamamatsu
PMTs	PM-HV-P03-R7400 / PM-
	R9880-20
Vertical Resolution	7.5 m

- SPU Lidar station - AEOLUS Validation
- 210 overpasses since $04^{\text {th }}$ November 2018

- SPU Lidar Station:
- 61 correlative measurements since 04th November 2018 $\sim 30 \%$ of the overpasses
- L2A data products: SCA - Standard Correct Algorithm backscatter and extinction profiles

Main results

- Comparison of aerosol optical properties from ground-based for biomass burning cases
- Good agreement in lidar ratio for some aerosol layers
- Next steps: systematic analysis between SCA backscatter, extinction and LR and SPU lidar retrievals.

