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Abstract—The breast cancer is the most incident cancer in 

women. Evaluation of hormone receptors expression plays an 

important role to outline treatment strategies. FTIR 

spectroscopy imaging may be employed as an additional 

technique, providing extra information to help physicians. In 

this work, estrogen and progesterone receptors expression were 

evaluated using tumors biopsies from human cell lines 

inoculated in mice. FTIR images were collect from histological 

sections, and six machine learning models were applied and 

assessed. Xtreme gradient boost and Linear Discriminant 

Analysis presented the best accuracies results, indicating to be 

potential models for breast cancer classification tasks. 
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I. INTRODUCTION 

Cancer is a group of diseases where abnormal cells grow 
uncontrollably, go beyond their usual boundaries to invade 
adjoining parts of the body and/or spread to other organs [1]. 
The breast cancer is the most incident cancer in women with 
24.2%, or 2.1 million, of new cases in the same year, aside 
from a 6.6% mortality. The estimate for 2040 is 29.4 million 
new cases of cancer, where 2.8 million will be related to the 
breast cancer [2]. In Brazil, the estimate for 2020 is 66 
thousand of new breast cancer cases, which correspond to 
29.7% of the total new cancer cases in women [3]. 

Breast cancer classification can follow different 
parameters as molecular subtypes, type, stage, and grade. The 
molecular classification is performed by the evaluation of 
three hormone receptors expression: estrogen receptor (ER), 
progesterone receptor (PR), and Human epidermal growth 
factor receptor 2 (Her2). The assessing of these expressions 
plays an important role to outline treatment strategies[4]. 

The gold-standard method for classification is the 
immunohistochemistry, where semiquantitative analysis are 
employed, adding the operator subjectivity [5]. Fourier 
Transform Infrared (FTIR) spectroscopy images has 
demonstrated remarkable results when applied machine 
learning analysis [6]. In this way, this work aims to compare 

different machine learning models to classify two breast 
cancer hormone receptors expression. 

II. MATERIALS AND METHODS 

A. Sample Preparation 

Two human breast cell lines were inoculated in Balb/c 
nude mice: the BT474, which is positive for the three receptors 
(ER, PR, and Her2), and the SKBR3 cell line, that is also 
positive HER2 expression, but negative for ER and PR [4]. 

Tumors of approximately 0.5 cm3 were biopsied and 
preserved using the formalin fixation and paraffin embedding 
technique. Ten sections of 5 µm were prepared from each cell 
line, resulting in twenty sections, and placed in low-e 
microscope slides (MirrIR, Kevley Technologies). 

B. FTIR images acquisition 

The FTIR spectroscopy system used was a Cary Series 600 
(Agilent Technologies, EUA), containing a Cary 660 FTIR 
spectrometer and a Cary 620 FTIR microscope. Hyperspectral 
images were acquired by the focal plane array (FPA) detector 
of 32x32 elements. Each element provided a spatial resolution 
of 5.5 µm, thus collecting a 176x176 µm image per sample. 

 The maximum wavenumber window allowed by the 
equipment of 3950 to 900 cm-1 was used. Spectral resolution 
was set to 4 cm-1. As the samples were fixed in low-e slides, 
the system was set to operate in transflection mode. 
Background spectra were acquired using 256 co-added scans, 
while 64 scans were used for sample spectra. 

C. Analysis 

Spectra preprocessing was performed by following the 
protocol [7]: 

• Outlier removal: Hotelling’s T2 versus Q residuals 
method. 

• Fingerprint selection: spectra region cut from 1800 
to 900 cm-1. 

• Smoothing: Savitzky–Golay filter applied with 
window size of 7 and polynomial order of 2. 

Funding agencies: FAPESP (CEPID 05/51689-2, 17/50332-0), 
CAPES/PROCAD (88881.068505/2014-01), CAPES (Finance Code 001) 
and CNPq (INCT-465763/2014-6, PQ-309902/2017-7, 142229/2019-9). 
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• Second derivative: obtained by the same filter 
smoothing algorithm. 

• Normalization: extended multiplicative signal 
correction (EMSC). 

• Removal of substrate contribution:  wax contribution 
modeled in the same EMSC algorithm. 

Six machine learning models were implemented: Linear 
Discriminant Analysis (LDA); Partial Least Squares 
Discriminant Analysis (PLS-DA); K-Nearest Neighbors 
(KNN); Support Vector Machine (SVM); Random Forest 
(RF); Xtreme Gradient Boost (XGB). 

The models were trained using a stratified cross-validation 
of 5 folds, hence using 80% of the data as training and 20% 
for testing. The cross-validation was performed 10 times, 
resulting in a total of 50 trainings, varying the random stated 
of the train-test indexes. 

Statistical comparison was performed using the accuracies 
scores with Friedman and Nemenyi test [8]. Algorithms for all 
the analysis were developed by the authors using Python and 
R languages. 

III. RESULTS 

The Fig. 1 shows the test accuracies boxplot by each 
model. The XGB model presented the highest accuracies, with 
a mean of 0.995. LDA, PLS, and RF exhibit values close to 
XGB, while SVM and KNN models demonstrated worse 
results. 

 

Fig. 1. Boxplot of the test accuracies presented by each model. 

 
Friedman test presented significant statistical difference 

between the models. Therefore, Nemenyi statistical 
comparison was performed, where the results are shown in Fig 
2. XGB and LDA critical values difference was lower than the 
critical distance of 1.066, resulting in no significant statistical 
difference between the best models. PLS did not presented 
difference from LDA and RF, but was different from XGB. 
SVM and KNN were the worst models, similar between each 
other, but with difference from the others.  

Fig. 2. Friedmand + Nemenyi test. 

IV. DISCUSSION 

The XGB algorithm applies decision trees with gradient 
boosting optimization [9]. In this way, each individual tree 
learns from the previous one, instead of lots of independent 
tree as in the RF model, improving its overall accuracy. In 
addition, regularization terms in the XGB model assist to 
prevent overfitting, decreasing the standard deviation (SD) of 
the folds’ accuracy. Tree-based models exhibits good 
performance in datasets with a large number of features, as in 
this work using 467 wavenumbers, due to their subsampling 
techniques 

LDA and PLS uses linear combinations of the features, 
resulting in dimensionality reduction [10]. While the LDA 
algorithm searches for a subspace to maximizes classes 
separation, calculating the inter and intraclasses distances, the 
PLS maximizes the covariance, finding the direction of the 
feature subspace to explain the higher variance of classes 
subspace. Thus, 467 features were decreased to ten 
components for PLS and to one for the LDA, as it is limited 
to the number of classes minus one. 

Lower accuracies of SVM and KNN model may be related 
to the absence of subsampling and dimensionality reduction 
techniques, bringing difficulties for these models to handle 
with large data. Feature extraction and selection methods may 
improve the results of these models, and should be tested in 
future works. Larger SD in comparison to the other 4 models 
also indicates an inconsistent classification, probably due to 
overfitting the training data and making the test accuracy 
unstable.  

V. CONCLUSION 

Predictions with mean accuracies higher than 98%, as 
presented by XGB, LDA, PLS and RF, demonstrates the 
potential of FTIR spectroscopy when allied with machine 
learning techniques for breast cancer hormone receptors 
classification, where XGB and LDA were the best tested 
models. This analysis may provide additional information for 
the prognostic of breast cancer. 
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