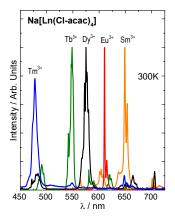


A new series of luminescent tetrakis Ln^{3+} -complexes with α substituted β -diketonate ligands and Na^+ as countercation

Assunção, I.P., 1,2* Brito, H.F., 1 Felinto, M.C.F.C., 3Teotônio, E.E.S. 4 and Malta, O.L. 5


¹Department of Fundamental Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil, ²Education, Science and Technology Federal Institute of São Paulo, São Paulo, 01109-010, Brazil ³Nuclear and Energy Research Institute-IPEN/CNEN, São Paulo, 05508-000, Brazil, ⁴Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil, ⁵Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, 50670-901, Brazil

*E-mail: ipassunc@iq.usp.br

The Ln^{3+} β -diketonate coordination compounds have received growing attention in the past few years, mainly due to their inherent huge variety of applications. The *tris* and *tetrakis* species have also been widely used as an emitting layer in organic light-emitting diodes (OLEDs) due to their high intensity and monochromatic emission. The *tetrakis* complexes usually present improved properties such as thermal and chemical stabilities, besides higher luminescence lifetimes than its correspondent *tris* complexes. Moreover, the commonly hydrated *tris* Ln^{3+} -complexes show a luminescence quenching due to vibronic coupling between H_2O molecules and the Ln^{3+} principal emitting levels (*e.g.*, ${}^4G_{5/2}$, 5D_0 , 5D_4 , ${}^4F_{9/2}$ and 1G_4 of the Sm^{3+} , Eu^{3+} , Tb^{3+} , Dy^{3+} and Tm^{3+} ions, respectively) [1]. The acetylacetone (2,4-pentanedione) ligand, Hacac, is one of the most extensively used and studied β -diketonate ligands, especially for the Tb^{3+} ion. Nevertheless, the α -substituted Ln^{3+} β -diketonate complexes are relatively scarce in the literature [2]. Hence, this work reports the synthesis, characterization, and photoluminescent study of a new series of *tetrakis* coordination compounds containing the α -substituted β -diketonates 3-chloro acetylacetone (Cl-acac), presenting the general formula $Na[Ln(Cl-acac)_4]$, where $Ln: Sm^{3+}$, Eu^{3+} , Tb^{3+} , Dy^{3+} , and Tm^{3+} .

All complexes were characterized by elemental analysis, complexometric titration, thermal analysis, infrared absorption spectroscopy (FTIR), and X-ray powder diffraction (XPD). The Ln^{3+} complex photoluminescent properties (Figure 1) as well as the experimental intensity parameters ($\Omega_{2,4}$) of the Eu³⁺ were determined.

Figure 1. Emission spectra of the Na[Ln(Cl-acac)₄] complexes, where Ln: $Sm^{3+}(^4G_{5/2} \rightarrow ^6H_{9/2})$, $Eu^{3+}(^5D_0 \rightarrow ^7F_2)$, $Tb^{3+}(^5D_4 \rightarrow ^7F_5)$, $Dy^{3+}(^4F_{9/2} \rightarrow ^6H_{13/2})$ and $Tm^{3+}(^1G_4 \rightarrow ^3H_6)$ recorded at 300 K.

References

[1] Guedes, M.A., Paolini, T.B., Felinto, M.C.F.C., Kai, J., et al., *J. Lumin.* **131**, 99–103 (2011). [2] Nolasco, M.M., Vaz, P.M., Vaz, P.D., Ferreira, R.A.S., et al. *J. Coord. Chem.* **67**, 4076–4089 (2014).