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Abstract
Cosintering (La0.84Sr0.16MnO3 thin-film cathode/ZrO2: 8 mol% Y2O3 thin-film
solid electrolyte/55 vol.% ZrO2:8 mol% Y2O3 + 45 vol.% NiO anode, ϕ = 12 ×
1.5 mm thick pellet) was achieved by applying an electric field for 5 min at
1200◦C. Impedance spectroscopy measurements of the anode-supported three-
layer cell show an improvement of the electrical conductivity in comparison to
that of a conventionally sintered cell. The scanning electron microscopy images
of the cross-sections of electric field-assisted pressureless sintered cells show a
fairly dense electrolyte and porous anode and cathode. Joule heating, resulting
from the electric current due to the application of the AC electric field, is sug-
gested as responsible for sintering. Dilatometric shrinkage curves, electric volt-
age and current profiles, impedance spectroscopy diagrams, and scanning elec-
tronmicroscopymicrographs show how anode-electrolyte-cathode ceramic cells
can be cosintered at temperatures lower than the usually required.
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1 INTRODUCTION

The development of planar unitary solid oxide fuel cells
is still under way, in the search for electrically efficient
and mechanically reliable single devices, not considering
thermo-chemical and thermo-mechanical compatibility
when dealing with a stack composite.1 The manufacture
of those devices requires several sintering steps depending
on the way their conformation is performed: (a) one is
sintering the anode to get a porous structure, coating with
the electrolyte to be fired to get nonporous electrolyte
structure; subsequentially, the cathode is deposited on
top of the electrolyte, the whole cell being fired again to
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get porous cathode structure. However, find the suitable
(temperature-heating rate-dwelling time-cooling rate-
atmosphere) profile is not an easy task; (b) another is
single step cofiring the three components (anode, elec-
trolyte, and cathode layers) conformed by tape casting,
considered a low-cost SOFC manufacturing technique.2–6
Electrolyte sintering is one important step for the cofir-
ing process. The required anode and cathode sintering
temperatures for achieving porous structures are lower
than the one required for obtaining a dense electrolyte;
consequently, after sintering at these low temperatures,
the electrolyte would not reach the density required for
avoiding fuel permeation at the operation temperature of
the whole cell. The use of sintering aid to the electrolyte
is one method to lower its sintering temperature.7–10 After
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solving the problem of the choice of adequate tempera-
ture for cofiring anode and electrolyte, another problem
remains to solved: to find an adequate temperature to
cofire the cathode to keep it porous and single phase.11,3
The mismatch of the thermal expansion coefficients of

the cell components causes warping and delamination of
the cell andmay increase porosity of the electrolyte in elec-
trophoretic deposited anode supported cells.12 During the
manufacturing of a cell, thermal stresses are unavoidable
due to temperature cycling from room temperature to the
firing temperature. In proton conducting half-SOFCs, it
has been shown that the driving force for deformation is
associated with a porosity gradient, produced during cofir-
ing with a porous load to avoid warping.13
Forcing flatness promotes microcracks and porosity in

the electrolyte, which could be corrected by additional low
viscosity electrolyte coatings followed by additional firings,
a tedious and costly solution to the warping problem. A
study of the prediction of warping conditions, based on
fracture mechanics, has been reported.14
Besides the warping problem, another difficulty is that

during cell operation at temperatures higher than 700◦C,
the presence of O2 might oxidize Ni of the Ni-electrolyte
anode of the cell, with concentration gradients appear-
ing in the anode layer, leading to electrolyte cracking and
warping.15
Electric field-assisted sintering without application of

a mechanical stress on polycrystalline ceramic materials,
mainly in electroceramics, has been in the last few years
largely reported. Sintering a green ceramic piece can be
achieved in a short time (usually few seconds, then the
denomination “flash sintering”) with a setup consisting
basically of a power supply and a laboratory furnace.
This sintering method has been applied, for exam-
ple, to Y2O3-stabilized ZrO2,16–25 MgO-doped Al2O3,26
Co2MnO4,27 Gd2O3-doped BaCeO3,28 SiC,29 Gd2O3-
doped CeO2,30 SrTiO3,31 SnO2,32 and Y2O3,

33 ThO2,34
and UO2.35
Anode/electrolyte half SOFCs have already been cos-

intered by electric field-assisted sintering under pressure
(SPS, Spark Plasma Sintering). This technique differs con-
siderably with the flash sintering technique for the fol-
lowing main reasons: a relatively low DC voltage (1-10
V) is applied to a graphite die under vacuum to pro-
duce extremely large currents (kA range) resulting in
a very large heating rate in a powder specimen under
pressure inside the die. This technique requires expen-
sive equipment, while flash sintering could be carried out
with a furnace and a programmable power supply. A SPS
experiment on a half SOFC allowed for reduction of the
NiO with pore former in the anode, crack-free, and well-
bonded anode/electrolyte interface and, very important,
no warping.36 The flash sintering technique has also been

proposed for manufacturing SOFC components16,37 and
anode-electrolyte multilayers.38
Attempts for the application of the flash sintering tech-

nique to produce single planar three-layer solid oxide fuel
cells with porous NiO-YSZ thick anode, dense YSZ thin
film, and porous LSM thin film are here reported. The
main concern was to produce anode-supported solid oxide
fuel cells mechanically stable without microcracks or hot
spots to avoid gas permeation.39

2 MATERIALS ANDMETHODS

The assembling of the planar anode/electrolyte/cathode
three-layer cell consisted of:

1. Anode: 8YSZ/NiO (55/45 vol.%) pressed pellets. 55 vol.%
cubic ZrO2:8 mol% Y2O3 (TZ-8Y, Tosoh, Japan) com-
posed of 75 μm spherical granules were thoroughly
mixed to 45 vol.% NiO in an agate mortar, uniaxially
pressed (50MPa, Kratos, Brazil) into disc-shaped pellets
with 12 mm diameter and approximately 2 mm thick-
ness, followed by isostatic pressing (140 MPa, National
Forge Co., USA);

2. Electrolyte: TZ-8Y commercial powder from the same
batch used in the anodewas diluted in isopropanol; that
slurry was brush-painted to one of the anode surfaces.
The anode/electrolyte compound was heat treated at
300◦C for eliminating the isopropanol. If cracks were
produced in the electrolyte, additional layers of the
slurry were applied with further 300◦C calcinations.

3. Cathode: A (La0.80Sr0.20)0.95MnO3-x (lanthanum stron-
tiummanganite) paste (LSM, Fuel Cell Materials, USA)
was brush-painted on top of the dried electrolyte slurry.
The anode/electrolyte/anode compoundwas again heat
treated at 300◦C for eliminating organics in the paste. If
cracks were produced in the cathode, additional layers
of the paste were applied with further 300◦C calcina-
tions.

Linear shrinkage wasmonitored in a pc controlled high-
temperature vertical dilatometer (Unitherm 1161V, Pitts-
burgh, USA) with platinum grids on both parallel sides
of the sample. Platinum wires connected these current
collectors either to a custom-made power supply (0-55
V, 0–6 A, 0.5-1.2 kHz), or to a Hewlett Packard 4192A
impedance analyzer with a 362 HP controller. The [-Z’’(ω)
× Z’(ω)] impedance spectroscopy data were obtained in
the 5 Hz-13 MHz frequency range [f = (ω/2π)] under a
voltage amplitude of 200 mV and at temperatures within
the oxide ion conductivity region. All experiments were
performed at ambient atmosphere. Further details may be
found elsewhere.22
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F IGURE 1 Dilatometric curves of anode-supported planar
three-layer cell from RT to 1200◦C without and with application of
310 V/cm,1 kHz, 1 A, for 5 min at 1200◦C

The isothermal flash sintering experiment consisted in
heating the three-layer cell and applying an AC volt-
age (AC for only charge transport, DC could transport
undesirable mass)40,41 when the specimen reached a pre-
established temperature. The shrinkage level was moni-
tored at the dilatometer gauge while the electrical data
(applied voltage and the current through the cell) were col-
lected with digital voltmeters connected to a computer.22
Typical value of applied voltage was 50 V in 1.6 mm sample
thickness (310 V/cm), limiting the electric current to 1 A
(0.88 A/cm2).
Fracture cross-section surfaces of the sintered cells were

observed in a Inspect F50 FEG-SEM (FEI, Brno, Czech
Republic) scanning electronmicroscopewith EDS (EDAX)
analysis, applying 20 kV accelerating voltage with 3.0 spot
size. No special preparation, like polishing and/or etching
of the cell surfaces, was done.

3 RESULTS

3.1 Sintering: Conventional and electric
field-assisted

Figure 1 shows two linear shrinkage curves of a single
three-layer cell, one upon heating at 10◦C/min to 1200◦C,
and other applying 310 V/cm, 1 kHz, 1 A limiting current,
for 5 min when the sample reached 1200◦C. The contribu-
tion of the electric field is evident with 11% improvement
in the shrinkage of the whole cell.
Figure 2 shows the applied electric voltage and current

during the flash sintering experiment. The power supply
gives the appropriate voltage amplitude such as to keep
the limiting current value, 1 A in this case. The incuba-
tion time, that is, the elapsed time the flash event takes

place after the application of the electric voltage, is approx-
imately 70 s.

3.2 SEM analysis

The cross-section of the planar three-layer cell flash-
sintered at 1200◦C was observed in the FEG scanning
electron microscope. The micrograph of a typical region is
shown in Figure 3.
Figure 4 shows the mapping of the elements in a line

profile from the inner part of the anode to the cathode
extremity of the cell (left to right). Zirconium, yttrium, and
nickel were found at the anode, zirconium, and yttrium at
the electrolyte, as expected.
Figure 5 shows scanning electron microscopy micro-

graphs of anode, electrolyte, and cathode along with the
corresponding EDS analysis.

3.3 Impedance spectroscopy analysis

Impedance spectroscopy data of the three-layer cell flash-
sintered at 1200◦C during 5 min with 310 V/cm, 1k Hz,
with 1 A limiting current, were collected at 590◦C from
5 Hz to 13 MHz, input signal 200 mV. The [-Z’’(ω) × Z’(ω)]
impedance diagrams are shown in Figure 6.

4 DISCUSSION

4.1 Sintering: Conventional and electric
field-assisted

Figure 1 shows that heating the cell to 1200◦C promotes
(from the anode to the cathode) a cross-section shrink-
age of 15% of the cell thickness without the application of
the electric field, while under the applied electric field the
shrinkage reached 26%. We must point out that approxi-
mately 26% is the threshold level for 8YSZ reaching full
density at 1450◦C.42,43 This is the evidence of the possibil-
ity of cosintering a single solid oxide fuel cell at furnace
temperatures lower than the usual, by applying an electric
field. Care should be taken for appropriate choice of the
electric voltage, the exposure time, and the limitation of
the electric current through the sample. Excessive current
or exposure time could provide too much Joule heating,
resulting in disruption of the sample.39

4.2 SEM analysis

The electron microscopy analysis of the cross-section of
the flash sintered cell, Figure 3, shows a porous cathode
and all cell components well welded, 13 μm being the
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F IGURE 2 Typical applied electric voltage (50 V) and current (1 A) through the anode-electrolyte-cathode cell during the flash sintering
experiment

F IGURE 3 Scanning electron microscopy image of a
cross-section of a planar unitary three-layer cell after flash sintering
with 310 V/cm,1 kHz, 1 A, for 5 min at 1200◦C. LSM: Lanthanum
Strontium Manganite cathode; YSZ: 8 mol% yttria-stabilized
zirconia solid electrolyte; YSZ + NiO: anode

approximate average thickness of the dense 8YSZ solid
electrolyte. The flash sintering at 1200◦C did sinter the
three components of the planar three-layer cell, with grain-
to-grain neck formation. The EDS analysis on the anode
and cathode shows Ni in the former and Mn, La, and Sr in
the latter. Zr is detected due to the limitation in the spot size
of the scanning electron microscope. Anode and cathode
are porous as required for percolation of the fuel and the
oxidant. The electrolyte is fairly dense, its porous region
concentrated on its outer surface. The elemental analysis
shows the occurrence of La and Mn from the cathode.
Line scanning of the elements across the section of the

cell, Figure 4, shows Zr, Y, and Ni in the relatively thick

F IGURE 4 Scanning electron microscopy energy-dispersive
X-ray line scanning of Zr, Y, Ni, La, Sr, Mn elements across the
cross-section of the single planar three-layer cell flash sintered with
310 V/cm,1 kHz, 1 A, for 5 min at 1200◦C

anode. It was difficult to detect La, Sr, and Mn in the cath-
ode side due to limitation of the detection technique and
its thin-film structure.
Figure 5 depicts the scanning electron microscopy

micrographs of anode, electrolyte, and cathode along with
the corresponding EDS analysis. Higher magnification
shows welded grains in the three components, evidencing
the high temperature reached by the cell during flash sin-
tering.

4.3 Impedance spectroscopy analysis

The impedance spectroscopy diagrams shown in Figure 6
for the cell sintered at 1200◦C with and without the appli-
cation of an electric field consist of broad decentralized
semicircles, resulting from the contribution of the bulk
(intragranular, grains) and of the interfaces (intergranular,
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F IGURE 5 Scanning electron microscopy images of the components of a planar three-layer cell after flash sintering with 310
V/cm,1 kHz, 1 A, for 5 min at 1200◦C. YSZ-NiO: anode; YSZ: 8 mol% yttria-stabilized zirconia solid electrolyte; LSM: Lanthanum Strontium
Manganite cathode. Bottom: Results of EDS analysis

F IGURE 6 Impedance diagrams of planar three-layer cells
after flash sintering with 310 V/cm,1 kHz, 1 A, for 5 min at 1200◦C
and after cosintering at 1200◦C (conventional). Input signal 200 mV;
frequency range 5 Hz-13 MHz; temperature of measurement 590◦C.
Blue and red: experimental data

grain boundaries, and pores).42,44 The total electrical resis-
tance of the conventionally sintered cell, measured at the
intersection of the impedance diagram with the Z’ axis at
the low frequency side of the diagram, is 33 kOhm. The
flash sintered cell, on the other hand, after 5 min of 1 A
electric current applied at 1 kHz, had its total electric resis-

tance reduced to 13 kOhm. Under operational conditions,
this value would be lower after nickel oxide reduction to
nickel by the fuel atmosphere, usually hydrogen.45
Improvement of the ionic conductivity of 8YSZ had

already been reported.22–25 The major contribution to the
electrical resistance of the cell might be due to the thicker
anode. The reduction of the electrical resistance in the
flash sintered cell is tentatively ascribed to additional heat-
ing produced in the bulk of the cell by the flow of the elec-
tric current (Joule heating).

5 CONCLUSIONS

Single anode-supported solid oxide fuel cells prepared by
coating an anode composed of 8 mol% yttria-stabilized zir-
conia and nickel oxide (55/45 vol.%) with an 8 mol% yttria-
stabilized zirconia film and, on top of that, a film of lan-
thanum strontium manganite, were cosintered at 1200◦C
and also at that same temperature applying 310 V/cm AC
voltage during 5 min. The stepwise application of AC elec-
tric voltages to the cell promoted an enhancement of the
shrinkage level from 15 to 26%. Moreover, the scanning
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electron microscopy images showed that the microstruc-
tures of the flash sintered cells present suitable densifica-
tion with porous both anode and cathode, and fairly dense
electrolyte. The densification promoted by flash sintering
leads also to a 63% decrease in the total electric resistivity of
the cell. Joule heating is proposed as the main mechanism
responsible for the densification of the planar three-layer
cell.
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