

August 30th to 11 10 40C

August 30th to 1UMRS September 03rd 1UMRS

Lanthanum Doped Ceria Shaped Nanostructures for Oxidative Coupling of Methane

<u>Fabiane J. Trindade</u>¹, Sergio Damasceno¹, Larissa Otubo², Martin Schmal³, Daniel Zanetti de Florio⁴, Fabio Coral Fonseca⁵, Andre S Ferlauto⁶

¹Universidade Federal do ABC (*Center for Engineering, Modeling and Applied Social*), ²Instituto de Pesquisas Energéticas e Nucleares, ³Universidade de São Paulo, ⁴Universidade Federal do ABC (*CECS*), ⁵Universidade de São Paulo (*IPEN*), ⁶Universidade Federal do ABC

e-mail: fabianejtrindade@gmail.com

<u>Fabiane J. Trindade</u>^{1*}, Sergio Damasceno¹, Larissa Otubo², Martin Schmal³, Daniel Z de Florio¹, Fabio C. Fonseca², Andre S. Ferlauto¹

¹Universidade Federal do ABC, ²Instituto de Pesquisas Energéticas e Nucleares, ³Universidade de São Paulo

*trindade.fabiane@ufabc.edu.br

The abundance of natural gas due to the advancements in exploration and extraction technologies has increased the interest in the direct conversion of methane to C_2 molecules via oxidative coupling of methane (OCM) reactions [1]. The design of catalysts by tailoring shape and oxygen vacancies has a significant impact on their performance [2]. Within this context, in this work, the fine-tuning of structural defects of ceria rod-like and cube-like shaped nanoparticles were performed via La^{3+} doping ($La_xCe_{1-x}O_{2-x/2}$) in molar ratios of x=5-90 mol %. The morphology control was achieved by varying the hydrothermal synthesis temperature from 110 °C to 180 °C. The characterization of $La_x Ce_{1-x}O_{2-1/2}$ catalysts was performed by SEM, HRTEM, XRD, and Raman spectroscopy. The catalytic performance of the new nanomaterials for the OCM reaction was studied at 750 °C with an in-line gas chromatograph. In the $La_x Ce_{1-x}O_{2-x/2}$ nanorods, the fluorite crystalline structure is essentially maintained even for x = 0.6. The Raman spectra analysis indicates that the addition of La³⁺ leads and increases the formation of different amounts of extrinsic and intrinsic oxygen vacancies. In addition, the catalytic tests for OCM reaction show that the La_xCe₁. $_{x}O_{2-1/2}$ (x=50%) nanorods catalyst have 25% of CH₄ conversion and 48% of selectivity for C_2 products. The concentration of reactive oxygen species in the La_xCe_{1-x}O_{2-1/2} (x=50%) nanorods was crucial to improving the conversion rates and selectivity.

The authors acknowledge Multiuser Central Facilities-UFABC and the CINE-Shell (ANP)/FAPESP (2017/11937-4).

[1] Y. Gambo, A. A. Jalil, S. Triwahyono, A. A. J. Abdulrasheed, Ind. Eng. Chem. 59, 218-229 (2018).

[2] A. Trovarelli and J. Llorca, ACS Catal., 7, 4716-4735 (2017).