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The most common histologic subtype of RCC, ccRCC, 
accounts for approximately 75% of kidney cancer diagno-
ses [4]. A majority of patients with ccRCC have a mutation 
in the von Hippel-Lindau (VHL) gene, which is located on 
the short arm of chromosome 3 and serves as an autosomal 
dominant tumor suppressor [5]. The protein encoded by the 
VHL gene, termed as pVHL, interacts with other proteins, 
such as hypoxia-inducible factor (HIF), to form an E3-ubiq-
uitin complex, which targets proteins for proteasomal deg-
radation. HIF is a heterodimeric transcription factor (HIF1α 
and HIF1β) that coordinates the expression of several genes 
responsible for cellular adaptation to hypoxia [6]. Under 
normoxic conditions, HIF1α protein is hydroxylated, recog-
nized by pVHL, which drives them to degradation. On the 
other hand, under hypoxic conditions, HIF1α is not hydrox-
ylated and cannot be recognized by pVHL and its intracel-
lular concentration rises [7]. In patients with RCC, pVHL 
is nonfunctional and is consequently unable to target the 

Introduction

Renal cell carcinoma (RCC) is a group of malignant histo-
logical subtypes that arise from epithelial cells, accounting 
for 2–3% of all malignancies in adults [1, 2]. The three major 
RCC histological subtypes are clear cell RCC (ccRCC), 
papillary RCC (pRCC), and chromophobe RCC (ccRCC). 
Each subtype is associated with unique genetic mutations, 
clinical characteristics, and sensitivity to treatment [3].
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Abstract
Background Hypoxia pathways are deregulated in clear renal cell carcinoma (ccRCC) because of the loss of the von Hippel-
Lindau tumor suppressor function. Quantitative PCR is a powerful tool for quantifying differential expression between nor-
mal and cancer cells. Reliable gene expression analysis requires the use of genes encoding housekeeping genes. Therefore, 
in this study, eight reference candidate genes were evaluated to determine their stability in 786-0 cells under normoxic and 
hypoxic conditions.
Methods and Results Four different tools were used to rank the most stable genes—geNorm, NormFinder, BestKeeper, and 
Comparative Ct (ΔCt), and a general ranking was performed using RankAggreg. According to the four algorithms, the TFRC 
reference gene was identified as the most stable. There was no agreement among the results from the algorithms for the 2nd 
and 3rd positions. A general classification was then established using the RankAggreg tool. Finally, the three most suitable 
reference genes for use in 786-0 cells under normoxic and hypoxic conditions were TFRC, RPLP0, and SDHA.
Conclusions To the best of our knowledge, this is the first study to identify reliable genes that can be used for gene expres-
sion analysis in ccRCC in a hypoxic environment.
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at 20.000xg for 15 min, the supernatant was collected 
and added to protease inhibitor cocktail powder (Sigma-
Aldrich, St Louis, MO, USA). The protein concentration 
was detected by using the bicinchoninic acid assay (BCA) 
method and stored at -80 °C until use. The protein samples 
were loaded at a concentration of 50 µg per lane, separated 
using 12% sodium dodecyl sulphate polyacrylamide gel 
electrophoresis, and transferred onto a GE Hybond-P poly-
vinylidene difluoride membrane. The membrane was then 
blocked in 5% skim milk in Tris–buffered saline at room 
temperature for 1 h. The membranes were incubated over-
night at 4 °C with the primary antibody anti-HIF-2α (rabbit 
polyclonal anti-mouse; Abcam, Cambridge, UK), diluted 
1:300, followed by incubation with HRP-conjugated goat 
anti-rabbit secondary antibody (Santa Cruz Biotechnology, 
Dallas,TX, USA), diluted 1:1000, for 2 h at room tempera-
ture. Signals were detected using the SuperSignal® West 
Pico Chemiluminescent Substrate Kit (Thermo Scientific, 
Waltham, MA, USA). Photographs were taken using the 
Uvitec Cambridge Alliance 4.7 equipment. Protein bands 
were quantified using ImageJ software.

RNA extraction

RNA was extracted from the cells grown under normoxic 
and hypoxic conditions. The cells were washed with PBS, 
and RNA was extracted using the RNeasy® Mini Kit (Qia-
gen, Valencia, CA, USA), following the manufacturer’s 
instructions. The extracted RNA was diluted with RNase-
free water. Subsequently, RNA concentration (ng/µL) and 
purity (A260/280) were determined using a Nanodrop® 
ND-100 (Thermo Scientific). The RNA was considered pure 
if the A260/280 ratio was within the range of 1.8–2.1. The 
integrity of the samples was confirmed using agarose gel 
electrophoresis. The RNA samples were stored at -80 °C.

Complementary DNA (cDNA) synthesis

The QuantiTec reverse transcription kit (Qiagen) was used 
to synthesize cDNA. The cDNA was synthesized using 2 µg 
of total RNA, followed by elimination of genomic DNA 
using the buffer from the kit. The resulting mixture was then 
incubated in a thermocycler at 42 °C for 2 min and then 
immediately transferred on ice. A second mix was prepared, 
complementing the previous mix, containing the RT primer, 
and amplified at 42 °C for 15 min. The reaction was stopped 
with a cycle of 95 °C for 3 min. Then, the samples were 
incubated in an ice bath for 2 min and stored at -20 °C until 
qRT-PCR analysis.

HIF1α protein for degradation. Thus, free HIF1α promotes 
the transcription of various target genes. Molecular studies 
of hypoxia-responsive pathways are challenging because 
they require genes with stable expression to be used as ref-
erence genes [8].

Determination of gene expression profiles is an important 
tool in the field of molecular oncology. The analysis of dif-
ferential gene expression between tumors and normal tis-
sues is essential for identifying possible therapeutic targets 
[9]. Real-time quantitative polymerase chain reaction (qRT-
PCR) is used to measure mRNA in a given cell type; owing 
to its high sensitivity and accuracy, this technique is the gold 
standard for gene expression measurements [10]. In qRT-
PCR analysis, the target gene expression is determined by 
normalizing it with the expression of housekeeping genes 
(HKG). HKGs are a set of genes that are constitutively 
expressed and play a fundamental role in maintaining the 
existence of cells, and their expression is not modulated by 
experimental conditions [11].

In this study, we investigated the performance of a panel 
of eight HKGs in a ccRCC cell line under normoxic and 
hypoxic conditions, with the aim of identifying suitable 
reference genes for normalization in RCC gene expression 
studies.

Materials and methods

Cell culture and induction of hypoxic conditions

The RCC cell line 786-0 was obtained from the Ameri-
can Type Culture Collection (catalog no.: CRL-2947™, 
Manassas, VA, USA) and cultured in RPMI-1640 medium 
(Gibco® Invitrogen, Grand Island, NY, USA) supplemented 
with 10% fetal bovine serum (Gibco® Invitrogen), 100 U/
mL penicillin, and 100 µg/mL streptomycin (Gibco® Invi-
trogen) in a humidified incubator with 18.6% O2, 5% CO2, 
and 76.4% N2 at 37 °C.

A day before the hypoxia assay was performed, approxi-
mately 2 × 105 cells were seeded in 60 mm petri dishes and 
incubated for 6 h in a hypoxia-inducing humid chamber 
(StemCellTM Technologies, USA) with an atmosphere of 
1% O2, 5% CO2, and 94% N2, and placed in an incubator at 
37 °C. The Altair PRO Single-Gas Detector (Code: 217,597, 
MSA, Cranberry Township, Pennsylvania, USA) was used 
to measure the O2 concentration inside the chamber.

Protein extraction and western blot analysis

Proteins were extracted from the cells grown under nor-
moxic and hypoxic conditions using CelLytic™ M reagent 
(Sigma-Aldrich, St Louis, MO, USA). After centrifugation 
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Results

Hypoxic response

The effectiveness of the hypoxic microenvironment was 
confirmed using western blot analysis. The 786-0 cells cul-
tured under hypoxia had significantly increased HIF-2 α 
protein levels compared to those observed in 786-0 cells 
grown under normoxia (normoxia vs. hypoxia, P < 0.05) 
(Fig. 1 A and A1).

RNA quality

The RNA extracted from all samples showed high yield, qual-
ity, and integrity. The mean RNA concentration in the cells 
from the normoxia and hypoxia group was 3603.38 ± 176.50 
ng/µL and 3111.76 ± 54.90 ng/µL, respectively. The mean 
A260/280 ratio in the cells from the normoxia and hypoxia 
group was 2.05 ± 0.02 and 2.08 ± 0.01, respectively. Integ-
rity was assessed using agarose gel, and two sharp bands 
(28 S and 18 S rRNA) were observed.

Primer specificity and efficiency

The specificity of the primers designed for the amplifica-
tion of HKGs was determined using melt-curve analysis. 
A single fluorescence peak was detected for each primer, 
indicating that only one fragment was amplified during 
qPCR amplification (Fig. 2). The efficiency of the primers 
(E) ranged from 1.98 to 2.02, and the correlation coefficient 
(R2) ranged from 0.99 to 1.00.

Expression stability of reference genes under 
normoxic and hypoxic conditions

The cycle threshold (Ct) values of eight reference genes in 
786-0 cells under normoxic and hypoxic conditions were 
used to compare gene expression patterns. A wide range of 
Ct expression variances were observed. ATCB had the high-
est Ct variation, while TFRC, RPLPO, SDHA, and HPRT1 
showed the lowest variation (Fig. 3).

Determination of expression stability of candidate 
reference genes

The expression stability of the eight candidate genes was 
assessed under hypoxic conditions and evaluated using the 
statistical algorithms BestKeeper, geNorm, NormFinder, 
and Delta-CT (ΔCт).

The stability of the HKGs was determined using Best-
Keeper based on the extent of standard deviation (SD ± CP), 
with a higher SD value corresponding to the low stability 

Real-time quantitative polymerase chain reaction 
(qRT-PCR)

The amplification qRT-PCR was performed using SYBR 
Green® (Applied Biosystems, NY, USA). StepOnePlus® 
(Applied Biosystems), and the protocol was as follows: 
2 min at 50 °C and 10 min at 95 °C; two cycles of 15 s at 
95 °C and 1 h at 60 °C (40 cycles); followed by a final cycle 
of 15 s at 95 °C.

The human genes used were as follows: RRN18S (lateral 
stem subunit P0 of ribosomal protein), ACTB (beta-actin), 
GAPDH (glyceraldehyde-3-Phosphate dehydrogenase), 
HPRT1 (hypoxanthine phosphorbosiltransferase 1), PGK1 
(phosphoglycerate kinase 1), RPLP0 (ribosomethermal Pro-
tin P0), SDHA (subunit A of the flavoprotein of the succinate 
dehydrogenase complex), and TFRC (transferrin receptor). 
The forward and reverse primers were designed using the 
Applied Biosystems website (Table 1). Primer Express 3.0 
(Life Technologies, MD, USA) was used to confirm human 
sequences using BLAST.

Analysis of the stability of reference genes

Four algorithms were used to determine the stability of 
the candidate HKG: NormFinder [12], geNorm [13], Best-
Keeper [14], and Delta-Ct (ΔCт) method [15]. NormFinder 
calculates the stability of reference genes based on intra- and 
inter-group variability. The weighted measure of these two 
parameters is expressed as the S value, and the most stable 
reference gene has the lowest S value [12]. GeNorm cal-
culates the average expression stability (M). The algorithm 
first identifies two genes with the highest expression agree-
ment and, therefore, high stability for each gene. Lower M 
values indicate greater stability [13]. The BestKeeper pro-
gram calculates a Pearson’s correlation coefficient for each 
gene, where p values closer to 1.0 indicate greater stability 
[14]. Comparative ΔCt method uses a basic ΔCt approach to 
compare the relative expression of pairs of genes, creating a 
stability rank based on ΔCt and average standard deviations. 
The genes with the lowest average standard deviation (SD) 
and constant ΔCt values are considered the most stable [15]. 
In addition, once all the stability values for all tools were 
obtained, the BruteAggreg function, a weighted rank aggre-
gation tool from the RankAggreg package was used [16]. 
This is an R package that uses a Monte Carlo algorithm to 
calculate the Spearman distance to obtain the overall rank-
ing among the evaluated genes and tools (NormFinder, 
geNorm, BestKeeper, and ΔCт).
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of the HKGs. According to the BestKeeper ranking, TFRC 
(0.38) was the best candidate, followed by SDHA (0.60) and 
HPRT1 (0.63) (Table 2).

GeNorm analysis ranked the target reference genes 
according to their M values using the Ct values of all of the 
samples. Samples with the lowest M values were consid-
ered to be the most stable, and vice versa. The M value of 
HKGs ranged from 0.65 to 1.55. TFRC and RPLP0 showed 
the highest stability (0.65), followed by SDHA (0.75) and 
PGK1 (0.89) (Table 2).

NormFinder analysis was employed for intra- and inter-
group variations to estimate stability values. Following 
this approach, TFRC (S-value = 0.20) was identified as the 
most stable gene, followed by SDHA (S = 0.51) and RPRP0 
(S = 0.51) (Table 2).

Finally, the stability of the HKGs was determined using 
the comparative ΔCт methods based on SD. A lower SD 
value correlated with higher stability of the HKGs. The 
TFRC with an SD value of 1.15 was perceived to be the 
most stable HKG, followed by SDHA (1.20) and RPLP0 
(1.20) (Table 2).

The rank-ordered genes calculated using the four algo-
rithms presented in Table 2 were further analyzed by using 
RankAggreg [16] to obtain a consensus rank list of genes. 
The stability of the candidate reference genes was in the 
following order: TRFC > RPLPO > SDHA > PGK1 > HPRT1 
> GAPDH > ACTB > X18S (Fig. 4).

Discussion

Accurate relative quantification in gene expression analysis 
requires the use of normalized reference genes, since the 
stability of target genes could vary according to the experi-
mental design, making it essential for the reliability of the 
results [10, 13, 14]. The importance of selecting suitable ref-
erence genes for gene expression analyses has recently been 
highlighted in several studies [17–21].

RCC cell line-based research has a major impact on 
understanding signaling pathways and discovering new 
therapeutic targets [22]. In vitro assays mimic the tumor 
microenvironment conditions as closely as possible. 
Hypoxia is present in nearly 80% of RCCs and modulates 
the gene expression profile, resulting in an aggressive phe-
notype of this tumor [23]. Despite the great importance of 
hypoxia in the pathophysiology of RCC, studies on more 
adequate HKGs are scarce. To the best of our knowledge, 
this is the first study on elucidating the appropriate HKG 
under hypoxic conditions in ccRCC cells. For this purpose, 
eight putative reference genes (RRN18S, ACTB, GAPDH, 
HPRT1, PGK1, RPLP0, SDHA, and TFRC) in ccRCC cell 
lines under normoxic and hypoxic conditions were evaluated 

Fig. 3 Comparison of expression level for the eight indicated house-
keeping genes (HKGs) in 786-0 cells. Values are expressed as cycle 
threshold (Ct) cross-points as defined in Material and Methods

 

Fig. 2 Melting curve analyses of the eight reference candidate genes

 

Fig. 1 Effect of hypoxia on the expression of HIF-1 α in 786-0 cells. 
(A) The protein levels of HIF-1 α was detected using western blot. 
(A1) Quantitative analysis of the protein levels using ImageJ 1.6.0_24 
software. The values shown represent the mean ± SD. **P < 0.05 vs. 
normoxia, Student’s t-test
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hypoxic conditions [25]. RPLP0 was found to be an optimal 
reference gene for expression analysis using formalin-fixed 
paraffin-embedded renal tumors [26]. RPLP0 was also a 
suitable reference gene to normalize gene expression levels 
in qRT-PCR experiments in hypoxic and/or hyperglycemic 
HUVEC cultures [27]. Finally, the SDHA reference gene 
ranked 3rd in the RankAggreg analysis. This gene was used 
as a reference for renal tissue sample gene expression evalu-
ation by Hansson et al. [28].

Conclusions

TFRC, RPLP0, and SDHA were considered the most stable 
genes among the eight evaluated genes using the analysis 
tools, and they might be recommended for normalization 
of gene expression data in qPCR in studies of the impact of 
hypoxia on renal tumor cells.
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GAPDH 1.18 (6) 1.09 (5) 1.06 (6) 1.48 (5) 6
ACTB 1.63 (8) 1.30 (6) 1.56 (7) 2.00 (7) 7
X18S 1.43 (7) 1.55 (7) 1.94 (8) 2.29 (8) 8

Fig. 4 Rank aggregation of the eight candidate reference genes. The 
RankAggreg package was loaded into R software. The BestKeeper, 
NormFinder, geNorm, and ΔCt ranks are represented as grey lines. 
The black line represents the mean rank of each gene according to 
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