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Super-magnets, materials whose 
strong magnetic activity is an 
attractive differential for the high-
tech industry, may have their 
magnetic performance affected by 
small variations in their chemical 
composition. For example, the 
neodymium and praseodymium 
content can change the 
physicochemical properties of the 
permanent magnets. Aiming at a 
strict chemical quality control, this 
work developed an analytical 

method to quantify the major elements in the materials involved in the production process of didymium (the 
mixture of neodymium and praseodymium) super-magnets. The simultaneous determination of Nd 
(401.225 nm), Pr (414.311 nm), Fe (259.837 nm) and B (249.678 nm) in three different sample types 
(didymium oxide, metallic didymium and (Nd,Pr)-Fe-B alloy) was performed by sample dissolution in acidic 
media, followed by instrumental measurements using an Inductively Coupled Plasma Optical Emission 
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Spectrometer. Linear calibration curves were obtained with high coefficient of determination (0.9983 ≤ R2 
≤ 0.9999) and with appropriate limits for determining these elements at the percentage level, reaching 
detection limits less than 0.07 cg g-1. The precision of the method was improved by weighing of the solutions 
during all the dilution steps and was evaluated by the coefficient of variation associated to instrumental 
precision (0.3 – 0.7%), method intermediate precision (1.9 – 3.1%) and also by the typical mass fraction 
provided as uncertainty (0.04 – 0.20 cg g-1), reaching the pressing need to distinguish the content of the 
rare earth elements in less than 1 cg g-1. The accuracy of the method was assessed by spiked and 
recovery test (96-104% for spikes equal to or greater than 0.50 cg g-1) and also by the use of different 
analytical methods, involving the participation of other laboratories, obtaining an acceptable degree of 
agreement (85 – 107%).
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INTRODUCTION 
Present in electric motors, wind turbines and data storage devices (hard disk), magnets are indispensable 

in the manufacture of computers, televisions, cell phones, smart watches and other various modern 
electronic devices.1,2 The chemical composition of the magnet directly influences its magnetic performance 
with a consequent impact on the quality of the associated products.3-6 In this context, knowing the major 
chemical composition of magnets contributes to a more efficient quality control in the act of production 
and also helps manufacturers in the high-tech industry to select magnets in order to keep the uniformity of 
these materials, valuing the isonomy of the final products with higher added value.

Although there are several magnet types, those that employ rare earth elements (REE) generally have 
strong magnetic activity,1,7-11 and are often called permanent magnets or super-magnets.2,3 Among the REE, 
the mixture of neodymium and praseodymium (called didymium12,13) is widely used in metal alloys together 
with the elements iron and boron to act as a super-magnet. Currently, the most powerful commercial 
magnets used in the world employ neodymium14 or didymium.15-18

The production chain of metal alloy (Nd,Pr)-Fe-B is briefly summarized into the following steps: (i) in the 
production of didymium oxide (a mixture of neodymium and praseodymium oxides) through a process of 
separation of the ore that contains REE; (ii) the electrolytic reduction of didymium oxide, in order to obtain 
metallic didymium (a solid solution containing neodymium and praseodymium) and (iii) the incorporation 
of elemental iron and boron in the metallic didymium in liquid phase (process carried out under high 
temperatures) to finally obtain the metallic alloy (Nd,Pr)-Fe-B. The chemical composition of the super-
magnets varies according to the application. In general, the typical contents of the elements in this alloy 
ranged around 25-35 cg g-1 of didymium, 0.5-2.0 cg g-1 of boron and 60-75 cg g-1 of iron. According to the 
need for the application, other minority elements can be added.19 

After the production of the metal alloy, the magnet can be obtained by several processes that involve: 
hydrogen embrittlement (or also called hydrogen decrepitation20-22); milling;23 magnetic particle alignment, 
which is induced by an intense magnetic field applied under the material; compaction; sintering and 
appropriate heat treatments, thus giving rise to the super-magnet. 

In order to reduce cost, the chemical composition must minimize the use of REE. However, the reduction 
of REE content may cause alpha iron phase (an allotrope of iron with a body-centered cubic crystalline 
structure) to be present in magnets, which has a negative effect on the desired magnetic properties of the 
super-magnet and hinders further processing steps, such as the hydration and sintering of the alloy.24

Small variations in the Nd and Pr content strongly influence the physicochemical properties of the alloy, 
for this reason studies about alloy development involve minimal variations in the REE content. In this way, 
the chemical characterization of the alloy and the main materials involved in its production process are 
important to achieve the desired properties in these magnetic materials. Therefore, chemical analytical 
methods must be able to distinguish small variations in the concentration of their constituent elements.
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Among the analytical techniques of elemental determination, those that allow direct solid analysis, 
would be ideal for analysing such materials, mainly due to: (i) high analytical frequency, which allows fast 
analysis of solid materials; (ii) the practicality of minimizing the sample treatment step or even eliminating 
it and (iii) the reduction of possible errors inherent in sample handling.25 Currently, the main techniques 
for direct solids analysis include: Laser-Induced Breakdown Spectroscopy (LIBS),26-30 X-ray Fluorescence 
(XRF),31-33 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS),34,35 Graphite 
Furnace Atomic Absorption Spectrometry (GF AAS),36 among others.25 

However, to quantify the analytes most of these techniques require calibrating materials, that is, solid 
standards whose chemical composition is well known with a suitable degree of accuracy and precision in 
a similar matrix to the sample. Unfortunately, to date, such solid standards for the materials involved in the 
production process of super-magnets are not available.

Considering the unavailability of calibrating materials for use in direct analysis of solids and aiming at a 
reliable analytical method to quantify Nd, Pr, Fe and B simultaneously in three different types of samples 
involved in production process of super-magnets (didymium oxide, metallic didymium and (Nd,Pr)-Fe-B 
alloy), this work reports the synthesis of these materials and a simple protocol for the dissolution of the 
sample in diluted acid solutions and subsequent quantification of analytes by Inductively Coupled Plasma 
Optical Emission Spectrometry (ICP OES), an instrumental technique with great potential for reliable 
determination of rare earth elements.3,37-39

The determination of chemical elements in samples of permanent magnets based on rare earths 
by ICP OES is not new, and it is possible to find old articles that mention having performed elemental 
analysis by ICP. However, the description of how to proceed with this chemical measurement task in these 
samples is scarce in the literature. In a world in which the reliability of the results is increasingly necessary, 
this work contributes with a detailed account of a robust method, which provides precise and accurate 
results. For the first time, a complete analytical method is reported to determine the main elements in the 
production chain of didymium permanent magnets. With the intention of establishing a standard method 
to be implemented routinely, the novelty of this work is centered on meeting the quality criteria necessary 
in the production chain of didymium magnets and it stands out for the: (i) high reliability of the results, (ii) 
high precision obtained, which allows to distinguish low contents of rare earth elements and (iii) in the 
evaluation of foreign elements that can be potential interfering species, making this paper act as a guide 
for the development of analytical applications in similar samples.

MATERIALS AND METHODS
Reagents and solutions

Standard solutions of neodymium 100,434 ± 450 mg L-1 (Specsol™), praseodymium 100,497 ± 450 mg 
L-1 (Specsol™), iron 10,027 ± 50 mg L-1 (SPEX CertiPrep™) and boron 1,002 ± 4 mg L-1 (SCP Science™) 
were used as reference solutions for calibration by external standardization.

Neodymium and praseodymium oxides were purchased from HEFA Rare Earth Canada Co.Ltd.™
Nitric acid solution 25% (v/v) was prepared by the slow addition of 25 mL of concentrated acid (65% 

w/w, Merck™) in 75 mL of deionized water.
Hydrochloric acid solution 27% (v/v) was prepared by the slow addition of 27 mL of concentrated acid 

(37% w/w, Merck™) in 73 mL of deionized water. 

Samples and preparation
Three different sample types related to permanent magnets manufacturing process were evaluated 

in this study: (i) didymium oxide, obtained by mixing praseodymium and neodymium oxides; (ii) metallic 
didymium (solid solution containing Nd and Pr), produced in our laboratory by igneous electrolytic reduction, 
using molten lithium fluoride and didymium oxide concentrate and (iii) (Nd,Pr)-Fe-B alloy, prepared with 
the previously produced metallic didymium by the incorporation of iron and boron elements in liquid phase, 
followed by solidification and subsequent strip casting procedure. The samples were stored in an inert 

Papai, R; da Fonseca, K. T.; de Almeida, G. A.; da Silva, A. L. N.; Nagasima, T. P.; Jabes, E. G.; 
dos Santos, C. A. L.; Landgraf, F. J. G.; Luz, M. S. 
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atmosphere (argon gas) to prevent oxidation40 and were exposed to atmospheric air only seconds before 
the sample treatment (acid dissolution).

The subsamples were divided in three different test portions (n = 3). Each test portion was weighed 
directly in a conical polypropylene tube (Falcon, Corning™) with a capacity of 50 mL until reaching a mass 
ideally close to the following values: 0.3, 0.4 and 0.5 g for didymium oxide, metallic didymium and (Nd,Pr)-
Fe-B alloy sample, respectively. The real mass value was recorded (considering up to 4 decimal places) 
and then the samples dissolution was started.

In a fume hood, the dissolution of metallic didymium and (Nd,Pr)-Fe-B alloy samples was carried out 
in acidic solutions, containing 15 mL of nitric acid (25% v/v) and 5 mL of hydrochloric acid (27% v/v) for 
each test portion. Also in a fume hood, the didymium oxide was dissolved with 10 mL of concentrated 
hydrochloric acid (37% w/w) and 10 mL of concentrated nitric acid (65% w/w) until the dissolution reaction 
was completed (obtained visually when reaching a translucent colour).

When necessary, in exceptional cases, increments of up to 4 mL of concentrated nitric acid (65% w/w) 
were added, until the dissolution reaction was completed (obtained visually when reaching a translucent 
colour).

The initial mass of each tube was recorded and then after the dissolution step, the volume was completed 
to 50 mL with deionized water. Next, the final dissolved sample was weighed and its mass was recorded 
to calculate the real dilution factor. Using a micropipette and also weighing on the analytical balance, the 
resulting solution (sample dissolved) was diluted by factors of 150, 200 or 250-fold for (Nd,Pr)-Fe-B alloy, 
didymium oxide and metallic didymium, respectively, prior to analysis.

Blank solutions were prepared by adding all the reagents described previously without the samples. All 
solutions were produced in triplicate (n = 3).

ICP OES instrumentation and conditions
Inductively Coupled Plasma Optical Emission Spectrometer (iCap 7400 Duo, Thermo Scientific™) was 

used for chemical analysis. The main conditions used during the ICP OES analysis, such as: (i) nebulizer 
gas flow, (ii) RF generator power, (iii) peristaltic pump frequency and (iv) argon auxiliary gas flow were 
optimized, aiming to achieve the highest signal-to-background ratio, with 14 different parameters sets 
being evaluated. The optimal conditions are summarized in Table I.

Table I. Operational conditions optimized for ICP OES analysis

Parameter Condition
RF generator power 27.12 MHz solid state, operated at 1150 W
Coolant gas flow rate (argon) 12 L min-1

Auxiliary gas flow rate (argon) 0.50 L min-1

Nebulizer type Concentric (glass)
Spray chamber Glass Cyclonic
Nebulizer gas flow 0.50 L min-1

Sample flow rate 1.55 mL min-1 (50 rpm)
View mode Axial
Exposure time 15 s for UV and 5 s for Visible measurements
Replicates 3
Monitored analytical lines Nd II 401.225 nm

Pr II 414.311 nm
Fe II 259.837 nm 
B I 249.678 nm

Braz. J. Anal. Chem. 2022, 9 (36), pp 124–145.
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Calibration
Calibration curves were constructed with 10 points by diluted standard solutions containing the analytes 

together in the range of 10.0 to 32.5 mg L-1 for neodymium, 0.10 to 10.00 mg L-1 for praseodymium, 30 to 
57 mg L-1 for iron and 0.1 to 1.8 mg L-1 for boron. All dilutions were properly weighed using the analytical 
balance, recording the mass of each concentrated standard added to calculate the concentration of the 
solution accurately.

RESULTS AND DISCUSSION
The main results and the parameters that characterize an analytical method are discussed throughout the 

article, emphasizing: (i) Sample dissolution; (ii) Optical measurements and pixel selection; (iii) Calibration 
and limits of detection and quantitation; (iv) Precision; (v) Accuracy; (vi) Foreign elements and interference 
evaluation and (vii) Comparative analytical methods, advantages and drawbacks.

Sample dissolution
The complete dissolution of the sample was easily reached with the combination of nitric and hydrochloric 

acid, due to its oxidation strength. The concentrations reported in the experimental section were optimized 
to allow a quick and safe dissolution. Since both the metallic didymium and the (Nd,Pr)-Fe-B alloy can 
react violently with the acid mixture, the need to use diluted acids to prevent the release of particles was 
noticed. In contrast, didymium oxide exhibited less reactivity and therefore, its dissolution was affected 
with concentrated acids in a longer time (more than 1 hour). Visual observation indicated that heating in a 
water bath around 90 ºC can accelerate the sample dissolution time by up to 70%.

Although sample treatment is not such a difficult step, the analytes determination by optical spectrometry 
poses some challenges. For example, the high similarity in the electronic structure between the atoms of 
Nd and Pr can cause intense spectral interferences. This requires the use of a high resolution spectrometer, 
that is capable of resolving these interferences or the use of interference correction strategies.3 The high 
amount of iron in the sample is also a challenge, as this is a chemical element known to emit at different 
wavelengths. Therefore, there is also a need to select appropriate wavelengths for measurement, as well 
as to control the content of Fe injected into ICP OES instrument.

Optical measurements and pixels selection
All optical emission measurements were performed in axial view. Although the instrument allows 

measurements in radial view, less sensitivity was obtained in this condition, making it difficult to distinguish 
between small concentrations of the analytes in solution. Tests performed with radial measurements 
required a lower sample dilution factor and, consequently, higher concentrations of the standards in the 
calibration curve to obtain appreciable emission intensities. However, in this condition, the greater number 
of chemical species introduced into ICP OES instrument caused wear of the torch, accumulating a thin 
metallic film on the quartz surface, that hinders the constancy of the plasma and consequently affected 
the long-term stability. Therefore, aiming to keep the analytical performance characteristics stable for a 
long time of operation and also aiming at a longer torch durability, the axial view measurement mode was 
chosen.

Different wavelengths were evaluated for quantitative measurements of Nd (378.425; 386.341; 401.225; 
406.109; 415.608; 430.358 and 489.693 nm), Pr (390.844; 414.311; 417.939; 422.535 and 495.137 nm), 
Fe (233.280; 234.349; 238.204; 239.562; 240.488; 259.837; 261.187 and 371.994 nm) and B (181.837; 
182.591; 182.641; 208.893; 208.959; 249.678 and 249.773 nm). Aiming at high precision quantifications, 
the best wavelengths were chosen based on: (i) greater intensity obtained in the central pixels; (ii) lower 
background observed to the right and left pixels of the emission peak and (iii) lower relative standard 
deviation of replicate measurements (n = 3). Thus, based on these criteria, the wavelengths selected for 
the quantification of Nd, Pr, Fe and B were 401.225, 414.311, 259.837 and 249.678 nm, respectively.

Chemical Characterization in the Production Chain of Permanent Magnets by Inductively Coupled Plasma Optical 
Emission Spectrometry (ICP OES) – Precise Quantification of Nd, Pr, Fe and B in Super-Magnets Samples
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The emission spectra of the selected wavelengths are shown for a set of calibration solutions in the 
Figure 1. The spectra recorded for the dissolved samples exhibited the same peak shape.

To guarantee the absence of spectral interference mono-elemental standards were analysed 
independently. The results of the emission intensities allowed the calibration with multi-elemental solutions, 
without any spectral interference.

Figure 1. Fragment spectra obtained by ICP OES 
with standard solutions from blank (P0) to high 
calibration standard (P10), showing the peak emission 
for analytes.

According to Figure 1, for the Nd quantification, central pixels corresponding to the range of 401.217 
– 401.233 nm were selected and lateral pixels for subtracting the background in the ranges of 401.176 – 
401.183 nm (left) and 401.250 – 401.257 nm (right). For Pr quantification, central pixels located between 
414.304 – 414.320 nm and lateral pixels at 414.262 – 414.269 nm (left) and 414.347 – 414.355 nm (right) 
were used. The quantification of Fe involved the pixels at 259.833 – 259.843 nm (central), 259.801 – 
259.806 nm (left) and 259.865 – 259.870 nm (right). Boron utilized the following selected pixels: 249.672 
–249.682 nm (central) and 249.708 – 249.713 nm (right), without pixels selected on the left, since residual 
emissions occur on the left side close to the emission peak, due to weak Fe I 249.653 nm emission line.

Braz. J. Anal. Chem. 2022, 9 (36), pp 124–145.
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Calibration and limits
Linear responses between the emission intensity and the analyte concentration were obtained, 

according to linear regression by the method of least squares. The proper linear fit was confirmed by the 
high coefficient of determination (0.9983 ≤ R2 ≤ 0.9999) and also by the random distribution in the residual 
plots, with less than 4% of bias at each calibration point, as seen in Figure 2. The main parameters, such 
as calibration sensitivity, coefficient of determination and explored linear range are shown in Table II.

Although new calibration approaches41-44 are available, the external calibration with standard solutions 
was chosen in this work due to the high similarity of the aqueous standards with the diluted aqueous 
samples (whose composition is mostly Nd, Pr, Fe and B dissolved in acidic media). The acid concentration 
of the standards was matched with the final acid concentration of the sample (after dilution), to eliminate 
possible matrix differences. 

The lower limit of detection (LLOD) was reported in two ways: Instrument detection limit (IDL) and 
method detection limit (MDL). The IDL refers to the smallest amount of analyte needed to obtain a signal 
significantly different from the blank in ICP OES, this limit was statistically estimated based on the standard 
deviation of 10 consecutive measurements from a blank solution  and considering the calibration 
sensitivity  at 98.3% confidence level45, such that: . The IDL values ranged from 
0.009 to 0.028 mg L-1 and were reported in Table II. Additionally, the MDL considers all dilution steps 
involved in the analytical sequence, providing the minimum detectable amount of analyte as a function 
of the sample mass. The BEC values reported in Table II are equivalent to the average value of nine 
points calculated at different levels of analyte concentration, ranging from 0.011 to 0.044 mg L-1. For all 
analytes, the concentration required to exhibit the same intensity as the background proved to be below 
the instrumental quantitation limit (IQL), this rule out possible errors induced by the background in the 
instrumental measurements within the established limits.

Table II. Instrumental analytical performance characteristics in aqueous solution

Analyte
Calibration 
sensitivitya 
(cps L mg-1)

R2 Exploited linear 
range (mg L-1)

IDL 
(mg L-1)

IQL 
(mg L-1)

BEC 
(mg L-1)

Nd 1.4(±0.3)x10-4 0.9999 10.0 – 32.5 0.022 0.073 0.011

Pr 9.3(±0.2)x10-3 0.9994 0.1 – 10.0 0.009 0.030 0.019

Fe 4.0(±0.2)x10-3 0.9983 30.0 – 57.0 0.026 0.086 0.010

B 3.1(±0.4)x10-3 0.9990 0.1 – 1.8 0.028 0.092 0.044
aSlope values with standard deviation for 10 calibration curves obtained on different days.

Table III shows MDL values for the three different sample types and these limits were below 0.07 cg g-1, 
these values fully satisfy the conditions for quantitative chemical analysis of the samples evaluated in this 
study. Eventually, if necessary, lower MDL values can be achieved by decreasing the dilution factor of the 
samples employed by this method. 

Analogously, the lower limit of quantitation (LLOQ) was reported by the instrumental quantitation limit 
(IQL), ranging from 0.030 to 0.092 mg L-1 and also by the practical quantitation limit (PQL), ranging from 
0.03 to 0.25 cg g-1. These limits refer to the lowest analyte concentration that can be measured with 
reasonable accuracy in aqueous solutions (IQL) and by the proposed method, covering all dilutions steps 
(PQL). Both, IQL and PQL, were estimated as 10/3 x IDL and MDL, respectively.

Papai, R; da Fonseca, K. T.; de Almeida, G. A.; da Silva, A. L. N.; Nagasima, T. P.; Jabes, E. G.; 
dos Santos, C. A. L.; Landgraf, F. J. G.; Luz, M. S. 
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Figure 2. Calibration curves for (a) Neodymium, (b) Praseodymium, (c) Iron and (d) Boron 
obtained in ultrapure water containing 2% w/v of nitric acid. The graphs show the intensities 
in the left y-axis and the percentage bias in the right y-axis. Vertical error bars refer to ± 1 
standard deviation of triplicate measurements (n = 3).

All analytical signals were measured in the presence of some degree of background, which can be 
originated from the emission from the plasma and also due to the detector and electronic characteristics. 
To assess the extent of this effect, the background equivalent concentration (BEC) was estimated for each 
wavelength used in analytical measurements by the following equation: , 
where  is the concentration of a standard solution,  is the emission intensity measured for the 
same standard solution and is the intensity of the blank solution. The BEC values ranging from 0.011 to 
0.044 mg L-1, reported in Table III are equivalent to the average value of nine points calculated at different 
levels of analyte concentration. For all analytes, the concentration required to exhibit the same intensity as 
the background proved to be below the instrumental quantitation limit (IQL), this rule out possible errors 
induced by the background in the instrumental measurements within the established limits. 

Table III. Figures of merit for different sample types

Sample type Analyte MDL
(cg g-1)

PQL
(cg g-1)

Mass fraction covered by 
calibration (cg g-1)

Didymium oxide
Nd 0.07 0.25 33.00 – 100.00
Pr 0.03 0.09 0.33 – 33.00

Metallic Didymium
Nd 0.07 0.25 31.25 – 100.00
Pr 0.03 0.09 0.31 – 31.25

(Nd,Pr)-Fe-B
alloy

Nd 0.03 0.09 15.00 – 48.75
Pr 0.01 0.03 0.15 – 15.00
Fe 0.05 0.17 45.00 – 85.50
B 0.04 0.13 0.15 – 2.70

Braz. J. Anal. Chem. 2022, 9 (36), pp 124–145.
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Precision
The precision of the results provided by the proposed analytical method was evaluated and improved 

in order to obtain results with the least uncertainty possible. The samples related to the production 
chain of super-magnets requires precise quantifications, especially for the REE. Uncertainties greater 
than 1 cg g-1 in the mass fraction of the neodymium or the praseodymium can strongly impact the 
performance of permanent magnets.

Despite the instrumental precision of ICP OES (estimated by successive measurements of a standard 
solution performed in the same condition and on the same day) show a low relative standard deviation 
(RSD) ranging from 0.3 to 0.7% (as seen in Table IV), the precision of the method was initially out of the 
desirable, providing mass fraction results with more than 1 cg g-1 of uncertainty for the neodymium and 
praseodymium elements. Although this uncertainty is suitable for most analytical applications, it implies 
difficulties in the strict quality control of the super-magnets. In order to reduce this uncertainty, the sample 
dilution steps applied during the execution of the method were controlled by weighing.

Traditionally, the adjusting the volume in the solutions is a routine practice in chemistry laboratories, 
being performed visually by the analyst, who has the task of controlling the amount added until the liquid 
reaches the meniscus mark in precision glassware. In this practice, the volume adjustment is subject to 
intrinsic deviations, often insignificant for chemical analysis. However, the propagation of this uncertainty 
inevitably occurs in the method. To minimize the uncertainties arising from the dissolution and dilution of 
the samples, the solutions were weighed on an analytical balance and the recorded masses were used 
to calculate the dilution factor. Although the sample treatment procedure becomes slower, due to the 
additional step of registering all the masses added for each tube, the results were more precise.

The lower uncertainties in analytes mass fraction results were reached due to the fact that the analytical 
balance is one of the most precise and accurate instruments in a chemical laboratory, reaching legibility up 
to four decimal places. Next, the control of the dilution by weighing was applied for all samples and also 
for the calibration solutions.

After minimizing the uncertainty associated with the sample preparation by weighing strategy, the 
method intermediate precision46,47 was assessed by the relative standard deviation (RSD) from the ten 
measurements of the emission intensity obtained with a specific standard solution, prepared and analysed 
on different days by different operators in different locations within the laboratory, using different calibration 
curves and the same instrument (ICP OES). The standard solution containing 42.0 mg L-1 of Nd, 1.0 mg 
L-1 of Pr, 42.0 mg L-1 of Fe and 0.8 mg L-1 of B was strategically selected to faithfully evaluate the method 
intermediate precision, since these concentrations are located in the middle of the linear ranges used for 
calibration curves of the proposed method. It is well known that precision is intrinsically associated with 
the level of analyte concentration,48 with a systematic increase in the relative standard deviation occurring 
as the analyte concentration decreases.49,50 For this reason, the evaluation of the method precision in its 
extreme conditions of the linear range may not reliably represent the expected precision for most samples, 
which ideally are located in the middle of the linear range, especially when the method is well delineated. 
The method intermediate precision values are shown in Table IV and range from 1.4 to 3.1%, showing 
acceptable RSD values, that indicate a relative ease of the method reproduction.

In addition to the method intermediate precision, the typical uncertainty obtained for each analyte in 
mass fraction results (cg g-1) was estimated based on the average of the uncertainties obtained for a 
representative set of samples (n = 80), since it is an average value, eventually some samples may deviate 
from the typical uncertainty reported in Table IV. 

So, the minimum and maximum values of uncertainty obtained with the proposed method for that 
same set of samples are also shown in Table IV. It is worth mentioning that the uncertainty values in mass 
fractions were expressed by the standard deviation obtained in triplicate (n = 3) and do not consider a 
confidence interval. Table IV summarizes the main parameters related to precision. 
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Table IV. Precision assessment to characterize the analytical method and typical values of uncertainty obtained when 
applying the proposed method in real samples

Analyte Instrumental 
Precisiona

Method intermediate 
precisionb

Mass fraction typical 
uncertaintyc (cg g-1)

Mass fraction range 
uncertaintyd (cg g-1)

Nd 0.3% 2.0% 0.20 0.03 – 0.65

Pr 0.7% 3.1% 0.07 0.01 – 0.39

Fe 0.6% 1.4% 0.69 0.02 – 2.54

B 0.6% 1.9% 0.04 0.01 – 0.20
a Relative Standard Deviation (RSD) for 10 consecutive measurements of standard solution in the same day.
b RSD for 10 measurements of standard solution in different days, by different analysts.
c Average of mass fraction uncertainty for 80 samples. Typical uncertainty obtained for samples containing 16-80 cg g-1 of Nd,
 1-26 cg g-1 of Pr, 63-70 cg g-1 of Fe and 0-2 cg g-1 of B.
d Minimum and maximum value of mass fraction uncertainty obtained in final results for 80 samples.

Accuracy
Due to the absence of super-magnet reference materials, the accuracy of the method was evaluated 

in two different ways: (i) by spike analyte and recovery test on the three different sample types and (ii) by 
the comparison of the mass fraction results obtained by proposed method with other laboratories results, 
that applied independent analytical methods to determination a same set of (Nd,Pr)-Fe-B alloy samples. 
The Table V shows the spiked value and recovery percentage of the analytes at six different concentration 
levels. As the spike was performed on the diluted sample, the sum of the analyte concentrations may 
eventually be greater than 100 cg g-1. Spikes equal to or greater than 0.50 cg g-1 exhibited acceptable 
recovery values, ranging from 96 to 104% for all elements. This recovery values attests to the accuracy 
of the method when applied to these matrices. In smaller spikes concentrations (<0.50 cg g-1), recovery 
values ranged from 90 to 140%, which indicates a difficulty of the method in distinguishing concentrations 
below 0.50 cg g-1, especially for Nd, Pr and Fe. It should be noted that the quantification of boron was an 
exception, being able to distinguish contents on the order of 0.05 cg g-1. Although some recovery values 
at 0.05 and 0.10 cg g-1 for Nd, Pr and Fe were suitable for chemical analysis, it is observed that the 
uncertainty obtained is equal to or greater than the spiked concentration value, making it impossible to 
distinguish between those levels. Better recoveries values (96 - 104%) were obtained when considering 
only spikes from 0.50 cg g-1.

For comparison purposes, three samples of (Nd,Pr)-Fe-B alloy (labelled A, B and C) with distinct 
neodymium and praseodymium content, were selected, fractionated and sent to two different chemistry 
laboratories, located in different countries, which applied independent analytical methods to determine the 
main chemical elements. The mass fraction values reported by the invited laboratories were compared with 
the values obtained from the proposed method by a hypothesis test (student t-test) at 95% of confidence 
level. Table VI shows the statistical comparison that for most determinations there was no statistically 
significant difference, this indicates a good agreement between the results from the proposed method 
and those from the invited laboratories. Small differences exist only for the guest laboratory identified by 
the number two (2) that reported the boron element with values statistically different from the others for 
samples A and C, whose calculated t-values (3.56 and 3.55, respectively) were higher than the critical 
t-value (2.78) at 95% confidence level. This small statistical difference reveals a peculiar characteristic for 
boron, whose quantification requires some additional care in relation to the other analytes.

In our laboratory, during method development, we noticed oscillations in the blank intensities for boron. 
A fact that eventually impaired the good linear adjustment of the calibration curves and could influence 
inexact quantification for this element. The intensity oscillation was investigated and was shown to be 
linked to: (i) the purging time with argon required for measurements in the UV range in our ICP OES 
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equipment and (ii) the sample introduction system, including the nebulizer, nebulization chamber and the 
connection to the base of the torch, which are materials made of borosilicate glass that can eventually 
release the boron element and introduce it into the plasma, causing oscillations in the measurement steps 
(especially if the sample contains fluoride in an acid medium). Both situations were solved by adopting two 
simple procedures, which are strongly recommended if this method is implemented in the routine of other 
laboratories: (i) a minimum of four hours purging optics with argon gas prior to ICP OES measurements 
and (ii) washing the sample introduction system with nitric acid solution (10% v/v) followed by abundant 
rinsing with deionized water before instrumental analysis. Despite this small difference for boron, the other 
results are in full agreement and demonstrate a high level of accuracy achieved with the proposed method.
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Table V. Analyte spike and recovery test in the three different sample types at six concentration levels

Sample type Spiked (cg g-1)
Neodymium Praseodymium Iron Boron

Found (cg g-1) Rec (%) Found (cg g-1) Rec (%) Found (cg g-1) Rec (%) Found (cg g-1) Rec (%)

Didymium 
oxide

0.00 61.03 ± 0.23 *** 25.04 ± 0.21 *** < MDL *** < MDL ***

0.05 61.08 ± 0.22 100 25.10 ± 0.18 120 < MDL *** 0.05 ± 0.03a 100

0.10 61.13 ± 0.25 100 25.14 ± 0.15 100 0.09 ± 0.04a 90 0.10 ± 0.02 100

0.50 61.52 ± 0.19 98 25.55 ± 0.12 102 0.49 ± 0.09 98 0.52 ± 0.04 104

1.00 62.01 ± 0.31 98 26.08 ± 0.16 104 1.00 ± 0.15 100 0.99 ± 0.03 99

1.50 62.55 ± 0.23 101 26.56 ± 0.22 101 1.49 ± 0.30 99 1.47 ± 0.12 98

2.00 62.99 ± 0.26 98 27.05 ± 0.20 101 1.96 ± 0.48 98 2.02 ± 0.05 101

Metallic 
didymium

0.00 78.22 ± 0.33 *** 22.41 ± 0.12 *** < MDL *** < MDL ***

0.05 78.28 ± 0.32 120 22.47 ± 0.11 120 < MDL *** 0.05 ± 0.02a 100

0.10 78.33 ± 0.35 110 22.53 ± 0.11 120 0.09 ± 0.05a 90 0.10 ± 0.01 100

0.50 78.74 ± 0.28 104 22.91 ± 0.16 100 0.48 ± 0.09 96 0.51 ± 0.03 102

1.00 79.23 ± 0.22 101 23.44 ± 0.08 103 0.98 ± 0.12 98 1.01 ± 0.02 101

1.50 79.75 ± 0.37 102 23.91 ± 0.22 100 1.53 ± 0.47 102 1.53 ± 0.07 102

2.00 80.21 ± 0.34 99 24.43 ± 0.13 101 1.94 ± 0.57 97 1.98 ± 0.04 99

(Nd,Pr)-Fe-B 
alloyb

0.00 24.29 ± 0.07 *** 6.59 ± 0.13 *** 69.62 ± 0.83 *** 1.07 ± 0.02 ***

0.05 24.34 ± 0.12 100 6.65 ± 0.03 120 69.69 ± 0.85 140 1.12 ± 0.01 100

0.10 24.40 ± 0.10 110 6.70 ± 0.13 110 69.74 ± 0.94 120 1.17 ± 0.01 100

0.50 24.78 ± 0.15 98 7.07 ± 0.14 96 70.14 ± 1.32 104 1.55 ± 0.09 96

1.00 25.31 ± 0.13 102 7.62 ± 0.17 103 70.63 ± 0.97 101 2.06 ± 0.03 99

1.50 25.77 ± 0.20 99 8.12 ± 0.16 102 71.16 ± 0.66 103 2.55 ± 0.02 99

2.00 26.33 ± 0.16 102 8.63 ± 0.19 102 71.59 ± 1.05 98 3.11 ± 0.05 102

aMass fraction value between MDL and PQL (MDL<x<PQL).
bSample analysed by different laboratories, shown in Table VI as “Sample C”.
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Table VI. Comparison of (Nd,Pr)-Fe-B alloy sample determinations and the conclusion of the student t-test at 95% confidence level

Mass fraction (cg g-1) Comparison

Sample Element Guest 
Laboratory 1a

Guest 
Laboratory 2b

Proposed 
Methodc

Student t-test Statistically differentd

(t critical = 2.78) Agreementf (%)

LAB 1 LAB 2 LAB 1 LAB 2

A

Nd 17.6 ± 0.9 17.2 ± 0.8 17.3 ± 0.3 0.55 0.20 Not Not 102 99

Pr 13.7 ± 0.7 14.0 ± 0.7 14.2 ± 0.4 1.07 0.43 Not Not 96 99

Fe 66.9 ± 3.3 not rated 67.0 ± 1.0 0.05 *** Not *** 100 ***

B 1.20 ± 0.06 1.04 ± 0.05 1.16 ± 0.03 1.03 3.56 Not Yes 103 90

B

Nd 30.4 ± 1.5 30.4 ± 1.6 29.3 ± 0.3 1.25 1.17 Not Not 104 104

Pr < 0.4e 0.08 ± 0.01 0.07 ± 0.02 1.43 0.77 Not Not *** 114

Fe 68.0 ± 3.4 not rated 68.4 ± 1.7 0.18 *** Not *** 99 ***

B 1.10 ± 0.06 1.03 ± 0.05 1.03 ± 0.02 1.92 0.00 Not Not 107 100

C

Nd 24.5 ± 1.2 24.5 ± 1.2 24.3 ± 1.3 0.20 0.20 Not Not 101 101

Pr 6.4 ± 0.3 6.3 ± 0.3 6.6 ± 0.4 0.69 1.04 Not Not 97 95

Fe 67.5 ± 3.3 not rated 69.6 ± 5.1 0.60 *** Not *** 97 ***

B 1.10 ± 0.06 0.91 ± 0.05 1.07 ± 0.06 0.61 3.55 Not Yes 103 85
aReported values based on ICP OES measurements.
bReported values based on ICP-MS measurements, employing quadrupole as mass analyser.
cMass fraction values reported by proposed method include the confidence interval with 5% of significance level.
dHypothesis test: If t calculated > t critical, values are statistically different.
eReported values < x, were considered x ± x for the student t-test calculation, ranging from non-existent in the sample (zero concentration) up to double the reported minimum 
detectable concentration limit.
fAgreement calculated by (Guest laboratory result / Proposed method result) 100
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Foreign elements
Foreign chemical elements can be added to metal alloys to improve some specific characteristics 

for the application of permanent magnets,51 for example: Dysprosium (Dy) is usually added to the alloy 
composition aiming to increases the intrinsic coercivity at higher temperatures.33 Other chemical elements 
can be added to the super-magnets such as: Nb,51 Ce,52,53 Tb,54 Ga,55,56 Co,57 Cu,53,58 La,52 Al,58 among 
others. Usually, such elements have a low concentration, not exceeding 5 cg g-1. As they have a different 
chemical nature from the analytes, it is possible that the foreign elements may interfere with the proposed 
analytical method. To assess the applicability of the proposed analytical method in the presence of foreign 
elements, mono-elemental standard solutions of 35 distinct chemical elements were analysed by ICP 
OES and the respective impacts on the analytical signals for the quantification of Nd, Pr, Fe and B were 
evaluated. The relative calibration sensitivity achieved for each foreign element at the monitored analytical 
lines (401.225, 414.311, 259.837 and 249.678 nm) is shown in Figure 3. The interference bias percentage 
values expressed in this figure correspond to the ratio between calibration sensitivity of foreign element 
and the calibration sensitivity of the analyte. As an example, a value of +10% interference bias caused by 
a foreign element in a given analyte makes each 1 cg g-1 of the foreign element in the sample induces an 
error of about +0.1 cg g-1 in the analyte quantification.

According to the results of Figure 3, the main interfering chemical elements in the neodymium quantification 
were: Cerium (+30.4%), europium (-6.4%), titanium (+2.9%), lutetium (+1.0 %) and samarium (-0.9%). In 
these specific cases of interference, alternative wavelengths can be used to quantify neodymium correctly, 
such as: 415.608 nm (good alternative to eliminate spectral interferences from Eu, Sm and Lu) or 406.109 
nm (more suitable wavelength in the presence of cerium and titanium). 

The determination of praseodymium was affected when present in the sample: Dysprosium (+13.5%), 
molybdenum (-6.3%), terbium (-2.5%) and niobium (+1.3%), with alternatives for a reliable measurement 
of praseodymium at 422.293 nm (aiming to eliminate the interferences from Dy and Mo) or at 422.535 nm 
(excellent to avoid spectral interference from Tb and Nb).

The iron characteristic wavelength (259.837 nm) can suffer interference from tantalum (+1.8%) and gold 
(+1.3%), a possible line free from these interferences corresponds to 238.204 nm. However, it is worth 
mentioning that in metallic alloys the impact of interference in the quantification of iron will be minimal, 
since iron is normally a component present in high concentrations in metallic alloys, being considered the 
“diluent” of the alloys, reaching concentrations of up to 70 cg g-1, and in this concentration level the error 
induced by the spectral interference will not be significant.

In the interference evaluation, the quantification of boron was affected only by hafnium (-1.4%). In this 
case, a plausible alternative consists in measure boron at 182.641 nm. The other elements (Al, Ca, Co, Cr, 
Cu, Er, Ga, Gd, Ho, K, La, Li, Mg, Mn, Nb, Pb, Sc, Si, Sn, Tm, V, Yb, Zn and Zr) did not exhibit significant 
interference and therefore do not affect the applicability of this proposed analytical method.

Any spectral interferences that result in a negative bias are explained by optical emissions in regions 
close to those selected for the background calculation. Similarly, the interferences that result in a positive 
bias come from optical emissions that occur close to the central pixel.
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Figure 3. Interference chart showing the impact of 
foreign chemical elements in the calibration sensitivity 
of Nd, Pr, Fe and B in the proposed analytical method. 
The interference bias percentage value was calculated 
by the calibration sensitivity of the foreign element 
(estimated from two concentrations: 1 and 10 mg L-1) 
divided by calibration sensitivity of the analyte.

Comparative analytical methods, advantages and drawbacks
Determinations of Nd, Pr, Fe and B in the samples related to the production chain of the permanent 

magnets have been explored by places that contain natural reserves of rare earth elements and that 
consequently dominate the production technology of super-magnets. The main publications related to 
this topic are concentrated in China, a country that exploits rare earth elements. Although many studies 
use chemical analysis to characterize samples related to the production process of super-magnets, few 
articles detail the methods and its figures of merit, parameters that are essential to compare and select 
an appropriate analytical method. Therefore, the scarcity of studies dedicated to the rigorous chemical 
analysis of these materials in the scientific literature hinders the comparison with other analytical methods. 
In this section, the proposed method was compared with another analytical methods that have at least one 
similar matrix or similar analytes that demonstrate a rigorous development. A summary comparison of the 
methods is shown in Table VII.

Two different studies stand out for minimizing sample preparation, proposing a direct analysis of 
magnets in hard disk devices (HD) by WD-XRF59 and LIBS.60 Although such methods have indisputable 
advantages when compared to the proposed method in this paper (that requires sample dissolution), the 
quantification of Nd by WD-XRF shown interference from Pr.59 Such interference was not a problem in the 
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samples evaluated in the mentioned study, since the concentrations of Pr were lower than the 5 cg g-1,59 
but this is a different reality from that found in the samples related to the production process of didymium 
magnets, whose levels of Pr reached up to 25 cg g-1. Therefore, the interference is a problem of that could 
lead to inadequate results when applied to didymium samples. In addition, both mentioned studies needed 
to know reference values of the analytes in samples for a suitable calibration, requiring to quantify the 
elements from the dissolved samples by ICP OES.59,60

The elemental analysis in HD magnets by ICP OES was proposed by Castro et al.61 This important 
work reports, for the first time, a detailed method of chemical analysis of magnets by wet dissolution, with 
other conditions. When compared, the current work stands out: (i) for the application in different types of 
samples, (ii) for the rigorous studies of precision and accuracy and (iii) for the study of interference that 
allows a wide scope of application of this method. Differentials that highlight this work as an important 
reference in the scientific literature, establishing a standard method for the chemical analysis of magnets 
composed of neodymium and praseodymium.

Proposed by Papai et al. 3 the determination of Nd and Pr was successfully performed in samples of 
metallic didymium and (Nd, Pr)-Fe-B alloy, standing out for employing low resolution atomic emission 
spectrometry with a flame composed of acetylene/nitrous oxide and a mathematical approach to solve the 
spectral interferences. Although this method uses a more accessible spectrometer and less expensive cost 
of analysis when compared to the proposed method in this paper, it has a greater susceptibility to spectral 
interference from other elements, requiring mono-elemental calibrations and a suitable mathematical 
approach before providing the results. Furthermore, only the quantification of the elements Nd and Pr is 
performed, in contrast to the simultaneous quantification of four elements (Nd, Pr, Fe, B) in the proposed 
method.

Thus, the main advantages of the proposed method are: (i) simultaneous determination of Nd, Pr, Fe 
and B; (ii) versatility for application in different sample types related to the production process of super-
magnets; (iii) high reliability of the results; (iv) low susceptibility to spectral interferences with alternatives 
to avoid them completely and (v) low uncertainties provided by triplicate (n = 3).

The main drawbacks to this method are: (i) the need to dissolve samples in an acid medium, whereas 
a faster quantification could be obtained by direct analysis of solids techniques; (ii) cost of analysis, since 
the consumption of argon has a significant impact on the laboratory’s budget and (iii) the need to weigh 
all dilution steps, which requires more time from the analyst. Despite these drawbacks, the method clearly 
meets the needs for strict chemical quality control.
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Table VII. Comparison of the current method with others reported in the scientific literature

Analytes Sample type Instrumental 
technique

Sample 
treatment Advantages Drawbacks Ref.

Nd and Pr (Nd,Pr)-Fe-B alloy
Metallic Didymium

F AESa Acidic dissolution
(HNO3 and HCl)

*Accessible spectrometer;
*Low-cost;
*Fast analysis

*Susceptibility to spectral interference;
*Need unusual math approach to
 quantify

(3)

Nd Hard Disk magnets WD-XRFb None or minimal *Direct solid analysis;
*Non-destructive;
*Fast analysis;

*Subject to Pr interference; (59)

Nd, Pr, Fe, B and 
others

Hard Disk magnets LIBSc None or minimal *Direct solid analysis;
*Fast acquisition of complete  spectra;

*Calibration (need for samples
  with known reference values)

(60)

Nd, Pr, Fe, B and 
others

Hard Disk magnets ICP OES Acidic dissolution 
(HNO3 and HCl)

*Simultaneous determination *Need sample dissolution;
*Cost of analysis;

(61)

Nd, Pr, Fe and B (Nd,Pr)-Fe-B alloy
Metallic Didymium
Didymium oxide

ICP OES Acidic dissolution
(HNO3 and HCl)

*Simultaneous determination;
*High reliability;
*Strict and high precision results
 guaranteed
*Low susceptibility to spectral
 interferences;
*Foreign elements evaluation;

*Need sample dissolution;
*Cost of analysis;

This 
work

aFlame Atomic Emission Spectrometry
bWavelength dispersive X-ray Fluorescence
cLaser-Induced Breakdown Spectrometry

Chemical Characterization in the Production Chain of Permanent Magnets by Inductively Coupled Plasma Optical 
Emission Spectrometry (ICP OES) – Precise Quantification of Nd, Pr, Fe and B in Super-Magnets Samples



141

CONCLUSIONS AND OUTLOOKS
The proposed method provided high precision results, with good accuracy and fulfilled the purpose 

of the strict quality control of the permanent magnets materials, solving the pressing need to distinguish 
neodymium and praseodymium concentrations in less than 1 cg g-1. 

The control of the dilution steps by weighing proved to be essential to achieve the low values of 
uncertainty reported in Table IV. Despite the weighing procedure adding an additional step in the 
proposed analytical method, that requires the most time from the analyst, this characteristic should not be 
considered a resistance to routine implementation, since there is a significant gain in improving precision 
and consequently reliability. This gain in reliability is associated with an improvement in the quality and 
performance of the final products since the chemical control throughout the production process impacts 
and guides the production routes to obtain materials within the required specifications.

The method was shown to be versatile, being easily applicable to at least three different sample types 
(didymium oxide, metallic didymium and (Nd,Pr)-Fe-B alloys). 

The analytical method proved to be robust with few potentially interfering foreign elements. In the 
few verified cases of possible interference, alternative wavelengths have been suggested that eliminate 
spectral interferences.

As a perspective, this reported method paves the way for the production of standard materials to be 
applied in other instrumental techniques aimed at direct analysis of solids.
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