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Abstract—In order to analyze the thermal blooming on wireless
power transmission and remote recharge of batteries this study
proposes a coupled numerical solution. The Navier-Stokes, energy
and paraxial equations to the laser beam propagation through
the atmosphere are solved by artificial compressibility and
pseudo-spectral methods. Changes in the refractive index due to
asymmetric temperature variations are the cause of this optical
phenomenon. Numerical results are compared with reference
studies and a good agreement is obtained. The conditions: laser
beam, power density and absorptivity are constants; flow regime
of Re = 1000, Ri = 10.e4, laser wavenumber k = 10.e5, and
Stanton number St =

1

30
.

Index Terms—thermal blooming, refractive index, paraxial
equation, pseudo-spectral, artificial compressibility

I. INTRODUCTION

Nowadays, the achievement of average power levels, on
the order of multi kilowatts, of the silica optical fiber lasers,
doped with rare earth ions, in particular the Y b3+ fiber
laser, many technological applications have begun to show
feasible. For example: medical surgeries, rock drilling, remote
cloud sensing, radio astronomy, radio communication in space,
satellite communication, wireless power transmission, remote
laser communications, and lasers used to recharge batteries
remotely. So, some of these applications are required an inves-
tigation of phenomena related to the atmospheric propagation
of the laser beam [1], [2], [3] e [4]. Some recently researches
started to model numerical solutions which the velocity field
is a dynamic variable [5], in contrast with previews studies in
that the fluid velocity had were prescribed [6], [7].

The effect known as thermal blooming occurs when a laser
beam propagates through an absorbing medium. Although the
absorption effect of the medium is very small, when the fluid
is air, a change in the temperature and density fields in the
vicinity of this laser beam is promoted. This temperature
change induces a change in the refractive index and, with that,

there is a loss of focus of the laser beam [6], [8]. The effect of
thermal blooming has been discussed since the power of lasers
became high enough to heat the medium, and the relevance of
the phenomenon grows proportionally with increasing lasers
power [9], [10] e [11].

In this work, the atmospheric effects on the propagation of
high energy laser (HEL) will be conducted with emphasis on
the heat generated due to the interaction of the laser beam and
the consequent change in the refractive index [12].The scale
of wavelengths and the distance of beam propagation differ
by many orders of magnitude. So, the approach for the beam
propagation will be done by using paraxial equation, [13],
[14] like a envelope equation in axial direction. In order to
include effects from the atmosphere the two dimensional un-
compressible Navier-Stokes (N-S) equations will be used. The
methodology to obtain the induced convection is the numerical
solution of N-S equations in transversal direction with the
method knowledge as artificial compressibility, first proposed
by [15]. The laser beam propagation in axial direction will
be described using spectral methods [16], such as fast Fourier
transform (FFT) [17]. As a result, the “solver” will be a set of
coupled N-S and wave paraxial equations and the Boussinesq
approximation, to relate the dependence of the refractive index
with the fluid temperature and velocity variations. The model
in this work is based on the assumption that laser beam is
the only source of energy in the environment, and it is large
enough to neglect wind shear interference or air temperature
fluctuations. But this power does not have the capability to
change the properties of air at the molecular level.

This work is organized as follows: The first section is pre-
sented the formulation of the coupled beam and atmospheric
dynamics; second section is presented the numerical methods;
third section is shown simulations results. Finally, the last
section presents few considerations on the results and the
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expectation of future works.

II. FORMULATION

In this section, it is presented the set of coupled wave
paraxial and N-S equations which governs the propagation of
the laser beam. The correlation between temperature T and
refractive index η is done by the Boussinesq approximation
for ideal gases (1) and Gladstone-Dale (2).

ρ1
ρ0

=
T1

T0
(1)

η1 = (η0 − 1)
ρ1
ρ0

(2)

where ρ is the density, η0 is the mean refractive index, η1 is
the correction of refractive index, T0 is the mean temperature,
T1 is the correction of temperature.

Equations (1) and (2) are used to update refractive index
in (3). The solution of paraxial equation is done by using
the pseudo-spectral method. The core of this solution is the
phase change in V , the electric field potential, across the axial
direction. (

2ikη0
∂

∂z
−∇2 + 2η0η1k

2

)
V = 0 (3)

where, k is the wave-number in axial direction z. This equa-
tion has been numerically solved using the pseudo-spectral
methods [18], [19].

These updates in V are then considered in the set of N-S
equations to obtain the variables of fluid dynamics in trans-
verse directions x and y. Hence, the only variable prescript in
this model is the shape of the initial beam profile at z = 0:

V (x, y, z = 0, t) = e−(x2+y2) (4)

The set of equations that governs the fluid dynamics nor-
mally used in the literature is divided into groups characterized
by the consideration of viscosity and compressibility in the
phenomena of interest. One explanation of this division is the
change in the mathematical character of the equations. In the
case of compressibility, the compressible flow equations are
hyperbolic. On the other hand, incompressible N-S equations
have a mixed parabolic-elliptical character. This difference
is a consequence of the absence of a time derivative term
in the incompressible continuity equation. The core of the
artificial compressibility method is to change the character
of incompressible equations by including a time derivative
pressure term with an artificial compressibility parameter [20].
This term at convergence is zero so the solution satisfies
the incompressible equations. This approach was proposed by
[15].

The artificial compressible unsteady N-S equations in the
non-dimensional write:

1
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where u, v, P and T are the velocity in direction x, the
velocity in direction y, scalar pressure and temperature fields,
respectively.

As explained before, (5) has added the time derivative term
of pressure in time scale τ , which is the pseudo-time and
the parameter γ, which is the artificial compressibility. As a
consequence, (6), (7) e (8) have two time derivative terms,
one in the pseudo-time τ another in the time characteristic
t. Where the numbers non-dimensional are: Reynolds (Re),
Peclet (Pe), Richardson (Ri) and Stanton (St):

Re = UL
ν Pe = UL

µ Ri = gL
U2 St =

βV 2
0 L

UT0

where, U is the velocity characteristic, L the lengthscale
characteristic, β the absorbivity, t = L

U the time characteristic,
T0 the temperature characteristic, V0 beam intensity scale, g
gravity, ν the kinematic viscosity, µ the thermal diffusivity,
the characteristic pressure P0 = ρ0U

2.

III. SIMULATION SETUP

In order to obtain the numerical solutions of (5), (6), (7)
e (8) in the time domain the fluid dynamics equations are
solved in the transverse direction discretize in slices along the
axial axis. To obtain a numerical solution for this system, the
central finite differences technique was used to discretize the
derivatives terms. The methodology for solving the system of
equations was the artificial compressibility method. The basic
idea of such method is to make the numerical iterations divided
into two cycles. The first is to make the terms of the pseudo-
time derivatives converge to zero and then use the results to
obtain the next physical time of the N-S system.

A fourth-order Runge-Kutta scheme was used to obtain the
solution on the scale of the pseudo-time. The parameter of
numerical stability follows: to artificial compressibility [21],
pseudo time discretization [22], physical time discretization
[15] and spatial discretization.

After each interpolation, we use the fields of temperature do
update refractive index, considering (1) e (2). Afterwards, the
paraxial equation is solved in the pseudo spectral domain using
FFT algorithm [17]. As a result, the laser beam amplitude
update is obtained along the axial axis, with the update in η1
as described in section II and the wave-number in the axial
direction k = 105. A scheme of this system is showed in
Fig. 1. The slices represent the points in axial direction where



the two dimensional N-S system is solved in the transverse
direction, between these slices this model applies the paraxial
equation with the update of the refractive index using the
interpolation of temperature fields from the slices.

Fig. 1. Scheme of laser beam. The fluid is evolved according to N-S (5) - (8).
The wave paraxial equation (3) is coupled by refractive index and Gladstone-
Dale relationship (2). The beam deformation is due to differences in refractive
index.

The simulations of N-S are developed considering a two-
dimensional computational rectangular domain, (x, y) ∈
(−2π, 2π) × (−2π, 2π). The boundary conditions related to
the computational domain are periodic to all components
u, v, P, T . The initial conditions are the laser beam (4),
temperature is initialized as T (x, y, z, 0) = 0 and velocity
is initialized as u(x, y, z, 0) = 0 e v(x, y, z, 0) = 0. A
staggered grid arrangement was implemented according to
Fig. 2, the velocity components are located at points midway
between the main grid nodes on the main node interfaces, the
temperature components are located on the main grid nodes
and the pressure components are located on the central of the
volume limited by the main node interfaces.

For the grid, a two-dimensional isotropic mesh with a
rectangular domain was used. The domain size was kept in
a fixed non-dimensional space step of h = 0.09 and a non-
dimensional fixed time step ∆t = 8× 10−4 was used.

Fig. 2. Staggered Grid. Where the mesh components: blue arrows, red arrows,
black dots and yellow squares are velocity u, velocity v, scalar pressure P
and Temperature T

IV. NUMERICAL RESULTS

First, the set of non-dimensional numbers Re, Pe, Ri and
St were kept fixed to analyze the numerical solution provided
by the model in the development of the laser beam shape over
time. As it is possible to see in (8), the Stanton number is
the term responsible to couple the data from paraxial equation
(3) with the set of Fluid-Dynamics. So it represents the power
of the laser. As well the Richardson number represents the
relation between natural convection and forced convection. In
this simulation the set of dimensionless numbers utilized was
Re = 1000, Pe = 1000, Ri = 10.e4 and St = 1

30 . For Fig. 3

to 5 the temperature fluctuations are reported in dimensional
unit, degrees kelvin, η0 = 1.0003, T0 = 300k

Experiments since the 1970s have shown that, without wind,
the crescent-shaped pattern is observed, but with a downward
shift and a qualitative proof of how the distortion of the laser
beam is caused by natural convection, [23]. This simulation
used (3) and (5) to (8), with quiescent initial conditions and
the laser beam profile give by (4). In the Fig. 3 is possible to
see the temperature field starting to be developed (Fig. 3a), so
the changes in the refractive index are small, as a result the
distribution for the laser beam intensity is almost the same as
the initial conditions, Fig. 3b.

(a)

(b)
Fig. 3. Temperature fluctuations T (x, y, z = 150, t = 0.12) (a) and laser
beam intensity |V |(x, y, z = 150, t = 0.12) (b). For these simulations Re =
1000, Pe = 1000, Ri = 10.e4 and St = 1

30
, the temperature fluctuations

are reported in dimensional unit, degrees kelvin, η0 = 1.0003, T0 = 300k.

As the time progress, the forced convection due the warmer
of fluid by the laser beam, started to create vortices which
changed the radial symmetry of the temperature field, Fig. 4a,
and the effects of the heating of the fluid make the change
in the refractive index more significant, as consequence the
shape in the laser beam intensity started to be changed, Fig.
4b.



(a)

(b)
Fig. 4. Temperature fluctuations T (x, y, z = 300, t = 0.24) (a) and laser
beam intensity |V |(x, y, z = 300, t = 0.24) (b). For these simulations Re =
1000, Pe = 1000, Ri = 10.e4 and St = 1

30
, the temperature fluctuations

are reported in dimensional unit, degrees kelvin, η0 = 1.0003, T0 = 300k.

When the asymmetry of the temperature field is evident,
Fig. 5a, the deformation of the laser beam intensity creates a
crescent spread in the direction of forced convection, Fig.5b.

As expected, it is possible to observe in Fig. 5 how the
numerical solution of this work represents the results obtained
in the experiments, the effects of fluid heating and, as a
consequence, the deformation of the laser beam. Over time,
the fluid heats up and rises, and as a result, the beam deforms
due to the resulting asymmetry in the refractive index. With
the evolution of time, this effect is accentuated, promoting a
distribution of the temperature field closer to the shape of a
mushroom.

(a)

(b)
Fig. 5. Temperature fluctuations T (x, y, z = 497, t = 0.4) (a) and laser
beam intensity |V |(x, y, z = 497, t = 0.4) (b). For these simulations Re =
1000, Pe = 1000, Ri = 10.e4 and St = 1

30
, the temperature fluctuations

are reported in dimensional unit, degrees kelvin, η0 = 1.0003, T0 = 300k.

CONCLUSION

A numerical analysis of a gaussian laser beam atmospheric
propagation was carried out. The thermal blooming effect was
observed as the time evolved due to the effects of fluid heating
and the consequent asymmetry of refractive index. Further
improvement is being developed in the model to evaluate the
effect of optical scintillation.
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