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Abstract—An analytical formulation and modeling of an op-
tical fiber Bragg gratings has been developed and is reported
in this paper. Supported by the Finite-Difference Time-Domain
(FDTD) method, it was possible to set a 1018 nm bragg grating
and simulate an electromagnetic field going through this periodic
refractive-index device to obtain reflectivity, transmittivity, and
bandwidth. Moreover, the model is applied to analyze the
influence of structural parameters of fiber gratings, such as
length, grating period, and refractive index modulation on its
spectral response.

Index Terms—Fiber Bragg Grating, FDTD, reflectivity

I. INTRODUCTION

Fiber Bragg gratings are an emerging technology used in
several segments of industry, telecommunication, sensors, and
optical fiber lasers. It is a class of devices based on a periodic
modulation of the core refractive index along the length of an
optical fiber. This periodic structure acts as a selective mirror
for the wavelength that satisfies the Bragg condition [1].

The FDTD method is an effective and versatile technique to
simulate electromagnetic field propagation through an optical
fiber. This method is based on Yee’s cell, which apply finite
difference operators on staggered grids in space and time
for each electric and magnetic vector field component in
Maxwell’s curl equations [2]. Although it solves the problem
in time, it can provide frequency-domain responses over a wide
band using Fourier transform.

Therefore, an analytical formulation and a MATLAB simu-
lation of an accurate selection of setting parameters have been
developed and presented in this paper. In addiction, it was
created a simulation with different grating lengths to compare
the relation between the structural Bragg gratings parameters
and its spectral responses.

II. THEORETICAL MODEL

The formalism of wave propagation in FBGs is presented
by Maxwell’s time-domain equations [3]:

∇⃗ × E⃗ = −∂B⃗

∂t
(1)

∇⃗ × H⃗ =
∂D⃗

∂t
(2)

where E⃗ and H⃗ are the electric and magnetic fields, respec-
tively, D⃗ is the electric displacement, and B⃗ is the magnetic
flux density. The constitutive relations for linear, isotropic, and
nondispersive materials can be written as

D⃗ = ε0εrE⃗ (3)

B⃗ = µ0H⃗ (4)

where µ0 is the magnetic permeability, ε0 is the electric
permittivity, and εr is the perturbation permittivity. Solving
the Eqs. (1) and (2):
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where [µ] and [ε] represent the spatial distribution of perme-
ability and permittivity.

The system of six coupled partial differential equations
given by Eqs. (5) and (6) forms the basis of the FDTD
numerical algorithm for electromagnetic wave interactions
with general three-dimensional objects. However, it is pos-
sible to consider simplifications to two-dimensional or one-
dimensional wave phenomena and can yield insight to the
analytical and algorithmic features of general case.
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An algorithm to set of finite-difference equations for the
time-dependent Maxwell’s curl equations system was proposed
by Yee [4]. The electric and magnetic field components are
sampled and can be represented in discrete form, both in space
and time. As shown in Fig. 1, the FDTD technique splits the
three-dimensional problem geometry into cells to form a grid,
where the unit cell of this grid is called a Yee cell.

Fig. 1. A three-dimensional FDTD computational space composed of (Nx×
Ny ×Nz).

The electric and magnetic fields vector components are
set at the edges and centers of the face of the Yee cell,
respectively. This provides a simple picture of three dimen-
sional space being filled by an interlinked array of Faraday’s
and Ampere’s laws contours. The material parameters are
distributed over the FDTD grid and are associated with field
components. Therefore, they are indexed the same as their
respective field components.

The discretisation in space is performed based on the unit
cell of the Yee space and the discretisation in time is obtained
following the leapfrog arrangement [5]. In this way, a set of
discretized equations in space (i-index) and in time (n-index)
are obtained.
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where the terms Mµ,k and Mε,k are defined according to Eqs.
(19) and (20), and the k index is a general representation for
the x, y and z dimensions.

Mµ,k =
∆t

[µ]∆k
(19)

Mε,k =
∆t

[ε]∆k
(20)

In order to analyze the Bragg gratings reflectivity and
transmittivity features, let us further assume that either the
electromagnetic and magnetic fields are propagating in z-
direction and that the periodic refractive index modulation in
the fibers occurs along the longitudinal direction. Considering
the refractive index doesn’t change in the fiber transversal
direction, it is possible to reduce the problem in a one-
dimensional problem, consequently, we assume that all partial
derivatives field with respect to both x and y are zero and
that the propagation through Bragg grating can be written in
function of the index refraction modulation represented by [ε]
properly modeled for the periodic case.

Reducing to one-dimensional problem, the Eqs. (13) to (18)
can be rewritten as:

Hx|n+1
i = Hx|ni +Mµ,z

(
Ey|ni+1 − Ey|ni

)
(21)

Ey|n+1
i = Ey|ni +Mε,z
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i

)
(22)

An important issue in designing a time-domain numerical
algorithm is the stability condition. The choice of the periodic
of sampling ∆t and ∆z must comply with some restric-
tions to guarantee the stability of the solution. The correct
choice of these parameters determines the solution accuracy.
The numerical stability of FDTD method need to obey the
Courrant-Friedrichs-Lewy (CFL) condition, which requires the
time increment ∆t has an specific bound relative to the lattice
space increments, such that [6].

∆t ≤ 1

c
√

1
(∆x)2 + 1

(∆y)2 + 1
(∆z)2

(23)

where c is the speed of light in free space. In one-dimensional
problem it reduces to

∆t ≤ ∆z

c
(24)

The Fast Fourier Transform (FFT) of both the incident
and the reflected time-domain responses was performed in
the calculation of the reflection coefficient. It is possible to
calculate the FFT to discrete points using the expression [5]

F (f) ≈ ∆t

M∑
m=1

(e−i2πf∆t)m.f(m) (25)

where K = e−i2πf∆t is the kernel and can be computed to
the main FDTD loop for each frequency of interest and f(m)
is the field value of interest at the current time step.

To calculate the coefficients R(f) and T (f), which rep-
resent the reflectivity and transmittivity responses of FBG,
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the spectra must be normalized, that is done by dividing the
reflection and transmission spectrum by the source spectrum,
according to Eqs. (26) and (27).

R(f) =

(
FFT (Er)

FFT (Es)

)2

(26)

T (f) =

(
FFT (Et)

FFT (Es)

)2

(27)

where Er, Et, and Es represent the reflected, transmitted, and
source electric fields, respectively. The bandwidth ∆λ, can be
defined as the first zero on either side of the main reflection
peak. Consequently, it may be calculated graphically or by
finding the zeros between the peak of reflection spectrum [1].

III. RESULTS AND DISCUSSION

The algorithm was built according to flowchart represented
in Fig. 2. The waveguide comprises a linear dielectric material
core refractive index neff = 1.45 and a periodic modulation
along z-direction δn = 0.05. It was considered a uniform FBG
with wavelength is λB = 1018nm. Considering the Bragg
condition, where λB = 2neffΛ, it is possible to calculate the
period of gratings Λ = 351.03nm. The grating length can be
calculated multiplying the number of gratings by the period.

Fig. 2. Flowchart of FDTD algorithm implementation.

Firstly, it was calculated the reflectivity spectrum to the
same parameters using the FTDT and the 4-th order Runge-
Kutta method. Analyzing the Fig. 3, it is possible to observe
that the spectrum is quite similar using the both methods.
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Fig. 3. Comparison between 4th-order-Runge-Kutta method and FDTD
method. The red points represent the Runge-Kutta solution and the blue line
represents the FDTD solution to 30 gratings.

In addiction, it was possible to calculate the reflectivity and
transmittivity spectrum peak when the number of gratings are
changed. The spectral responses with grid numbers ranging
from 10, 20 and 30 were selected and plotted. Figs. 4 and 5
show the variation of reflectivity and transmittivity spectrum,
respectively.
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Fig. 4. Variation of the reflectivity coefficient for three different values of
number of periods. It is possible to see that the greater is the gratings number,
the stronger is the reflectivity.
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Fig. 5. Variation of the transmittivity coefficient for three different values of
number of periods. It is possible to see that the greater is the gratings number,
the weaker is the transmittivity.
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In order to simulate the two-dimensional problem, it is
possible to assume that partial derivatives field with respect
to y is zero and the index refraction modulation represented
by [ε] can be written as a matrix 2 × 2. The permittivity
matrix was modeled considering the periodic refractive index
modulation, so that it has the same z-grid and it is filled
considering the perfect match with the period of the gratings.
Fig. 6 shows a schematic diagram that represents the two-
dimensional approach.

Fig. 6. Schematic diagram of fiber Bragg grating used in two-dimensional
problem.

A Gaussian wave source was propagated along the z-
direction and going through the gratings during 2.7497 ×
10−13s. Considering the two-dimensional structure, where the
gratings were built to reflect 1018 nm with N = 10, it was
possible to select a simulation frame represented by Fig. 6.
It is noticed that when the wave propagation arrives at FBG
position, it is partially reflected.
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Fig. 7. Two-dimensional 1018nm FBG simulation to 10 gratings periods.

IV. CONCLUSION

The analytical formulation and simulation of FBG is an
essential step for projecting and manufacturing these devices.
An analysis of periodic structure has been presented using one-
dimensional FDTD code to calculate the spectrum responses
of reflectivity and transmittivity. Moreover, a two-dimensional
algorithm to simulate the electromagnetic field propagation
along an optical fiber has been shown.

As shown in the results, it is an effective method to simulate
wave propagation in periodic refractive index devices. This
method can be exploited in order to build a three-dimensional

simulation considering as many parameters as necessary to the
project.
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