$\begin{array}{c} Preparação \ e \ caracterização \ do \ La_{1+x}Sr_{1-x}Ga_3O_{7+\delta} \ por \ complexação \ de \\ cátions \end{array}$

$(Preparation and characterization of La_{1+x}Sr_{1-x}Ga_3O_{7+\delta} \ by \ cation \ complexation)$

L. A. Carvalho¹; E. N. S. Muccillo¹

¹Centro de Ciência e Tecnologia de Materiais - Instituto de Pesquisas Energéticas e Nucleares Av. Prof. Lineu Prestes, 2242, Cidade Universitária, 05508-000, S. Paulo, SP e-mail: oalmeidacarvalho@gmail.com

Resumo

Compostos à base de galato de lantânio contendo estrôncio, $La_{1+x}Sr_{1-x}Ga_3O_{7+\delta}$ (LSG), com estrutura cristalina tipo melilita apresentam comportamento elétrico distinto dependendo da estequiometria do lantânio. Para x=0 o LSG puro tem comportamento isolante, enquanto que para maiores valores de x e até 0,6 torna-se um condutor iônico, com valores de condutividade próximos ao do galato de lantânio dopado com estrôncio e magnésio. Neste trabalho, o LSG (x=0 e 0,55) foi sintetizado pelo método de complexação de cátions visando obter um material homogêneo e com boa densificação. A calcinação foi feita a 800 °C e a sinterização entre 1400 e 1470 °C. As técnicas de caracterização empregadas foram: termogravimetria, análise elementar, determinação da densidade aparente e observação da superfície por microscopia eletrônica de varredura. Altos valores de densidade (>92% da densidade teórica) foram obtidos para o LSG sintetizado por este método.

Palavras chave: síntese química, LSG, caracterização térmica.

Abstract

Compounds based on lanthanum gallate containing strontium, $La_{1+x}Sr_{1-x}Ga_3O_{7+\delta}$ (LSG), with melilitelike crystal structure, show different electrical behavior depending on the lanthanum stoichiometry. For x=0 pure LSG has an insulating behavior, while for increasing x values (up to 0.6), it becomes an ionic conductor, with conductivity values close to that of strontium magnesium doped lanthanum gallate, which is known as a solid electrolyte candidate in solid oxide fuel cells. In this work, LSG (x=0 and 0.55) was synthesized by the cation complexation method in order to obtain a homogeneous material with good densification. The calcination was carried out at 800 °C and the sintering between 1400 and 1470 °C. The characterization techniques were: thermogravimetry, elemental analysis, determination of apparent density and microstructure observation by scanning electron microscopy. High density values (>92% of theoretical density) were obtained for LSG synthesized by this method.

Keywords: chemical synthesis, LSG, thermal characterization.

INTRODUÇÃO

Compostos condutores de íons oxigênio são materiais funcionais que encontram aplicações em diversas áreas da tecnologia como sensores de espécies químicas, bombas de oxigênio, membranas permeáveis ao oxigênio e células a combustível para a produção de energia [1-4]. Uma das propriedades mais importantes para permitir essas aplicações é a condutividade elétrica. Os principais fatores que afetam a condutividade elétrica são a pureza dos materiais de partida, as condições de síntese, tais como introdução de aditivos, moagem e tratamentos térmicos (calcinação, sinterização e envelhecimento), que definem a microestrutura do material sinterizado [1].

A pesquisa científica centralizada no desenvolvimento de células a combustível de óxido sólido, SOFC, se baseia em sua alta eficiência, flexibilidade e baixa emissão de poluentes. Esse tipo de dispositivo utiliza óxidos sólidos, do tipo zircônia estabilizada com ítria como eletrólito sólido, e opera a elevadas temperaturas (~ 1000 °C) [5, 6]. No entanto, elevadas temperaturas aumentam a taxa de reações interfaciais entre os componentes da SOFC, o que pode influenciar o desempenho em longo prazo, ou ainda gerar problemas com o selante, que deve suportar os diversos ciclos térmicos mantendo sua integridade mecânica [7]. Assim, nos últimos anos, a procura por eletrólitos sólidos capazes de operar na faixa de temperatura chamada intermediária (< 800 °C) tem se intensificado [8-10].

Duas abordagens referentes a pesquisa de eletrólitos sólidos de temperatura intermediária podem ser encontradas na literatura: a primeira consiste na otimização das propriedades dos eletrólitos sólidos conhecidos, principalmente aqueles com estrutura tipo fluorita e perovskita, e a segunda se baseia na busca de novos materiais com valores mais elevados de condutividade iônica.

Dentre os condutores de íons oxigênio recentemente descobertos, se destacam aqueles onde o processo de condução iônica não acontece por meio da migração de vacâncias de oxigênio, como nas estruturas fluorita e perovskita, mas pela difusão de íons oxigênio em posições intersticiais. Esse tipo de mecanismo de condução pode ser encontrado em algumas famílias de cerâmicas, dentre elas aquela com estrutura melilita LnSrGa₃O_{7-δ}, Ln = lantanídeos [11,12].

Ainda há poucos trabalhos que tratam do $La_{1+x}Sr_{1-x}Ga_3O_{7+\delta}$, LSG, e sua condutividade iônica, e não há consenso sobre a proporção da substituição de estrôncio por lantânio e seu impacto na pureza e na condutividade iônica do material [13, 14].

O principal objetivo deste trabalho é a obtenção do composto $La_{1+x}Sr_{1-x}Ga_3O_{7+\delta}$, com x = 0 e 0,55 por método químico de via úmida e sua caracterização física, estrutural e microestrutural. O método escolhido é o da complexação de cátions utilizando o ácido cítrico como agente complexante. A composição X = 0 é isolante e aquela com X = 0,55, com substituição parcial do estrôncio pelo lantânio, apresenta alta condutividade iônica devido à presença de íons oxigênio em posições intersticiais. Este estudo visa obter um roteiro otimizado para a preparação deste condutor iônico com propriedades físicas desejadas para fins de aplicação em células a combustível de óxido sólido.

MATERIAIS E MÉTODOS

O $La_{1+x}Sr_{1-x}Ga_3O_{7+\delta}$, com x=0 e 0,55 foi preparado pelo método de complexação de cátions. A Tabela I apresenta os materiais utilizados nas sínteses.

e	, I	·	<u> </u>
Materiais de Partida	Fórmula	Fabricante	Pureza (%)
Nitrato de gálio	Ga(NO ₃) ₃ ·xH ₂ O	Puratronic	99,999
Nitrato de lantânio	La(NO ₃) ₃ ·xH ₂ O	Alfa Aesar	99,99
Carbonato de estrôncio	SrCO ₃	Alfa Aesar	99,99

Tabela I - Lista de reagentes, fórmula química, fabricante e pureza.

Os materiais de partida foram utilizados como recebido. O método por via úmida de complexação de cátions consistiu na preparação de soluções aquosas dos reagentes na forma de nitrato e carbonato, que após aferição da concentração por gravimetria foram misturadas estequiometricamente e mantidas sob agitação magnética e aquecidas até 65 °C, para homogeneização. Em seguida o ácido cítrico foi adicionado à solução dos cátions metálicos na proporção de 3:1 de ácido cítrico:metal. A agitação e o aquecimento foram mantidos até a completa secagem da solução formando uma espuma porosa, que foi pré-calcinada a 250 °C por 1 h. O pó resultante foi desaglomerado em almofariz de ágata e calcinado a 800°C por 1 h.

Os pós pré-calcinados foram analisados por análise termogravimétrica (TG) e sua primeira derivada (DTG). As medidas foram realizadas na faixa de temperatura desde ambiente até 900°C, com taxa de aquecimento de 10°C/minuto, e atmosfera de ar sintético em equipamento TGA Q500, com vazão de 60 mL/min.

Os teores de C, H e N dos pós foram determinados utilizando-se o analisador elementar Perkin Elmer 2400 series ii.

As amostras em pó foram prensadas na forma de pastilhas com 8 mm de diâmetro em prensa uniaxial (Kratos, Z2T) sob pressão de aproximadamente 70 MPa. A sinterização dos compactos ocorreu em diferentes temperaturas: 1400, 1450 e 1470 °C por 3 ou 5 h em forno resistivo (Lindberg, BlueM).

A caracterização das pastilhas sinterizadas consistiu na determinação da densidade aparente pelos métodos geométrico, por balança analítica Mettler H315 e micrômetro Tesa, e hidrostático, em balança analítica Mettler AG125. As superfícies das pastilhas sinterizadas foram debastadas, polidas

com pasta adiamantada e atacadas termicamente, para observação da microestrutura em microscópio eletrônico de varredura (Inspect F50, FEI). Posteriormente, foi feita e determinação do tamanho médio e distribuição dos tamanhos dos grãos utilizando o aplicativo ImageJ.

RESULTADOS E DISCUSSÃO

A curva TG da amostra de composição X = 0 (Figura 1a), após pré-calcinação a 250 °C apresentou perda contínua e gradual da massa, totalizando 65,7%. A maior parte da massa foi eliminada na faixa de temperatura compreendida entre 140 e 600 °C, na qual foi observada perda de aproximadamente 48%. A perda de massa até cerca de 200 °C refere-se à eliminação de água fisicamente adsorvida, com perda máxima em 61 °C. Entre ~200 e ~500 °C a perda de massa se deve à decomposição da matéria orgânica existente na espuma porosa, com máximos em 363 e 451 °C. A partir de ~500 °C e até ~750 °C, a perda de massa é reduzida e corresponde à combustão dos produtos de decomposição, com máximos em 615 e 725 °C. A amostra de X = 0,55 (Figura 1b) apresentou perda gradual da massa totalizando 72,7%. A maior parte da massa foi eliminada na faixa de temperatura compreendida entre 115 e 720 °C, na qual foi observada perda de aproximadamente 63%. Os fenômenos associados com as perdas de massa na amostra com x=0,55 está provavelmente associada com a alta higroscopicidade dos compostos de lantânio.

Figura 1: Curvas TG/DTG de amostras com composição X = 0 (a) e X = 0,55 (b) preparadas por complexação de cátions e pré-calcinadas a 250 °C/1 h.

Foram realizadas análises dos teores de hidrogênio, carbono e nitrogênio nas amostras calcinadas a 800 °C/1 h, para verificar a efetividade da eliminação destes elementos durante tratamento térmico de calcinação. Os resultados são apresentados na Tabela II.

Tabela II -Teores de H, C e N nas amostras de LSG X = 0 e X = 0,55 sintetizadas por complexação de cátions e calcinadas a 800 °C/1 h.

Amostra	H (%)	C (%)	N (%)
$\mathbf{X} = 0$	0,20±0,04	0,60±0,17	$0,05\pm 0,04$
X = 0,55	0,09±0,00	0,17±0,05	0,01±0,00

A partir desses dados é possível notar que a substituição do estrôncio pelo lantânio diminui os teores residuais de hidrogênio, carbono e nitrogênio no material sintetizado. No preparo da amostra de composição X = 0,55 há menor adição de ácido cítrico e substituição de uma parte do carbonato por nitrato, isso pode explicar os menores teores de hidrogênio e carbono para essa amostra.

As densidades medidas das amostras sintetizadas e sinterizadas são apresentadas na Tabela III.

Tabela III — Densidades relativas geométrica (ρ_g), hidrostática (ρ_h), e porosidade das
amostras de LSG (X=0 e 0,55) preparadas por complexação de cátions e sinterizadas a 1400,
1450 e 1470 °C.

LSG	Sinterização (°C/h)	ρ _g (%)	ρ _h (%)	Porosidade (%)
$\mathbf{X} = 0$	1400/5	72,2	-	-
$\mathbf{X} = 0$	1450/5	86,7	89,9	0,27
$\mathbf{X} = 0$	1470/5	88,0	89,5	1,02
$\mathbf{X} = 0$	1450/3	92,0	92,4	-
X = 0,55	1400/5	90,4	93.0	0,03
X = 0,55	1450/5	90,0	91,7	0,12
X = 0.55	1470/5	91,5	91.9	0,25
X = 0,55	1450/3	91,8	93,3	0,03

Para as amostras com x = 0, a sinterização a 1400 °C não foi efetiva resultando em valor muito baixo de densidade. O aumento da temperatura de sinterização para 1450 °C favoreceu a densificação. Aumento adicional para 1470 °C, não resultou em benefício da densificação. Por outro lado, a diminuição do tempo de sinterização de 5 para 3 h a 1450 °C resultou em incremento na densificação. Este resultado sugere que em tempos longos de sinterização ocorre perda de estequiometria da composição. Para a composição X = 0,55, em todas as condições de sinterização observou-se densificação acima de 90,0%, sendo o maior resultado obtido para a condição de 1450 °C/3 h. Por meio dos dados apresentados na Tabela III é possível verificar também que o aumento do teor de lantânio acarreta em aumento da densidade do LSG. Essa relação era esperada devido às diferenças das densidades dos óxidos de lantânio e de estrôncio e também estão de acordo com o reportado na literatura [13]. De forma geral, os valores de porosidade de todas as amostras são relativamente baixos ($\leq 1\%$).

A pastilha de composição X = 0,55 sinterizada a 1450°C/3 h foi submetida à análise de microscopia eletrônica de varredura (Figura 2), na qual verificou-se a presença de grãos com tamanho médio de aproximadamente 29 μ m.

Figura 2 – Micrografia da pastilha de composição X = 0,55 e calcinada a 1450 °C/3 h obtida por microscopia eletrônica de varredura.

Não são observados efeitos indesejáveis na microestrutura como crescimento anormal de grãos, trincas e fases de impurezas.

A distribuição de tamanhos dos grãos estimada pelo aplicativo Image J (Figura 3), mostra que aproximadamente 78% dos grãos estão compreendidos na faixa de 10-40 μm.

Figura 3 - Distribuição de tamanhos dos grãos da pastilha de composição X = 0,55 e calcinada a 1450° C/ 3h.

Esses resultados mostram que o método químico de complexação de cátions é eficiente na produção de amostras com boa densificação e homogeneidade microestrutural. Amostras com excesso de lantânio apresentam maior densificação, mas não foram verificadas fases de impureza. Este resultado evidencia a ampla faixa de formação de solução sólida.

CONCLUSÕES

Pós cerâmicos com composição $La_{1+x}Sr_{1-x}Ga_3O_{7+\delta}$, com x=0 e 0,55 foram sintetizados pelo método de complexação de cátions utilizando o ácido cítrico. A decomposição térmica dos precursores obtidos demonstrou ser compatível com os processos de perda de massa esperados, ocorrendo em etapas e gerando produtos intermediários.

Amostras contendo excesso de La apresentam menores teores de carbono e hidrogênio, após calcinação a 800 °C.

Variações no tempo e temperatura de sinterização acarretaram em mudanças nos valores de densidade, sendo o maior resultado (> 91%) para ambas composições obtido em 1450°C/3 h. A medida de densidade hidrostática mostrou que as pastilhas contêm poucos poros abertos.

A análise da microestrutura mostrou contornos de grãos bem definidos e diversidade nos tamanhos dos grãos. O método de síntese mostrou ser adequado para a obtenção do LSG com microestrutura controlada e boa densificação.

AGRADECIMENTOS

Os autores agradecem as agências de fomento: FAPESP, CNPq, CAPES e CNEN.

REFERÊNCIAS

[1] E. N. S. Muccillo, Cerâmica 54 (2008) 129.

[2] W. V. Gool, Fast Ion Transport in Solids, North-Holland, Amsterdam, (1973).

[3] W. V. Gool, P. Hagenmuller, Solid Electrolytes – General Principles, Characterization, Materials, Application, Academic Press, New York (1978).

[4] E. C. Subbarao, Solid Electrolytes and their Applications, Plenum Press, New York (1980).

[5] T. H. Etsell, S. N. Flengas, Chem. Rev. 70 (1970) 339.

[6] B. Stambouli, E. Traversa, Renew. Sustain. Energy Rev. 6 (2002) 433.

[7] J. M. Ralph, A. C. Schoeler, M. Krumpelt, J. Mater. Sci. 36 (2001) 1161.

[8] M. Rozumek, P. Majewski, T. Maldener; F. Aldinger, Materialwiss. Werkstofftech. 33 (2002) 348.

[9] H. Yahiro, K. Eguchi, H. Arai, Solid State Ion. 36 (1989) 71.

[10] R. Doshi, V. L. Richards, J. D. Carter, X. Wang, M. Krumpelt, J. Electrochem. Soc. 146 (1999) 1273.

[11] M. Rozumek, P. Majewski, F. Aldinger, K. Kunstler, G. Tomandl, Ber. Dtsch. Keram. Ges. 80 (2003) 35.

[12] C. I. Thomas, X. Kuang, Z. Deng, H. NIU, J. B. Claridge, M. J. Rosseinsky, Chem. Mater. 22 (2010) 2510.

[13] M. Rozumek, P. Majewski, L. Sauter, F. Aldinger, J. Am. Ceram. Soc. 87 (2004) 662.

[14] E. S. Raj, S. J. Skinner, J. A. Kilner, Solid State Ion. 176 (2005) 1097.