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Abstract
PLA/PBAT (Poly (lactic acid)/Poly (butylene adipate-co-terephthalate)) blend is a biodegradable material commonly con-
sidered a potential alternative to polymeric products from petroleum sources. PLA is intrinsically brittle, endowed with a 
low elongation at break and poor impact strength that restricts its use for some applications while PBAT has high ductil-
ity, heat resistance, and impact resistance. However, PLA associated with PBAT results in an incompatible blend, due to 
poor interfacial adhesion. The compatibilization of PLA/PBAT can be improved through physical and chemical interaction 
between the components, and with exposure to ionizing radiation. Cellulose is the most abundant biodegradable polymer 
available and is considered the potential material to be used as reinforcement in sustainable composite materials, as well as 
nanocellulose while an alternative to synthetic nanoparticles. This review describes the state of the art of polymer blends 
of PBAT and PLA, in terms of manufacturability, compatibilization, biodegradation, radiation processing, and cellulose 
nanocrystal reinforcement.
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Introduction

PLA or Poly(lactic acid) is a renewable, bio-based and bio-
degradable aliphatic thermoplastic polyester made from 
dextrose (sugar) extracted from biobased materials [1–6]. 
Biobased plastics come from renewable biomass, meaning 
plants. Some common plants that are used to make bio-
plastics are sugarcane, cassava, and corn. PLA is a popular 
biopolymer and currently produced on a worldwide scale. 
Biopolymers are polymers that are biobased, biodegrad-
able, or both, and have the same properties as conventional 
polymers and offer additional advantages. In addition, PLA 
products exhibit good bio-absorption and biocompatibility 
with the human body, in favor of more potential applications 
[7]. However, PLA has low melt strength, which limits its 
application in large-scale blown film extrusion processes. 

Meanwhile, PBAT is one of the most attractive polymers 
for hardening PLA [8].

PBAT (polybutylene adipate terephthalate) is a fully bio-
degradable polymer. Instead of PBAT-based compostable 
bioplastics will decompose due to the action of naturally 
occurring microorganisms such as fungi, algae and bacteria. 
Plastics that are based on fossil resources and are biode-
gradable, such as PBAT, despite being manufactured from 
petroleum-based resources, are fully biodegradable under 
composting conditions [9–16].

Considering complementary properties involving PLA 
and PBAT, the PLA/PBAT blends have been receiving spe-
cial and wide attention all around the world [17–21]. And 
concerning the processability of blends, important aspects 
should be discussed in terms of the efficiency, manufactur-
ability, and utility of those materials.

Several important aspects must be considered from 
the point of view of the design and manufacture of PLA/
PBAT blends. The morphological, thermal, rheological, 
and mechanical properties must be controlled and opti-
mized to contribute to the compatibilization and interface 
situation of the blend [22, 23]. The combination of PLA 
and PBAT provides immiscible blends, and the final proper-
ties of the blends are highly dependent on the intrinsic and 
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morphological properties of the PLA and PBAT, which can 
be significantly improved by chain extender and compatil-
izer [24].

Compatibilization is a process by which the polymer 
blend properties are enhanced owing to an increase of adhe-
sion between the phases, as a result of the interfacial tension 
reduction and morphology stabilization. The degree of mis-
cibility between the components in blends can be enhanced 
through the addition of compatibilizers [25].

During the last decade, cellulose nanocrystals (CNC) 
embedding has been widely investigated in polymer matrices 
such as PLA and PBAT due to their good optical proper-
ties, low density and natural abundance [26–31]. Cellulose 
nanocrystals are important for the final performance of poly-
mer blends and can be improved by introducing nanoparti-
cles as reinforcements and simultaneously a compatibilizer 
[32, 33]. The localization of nano-inclusions at the interface, 
in the matrix, or dispersed phase has a significant effect on 
blend properties [34].

This review aims to present the latest results obtained in 
the literature on the properties of PLA, PBAT, crystalline 
nanocellulose and their blends in terms of compatibilization, 
biodegradation and nanoparticles interactions in the proper-
ties of this biodegradable blend.

Poly(lactic acid)—PLA

Poly(lactic acid) (PLA) is considered one of the most com-
petitive biodegradable polymers due to its advantages of 
good mechanical strength, biocompatibility and as a renew-
able raw material [35]. PLA has several forms of end-of-life 
applications related to its biodegradability, among them, it 
can be recycled mechanically or chemically, it can be indus-
trially composted and also be digested anaerobically [36].

PLA is an organic, aliphatic, thermoplastic polyester 
consisting of a racemic mixture of D-lactide and L-lactide, 
having two optically isomeric forms: PLLA and PDLA, as 
shown in Fig. 1a. And it can be derived from corn starch and 
sugarcane [37, 38].

Due to its recyclable, biodegradable, and compostable 
properties, PLA is widely used in packaging, transportation, 
agriculture, biomedical, textile, and electronics industries 
[41]. Despite its great potential, PLA still has some limita-
tions, such as fragility, slow crystallization kinetics, and high 
instability during processing, among others [42].

PLA Mechanical Properties

The mechanical properties of PLA can vary according to 
the molecular weight and degree of crystallinity, where lac-
tide monomers are chiral and the mechanical properties can 
be manipulated through the polymerization of D-lactide, 

Fig. 1  Chemical structure: a 
of PLA isomers: PLLA and 
PDLA; b of PBAT; c of cellu-
lose Reproduced with permis-
sion from MDPI [38–40]
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L-lactide or D, L-lactide to obtain the desired properties 
[43]. Some of these properties are shown in Table 1.

Commercial PLAs are generally copolymers of PLLA 
and PDLLA. L-lactic acid rotates the plane of polarized 
light clockwise, unlike D-lactic acid, which rotates counter-
clockwise. Lactic acid produced from petroleum is a racemic 
mixture (50/50) of the D and L units, so it becomes optically 
inactive. The fermentation method (more ecological) trans-
forms, for example, corn starch into lactic acid, in which 
the L-isomer is the main product of the natural PLAs in the 
fermentation process (99.5% of the L-isomer and 0.5% of 
the D-isomer) [44].

PLA Biodegradation Properties

Standard biodegradation tests for plastics in composting 
conditions, such as the ASTM D5338-98 [45]; consider plas-
tic to be biodegradable, through the percentage of biodegra-
dation concerning the positive reference (cellulose = 100%) 
in which sufficient biodegradation (minimum 70% for cel-
lulose in 45 days) must be observed. And the standard bio-
degradation test for plastics in soil, such as ASTM D5988 
[46]; considers a plastic to be biodegradable by referring to 
known biodegradable reference material (such as starch or 
cellulose) to verify soil activity. Where, after six months, 
limited biodegradation needs to be higher than 70% of the 
theoretical evolution of  CO2 for this reference material, and 
the amounts of carbon dioxide released from the blanks (or 
the biochemical oxygen demand values for the alternative 
measurement of oxygen consumption) must be within 20% 
of the mean at the plateau or at the end of the test.

The biodegradation of PLA is a two-step process, 
chemical hydrolysis or hydrolytic degradation followed by 

biodegradation. In the first step, the degradation of PLA 
occurs through random chain scission, which reduces the 
molar mass of chains and leads to the intermediate forma-
tion of low molecular weight chains. In the second step, 
these intermediate chains are assimilated by the microbes to 
obtain energy and produce various compounds such as  CO2 
and  H2O [47]. Table 2 summarizes different types of PLA 
and their biodegradation results.

It is known that the degradation of PLA in the soil is 
slow and takes a long time to initiate degradation, probably 
because of the slow rate of hydrolysis at low temperatures, 
moisture contents, and the relative scarcity of PLA degrad-
ing organisms. But in a composting environment, the PLA 
is hydrolyzed into smaller molecules after 45–60 days at 
50–60 °C [48]. In Table 2 it is possible to observe that PLA 
has high biodegradation according to the studies in com-
posting environments and can be fully biologically degraded 
within 6–24 months [49], which may vary according to the 
biodegradation conditions, such as pH, temperature and 
other factors.

Currently, several types of microorganisms that are 
capable of degrading PLA have been isolated from soil and 
water, which are mainly actinomycetes, a fraction of them 
belong to bacteria and fungi [50]. At least 94 microorgan-
isms are cataloged as being able to degrade PLA (31 fun-
gal and 63 bacterial species). This compatibility of PLA 
degradation by these microorganisms is also related in the 
literature by the similarity of the L-lactate unit of PLA with 
the L-alanine unit of silk fibroin (a fibrous protein produced 
by domestic silkworms that is a natural analog of poly(L-
lactide)). Wherein, the bacterial genus Amycolatopsis, which 
had the highest number of reported PLA degraders, also has 
several reported species that degrade silk fibroin, possibly 

Table 1  Physical and mechanical properties values of PLA, its isomers and PBAT

“- “ Unknown

Properties PLA poly(lactic acid) PLLA 
poly(L-
lactic acid)

PDLLA poly(D,L-lactic 
acid)

PBAT poly(butylene 
adipate co-terephtha-
late)

References

Density (g/cm3) 1,21–1,25 1,24–1,30 1,25–1,27 1,23 [141, 142]
Melting temperature (ºC) 150–162 170–200 not defined (amorphous) 110–120 [24, 121, 142]
Glass transition tempera-

ture (ºC)
45–60 55–65 50–60 − 33–− 29 [24, 142, 143]

Crystallization tempera-
ture (°C)

108,3 80,44 101,47 73,9 [144–146]

Tensile strength (MPa) 21,0–60,0 15,5–150 27,6–50,0 11–21 [89, 142, 143, 145, 147]
Tensile modulus (GPa) 0,35–3,50 2,70–4,14 1,00–3,45 0,026–0,29 [89, 142, 147, 148]
Flexural strength (MPa) 89,4 106 88 6,3–7,3 [75, 146, 149]
Flexural modulus (MPa) 3098 3650 – 70–90 [75, 146, 150]
Elongation at break (%) 5,0 7 5,4  > 600 [89, 121, 145, 149]
Ultimate strain (%) 2,50–6,00 3,00–10,0 2,00–10,0 – [142]
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because the stereochemical positions of the chiral carbons 
of the L-lactic acid unit of PLA and the L-alanine unit in 
the silk fibroin are similar. Thus, microorganisms that can 
degrade PLA likely identify the L-alanine unit in silk fibroin 
as an analog of the L-lactate unit in PLA [51].

There are two categories of enzymes involved in the 
biodegradation process, external and intracellular depoly-
merases. The degradation process of PLA takes place by 
secretion of extracellular depolymerase by microorganisms 
that are stimulated by inducers, in which most inducers have 
L-alanine units. Then, the polymerase influences the intra-
cellular ester bonds of PLA, producing oligomers, dimers, 
and monomers, which are taken up by microorganisms 
through the activity of intercellular enzymes and converted 
into carbon dioxide, water and methane [52]. Table 3 shows 
some microorganisms and their enzymes capable of PLA 
degradation.

Proteases, esterases, lipases, and cutinases induce the 
enzymatic degradation of polyesters by hydrolysis. For 
PLA degradation, protease and esterase participate more 
frequently on that [52].

In addition, studies of PLA-degrading microorganisms 
have been mainly conducted in controlled laboratory con-
ditions as shown in Table 3. The biodegradability of PLA 
in the soil takes a long time compared to other biodegrad-
able polyesters because of the limited distribution of PLA-
degrading microorganisms in the soil. Thus, the addition of a 
microbial consortium in the soil can help to accelerate PLA 
biodegradation [53].

Poly(butylene adipate‑co‑terephthalate)—
PBAT

Poly(butylene adipate-co-terephthalate) (PBAT) is a 100% 
biodegradable synthetic polymer, based on fossil resources, 
with high elongation and flexibility [54]. The PBAT is 
an aromatic aliphatic copolyester that has a good balance 
between its biodegradability and its physical properties, 
such as elongation at break and tensile modulus [55]. The 
aromatic fraction, butylene terephthalate (BT), has excellent 
physical properties, while the aliphatic fraction, butylene 
adipate (BA), promotes its degradation through hydrolysis 
under the effect of microbial enzymes, in which the BA 
(non-crystalline) structure degrades faster than BT (crys-
talline) structure [24]. The chemical structure of PBAT is 
shown in Fig. 1b.

PBAT is also commercially known as Ecoflex®, produced 
by the company BASF, and widely used in applications such 
as agricultural materials (mulch film), compost bags, food 
packaging, laminating materials, organic waste bags, and 
shopping bags [56].Ta
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Table 3  Some microorganisms and enzymes for PLA and PBAT degradation

a pH and temperature conditions in PLA degrading enzymes;
b Purchased from Sigma-Aldrich (St. Louis, MO, USA);
c Faculty of Environment and Resource Studies, Mahidol University (Nakhon Pathom, Thailand);
d Culture Collection of the University of Gothenburg Research Laboratory;
e Extracted from the moss Sphagnum magellanicum;
f obtained from Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures in freeze-dried form;
g maintained on potato dextrose agar (PDA);
h obtained from the ACBR fungal culture collection of the University of Natural resources and Life Sciences, Vienna, Austria; “- “ Unknown

Strains Polymer Sample Source Degradation conditions Type of enzyme pHa T (°C)a Reference

Actinomycete
 A. keratinilytica strain T16-1 PLA Not specified Stirred tank bioreactor - 8.0 60 [162]
 Amycolatopsis sp. SO1.1 PLA Soil Inoculum with isolated strain Protease 7 30 [163]
 Amycolatopsis sp. SO1.2 PLA Soil Inoculum with isolated strain Protease 7 30 [163]
 Actinomadura sp. TF1 PLA Soil Liquid culture Lipase/Esterase 6–8 40–60 [164]
 Amycolatopsis sp. SST PLA Soil Inoculum with isolated strain Protease 7 30 [163]
 Amycolatopsis sp. SNC PLA Soil Inoculum with isolated strain Protease 7 30 [163]
 Rhodococcus fascians 

NKCM2511
PBAT Soil Incubation in mineral medium Esterase lipase - 25 [55]

 Saccharomonospora viridis PBAT BAO42836 e Enzyme solution Cutinase 7.5 30 [165]
 Streptomyces sp. APL3 PLA Soil Liquid culture Lipase/Esterase 6–8 40–60 [164]
 Thermobifida cellulosilytica PBAT ADV92526 e Enzyme solution Cutinase 7.5 30 [165]

Bacteria
 Bacillus licheniformis PLA P4860 b Enzyme solution Protease 8.2 22 [166]
 Bacillus pumilus NKCM3101 PBAT Soil Liquid basal medium Lipase 7 30 [167]
 B.pumilus NKCM3201 PBAT Soil Liquid basal medium Lipase 7 30 [167]
 B.pumilus NKCM3202 PBAT Soil Liquid basal medium Lipase 7 30 [167]
 Chryseobacterium sp. 

NUl3D48h-1
PLA Not specified Inoculum with isolated strain - 7 30 [168]

 Clostridium botulinum PBAT AKZ20828 e Enzyme solution Esterase 7.5 30 [165]
 Clostridium hathewayi PBAT ALS54749 e Enzyme solution Esterase 7.5 30 [165]
 S. pavanii CH1 PLA Soil Submerged culture Protease 7.0–7.5 30 [169]
 Sphingobacterium thalpo-

philum Y19
PLA Not specified Inoculum with isolated strain - 7 30 [168]

 Pelosinus fermentans PBAT AIX10936 e Enzyme solution Lipase 7.5 30 [165]
 Pseudomonas aeruginosa 

BUP2
PLA Not specified Inoculum with isolated strain - 7 30 [168]

 Pseudomonas aeruginosa 
BAC113

PLA Not specified Inoculum with isolated strain - 7 30 [168]

 Pseudomonas pseudoalcali-
genes

PBAT DSM 50,188 f Incubated in buffer Esterase 7–8 50–80 [170]

 P. geniculate WS3 PLA FERS c Soil mixture Protease 7.38 58 ± 2 [53]
 Stenotrophomonas sp. PBAT Soil Inoculum with isolated strain Lipase 6.3–7.8 27–47 [63]

Fungus
 Aspergillus flavus PLA CCUG 2829 d Solid medium and aqueous 

media
Cellulase 4.2 ± 0.2 30 [171]

 Candida rugosa PLA Sigma Aldrich Enzyme solution Lipase 4.3–8.6 - [172]
 Candida antarctica PLA 62,288 b Enzyme solution Lipase 8.2 22 [166]
 Cryptococcus sp. PBAT MTCC 5455 g Inoculum with isolated strain Lipase - 25 [173]
 Knufa petricola PBAT MA5789 h Culture in suspension Lipase/Cutinase 5.5 21 [174]
 Sarcynomyces petricola PBAT MA5790 h Culture in suspension Cutinase 5.5 21 [174]
 Tritirachium album PLA 19,133 b Enzyme solution Proteiase K 8.2 22 [166]
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PBAT Mechanical Properties

Ecoflex® is a hydrophobic biodegradable polyester with 
excellent film forming ability, but its low strength and low 
heat resistance do not recommend it for many applications 
[57].

Typical values for the mechanical properties of PBAT are 
listed in Table 1. Compared to PLA, the mechanical proper-
ties of PBAT are shown to be more flexible, with the elonga-
tion at break over 600%.

The mechanical properties of PBAT are affected by its 
composition, as the content of terephthalate units increases, 
the Young's modulus increases, while the elongation at break 
decreases. Molar mass also affects the mechanical proper-
ties of PBAT, because with increasing molar mass, tensile 
strength increases, and elongation at break also decreases 
[58].

PBAT Biodegradation Properties

Biodegradation of PBAT also occurs through hydrolysis 
under the effect of microbial enzymes, in which the amor-
phous BA structure degrades faster than the crystalline BT 
structure. PBAT undergoes hydrolytic degradation due to 
the cleavage of ester bonds and the reaction between water 
and carbonyl groups located in the vicinity of the benzene 
rings [24]. Some biodegradation results of PBAT are sum-
marized in Table 2.

Through the data summarized in Table 2, it is possible to 
notice that PBAT takes longer to degrade than PLA, despite 
PBAT being known for its wide use in agriculture due to its 
short degradation rate, which is 6 weeks in the soil [59]. The 
degradation rate of PLA being higher than that of PBAT was 
also observed in the study of Ren et al. [60].

The depolymerization of PBAT by soil and compost 
microorganisms has been studied in recent years. Enzymes 
with PBAT hydrolytic activity are mostly originating from 
terrestrial Actinomycetes and fungi [61]. Some enzymes that 
can degrade PBAT have been identified among the extracel-
lular carboxylic ester hydrolases, such as esterases, lipases, 
and cutinases [62]. Table 3 is also summarized some micro-
organisms and their enzymes capable of degrading PBAT.

There are a few types of PBAT degrading microorgan-
isms, including mainly Sphingopyxis ginsengisoli, Bacillus 
pumilus, Pseudomonas pseudoalcaligenes, Cryptococcus, 
and Trichoderma asperellum, which these bacteria have 
some disadvantages, such as low degradation rate, and 
there are few studies that assess whether they can degrade 
or metabolize the degradation products of PBAT. These 
products, for example, terephthalic acid and adipic acid, 
can change the pH of the environment and the community 
structure of environmental microorganisms, as well as cause 
physiological toxicity in microorganisms and plants [63].

PLA/PBAT Blend

Some biodegradable polymers are used to modify the limi-
tations of PLA, such as PBAT. PBAT is one of the most 
attractive polymers for hardening PLA, as PBAT/PLA 
blends reveal a significant improvement in flexibility and 
processability [64]. PLA/PBAT blends demonstrate excel-
lent physical–chemical and mechanical properties and can 
be used in various applications in the medical, industrial, 
and packaging sectors [65].

In terms of transparency, neat PLA films are more trans-
parent than neat PBAT films, as exposed in the study by 
[66]. Due to the poor light transmission of PBAT, the clar-
ity of the PLA/PBAT composite films was decreased when 
adding PBAT to PLA. The color of PLA/PBAT composite 
films became more off-white with the increase of PBAT 
contents.

PLA and PBAT produce immiscible blends and depend-
ing on composition and processing methods can exhibit 
matrix-droplet or co-continuous morphology. Immiscible 
blends with a morphology of smaller droplets and well 
dispersed in the matrix phase show significantly improved 
properties. Therefore, coalescence of PBAT droplets after 
further processing needs to be controlled [30].

Compatibilization of PLA/PBAT Blend

PLA/PBAT blends are highly promising materials due 
to the considerable mechanical strength of PLA and the 
extreme rigidity of PBAT (when well compatibilized), 
because although PBAT has carbonyl groups similar to 
PLA, the low interfacial adhesion and macro-phase separa-
tion between these two polyesters make them immiscible 
[18]. The physical properties and dispersibility behavior 
of the immiscible heterogeneous blend can be improved 
by compatibilization through physical or chemical interac-
tion between the components [67]. Also, irradiation can 
be used to improve the compatibility between immiscible 
polymers in a blend [68].

Table 4 summarizes the effects of various types of com-
patibilizers in PLA/PBAT blends showing the ratios of the 
tensile strength (σ), of the elongation at break (ε), and of 
the impact strength (a) for both compatibilized (comp) and 
non-compatibilized (neat) blends, σcomp/σneat, εcomp/εneat, 
and  acomp/aneat, respectively.

As reported in Table 4, several compatibilizing agents are 
shown to be efficient in the interfacial adhesion of the blend, 
which leads to an increase in tensile strength, elongation at 
break, and impact strength of the PLA/PBAT blend.

Wang et al. [67] studied ADR, a compatibilizer with 
several epoxy groups and high reactivity, used as a 
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compatibilizer in PLA/PBAT blends. Different ratios of 
PLA and PBAT with ADR were evaluated in terms of sur-
face morphologies. The non-compatibilized PLA/PBAT 
blends presented an island-like structure, and the particle 
size of the dispersed phase increased with the increase of 
the PBAT content due to the low compatibility and inter-
facial adhesion between PLA and PBAT. With the addition 
of the ADR compatibilizer, the particle size of the PBAT 
dispersed phase significantly decreased and these particles 
were better mixed in the PLA matrix due to the improve-
ment of the interfacial interaction.

In Han et al. [69], epoxidized soybean oil (ESO) used as 
a compatibilizer for the PLA/PBAT blend using the reac-
tion between an epoxy group and a hydroxyl group, forming 
a chemical bond between the PLA and PBAT phases and 
the microstructure of the quenched fracture surface of the 
PLA/PBAT was obtained by scanning electron microscopy. 
Tiny round particles were observed that correspond to the 
dispersed PBAT phase, while the matrix is the continuous 
PLA phase. The high definition of the boundary with the 
surrounding continuous phase indicates poor compatibil-
ity of PLA and PBAT in the absence of the compatibiliz-
ing agent. Further, the PBAT particles gradually become 
smaller as the amount of ESO compatibilizer increases, and 
the boundary between the particles and the matrix gradually 
becomes blurred. Specifically, 5, 7 and 9 phr of ESO already 
show an emulsification behavior of the two-phase interface, 

in which they appear to be completely fused. Therefore, 
through microscopy, the excellent compatibilization effect 
of ESO in PLA/PBAT blends is observed.

And there are some studies that report the increase of 
compatibility of polymers with PLA using Joncryl as a 
compatibilizing agent, which exhibits results in improve-
ment of rheological, thermal, and mechanical properties, 
for example, increased melt storage modulus and viscosity 
[70], higher improvements in impact strength and ductility 
[71], and an increased shear viscosity, a higher melt strength 
and an induction of strain hardening due to the formation of 
branched chains and/or even crosslinking [72].

The most common approach to compatibilizing mul-
tiphase polymers is through the addition of compatibilizing 
agents. However, high-energy radiation, such as gamma rays 
and electron beams (e-beam), has been gaining much inter-
est as it has potential use in increasing interfacial compat-
ibility via interaction and recombination of macromolecular 
radicals generated during radiation exposure. These highly 
energetic irradiations produce bond cleavages and free radi-
cals that promote molecular reactions and close interactions 
between the polymer chains at the blend interfaces [73, 74].

Cardoso et al. [68] studied PBAT/PLA blends reinforced 
with bio-calcium carbonate from avian eggshells and com-
patibilized with PLA gamma-radiated to 150 kGy, and fur-
ther assessed for SEM essays, as shown in Fig. 2. Neat PLA 
has an irregular dispersion in its morphology (island-phase 

Table 4  Ratios of tensile strength (σcomp/σneat), elongation at break (εcomp/εneat), and impact strength  (acomp/aneat) of compatibilized and neat PLA/
PBAT blends for various compatibilizers

“- “ Unknown

Blend Composition 
(PLA/PBAT)

Compatibilizer σcomp/σneat εcomp/εneat acomp/aneat Reference

90/10 wt/wt 0.75 wt% of Joncryl ADR-4370S (ADR) 107 116 113 [67]
80/20 wt/wt 0.75 wt% of Joncryl ADR-4370S (ADR) 113 118 107 [67]
70/30 wt/wt 0.75 wt% of Joncryl ADR-4370S (ADR) 120 103 142 [67]
60/40 wt/wt 0.75 wt% of Joncryl ADR-4370S (ADR) 128 120 580 [67]
70/30 wt/wt 0.5 phr of epoxidized soybean oil (ESO) 122 115 111 [69]
70/30 wt/wt 1 phr of epoxidized soybean oil (ESO) 116 161 161 [69]
70/30 wt/wt 3 phr of epoxidized soybean oil (ESO) 117 230 340 [69]
70/30 wt/wt 5 phr of epoxidized soybean oil (ESO) 125 628 417 [69]
80/20 wt/wt 3 wt% of epoxy-cardanol prepolymer (ECP) 107 365 - [175]
80/20 wt/wt 3 wt% of Joncryl ADR-4300 (ADR) 127 246 - [175]
90/10 wt/wt 3 wt% of PLA-grafted-MA 201 233 113 [84]
90/10 wt/wt 5 wt% of PLA-grafted-MA 158 246 191 [84]
50/50 wt/wt 10 phr of  CaCO3 and 5 phr of PLA 150 kGy gamma-irradiated 133 097 - [68]
35/65 wt/wt 10 phr of  CaCO3 and 5 phr of PLA 150 kGy gamma-irradiated 117 098 - [68]
18/82 wt/wt 10 phr of  CaCO3 and 5 phr of PLA 150 kGy gamma-irradiated 160 094 - [68]
90/10 wt/wt 3 wt% of toluenediphenyl diisocyanate (TDI) based on PBAT 104 122 116 [176]
40/60 wt/wt 0.3 phr of Joncryl ADR-4368 (ADR) 108 077 110 [70]
40/60 wt/wt 0.5 phr of Joncryl ADR-4368 (ADR) 105 081 113 [70]
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type), while neat PBAT has a continuous phase (sea-phase 
type), as can be seen in Figs. 2a, b. When mixed, the higher 
the concentration of PBAT in the blend, the easier the mis-
cibility between PBAT and PLA, as shown in Figs. 2c, d, 
e. And finally, the addition of 150 kGy gamma-irradiated 
PLA contributed to an effective reinforcement distribution of 
125 µm of bio-calcium carbonate in the blend compositions 
and build-up of structural foams, as seen in Figs. 2f, g, h.

However, few studies in the literature evaluate the com-
patibilization of the PBAT/PLA blend by gamma rays or 
electron beam radiation. Other works were carried out using 
irradiation to increase the compatibility of polymeric blends. 
Table 5 summarizes some formulations of polymeric blends 
irradiated as a physical compatibilizing agent.

These polymers irradiated with gamma rays, shown in 
Table 5, showed improvement in the interfacial adhesion 
of the blend, proving the efficiency of this method in the 
compatibilization of immiscible blends. In which, the dose 
rate and the presence of coupling agents can influence the 
compatibilization of the blend.

Aldas et al. [75] evaluated the compatibilization of PLA/
PBAT blends with gum rosin (GR), a natural additive that 
can act as a plasticizer, providing solubilization and compat-
ibilization effects in biodegradable blends. The visual aspect 
of the films obtained for PLA/PBAT blends (80/20 wt/wt) 
with 0 to 20 phr of GR, neat PLA, neat PBAT, and PBAT 
with 10 phr of GR were evaluated. It is possible to observe 

the high transparency of the neat PLA film. The addition of 
20% by weight of PBAT showed some loss of transparency, 
as neat PBAT has more opacity. The higher incorporation of 
GR also led to a partial decrease in the high transparency of 
the PLA, which was more pronounced with increasing the 
amount of GR. The incorporation of GR in the PBAT was 
practically imperceptible in the transparency of the sample. 
That is, although GR can be used to improve the toughness 
of PLA/PBAT formulations, this adhesion does not increase 
the transparency of the blend.

Biodegradation of PLA/PBAT Blend

In recent years, PLA/PBAT blend has gained importance 
among biodegradable materials in the fields of food and 
agriculture due to its excellent mechanical properties and 
biodegradability, which researchers usually analyze by land-
filling and composting [76]. PLA/PBAT can be biodegraded 
by certain microorganisms and their enzymes secreted 
into the environment. Protease and lipase have significant 
degrading effects on PLA and PBAT, respectively as also 
reported by [77].

In the study of Inga-Lafebre et al. [78], the biodegradation 
of neat PLA, neat PBAT, and PLA/PBAT (80/20 w/w) blend 
with different compatibilizing agents (3 wt% of Amberyl 
M-15A (A15) and 3 wt% of Amberyl MP-30 (A30)) were 
analyzed in composting in a convection oven for 90 days. 

Fig. 2  SEM micrographs: a 500 
X magnification for neat PLA; 
b 500 X magnification for neat 
PBAT; c 100 X magnification 
for PBAT/PLA, 82/18; d 100 X 
magnification for PBAT/PLA, 
65/35; e 100 X magnification 
for PBAT/PLA, 50/50; f 150 X 
magnification for PBAT/PLA/
CaCO3/PLA 150 kGy gamma-
irradiated; g 35 X magnification 
for PBAT/PLA/CaCO3/PLA 
150 kGy gamma-irradiated; h 
18 X magnification for PBAT/
PLA/CaCO3/PLA 150 kGy 
gamma-irradiated (Reprinted 
(adapted) with permission from 
IntechOpen) [68]
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The weight loss results after 90 days reached the highest 
degradation rate for neat PLA (0% of residual weight) and 
the lowest for neat PBAT (79,3% of residual weight), while 
reasonable biodegradation values were obtained for the 
blends (16,6% for the blend with no compatibilizing agent, 
26,4% with A15 and 23,7% with A30) which indicates that 
the compatibilizing agent in addition to helping to improve 
mechanical performance, does not affect its biodegradation 
capability.

Harada et al. [79] analyzed the biodegradation of the 
PBAT/PLA (46/54 wt/wt) blend (A0) and composites 
with 2% of carbon black (A1), 2% carbon black, and 4% of 
organic fertilizer (A2), 2% of carbon black and 2% of silica 
from rice husk ash (A3), and all together (A4), in simulated 
soil at room temperature (25 ± 3 °C), in 10 to 40% C:N ratios 
and pH = 7.0 ± 0.5 for 12 months. It was possible to identify 
that PBAT/PLA blend after 12 months reached about 35% of 

weight loss. The incorporation of carbon black (A1) in this 
mixture showed an influence to accelerate soil degradation. 
But the addition of most influential fillers to accelerate the 
mass loss was organic fertilizer (A2), about 85% of weight 
loss, and rice husk silica (A3), about 80% of weight loss. 
However, together (A4), this effect was less significant.

And in the study of Osman et al. [28], the biodegrada-
tion of PLA/PBAT (85/15 wt/wt) blend with 1.0 wt% of 
Sodium Montmorillonite (Na-MMT), octadecylammmo-
nium and Sodium Montmorillonite (ODA-MMT), dime-
thyl dioctadecyl ammonium and Sodium Montmorillonite 
(DDOA-MMT) and commercial clay Closite 20A (C20A) 
were analyzed in simulated soil for 12 weeks. The PLA/
PBAT blend showed 8,76% of weight loss at 12 weeks. 
The addition of Na-MMT showed the highest weight loss 
after 12 weeks (9.02%). On the other hand, the addition of 
ODA-MMT, DDOA-MMT, and C20A tends to reduce the 

Table 5  Formulations of blends and composites irradiated by electron beam and gamma rays

a tPAC = Ternary polyamide copolymer of polyamide 6, 66 and 1010 (30/30/40 wt%) and SP = Sepiolite filler.; “- “Unknown

Polymer Blends Proportions Irradiation Coupling agent Characterizations References

PLA/Lignin 95/5; 80/20 Electron beam at 30, 60, and 
90 kGy

Triallyl isocyanurate (TAIC) 
at 0 and 3 phr

Mechanical properties, FTIR, 
DSC, SEM, XRD, and 
hydrolytic degradation

[177]

EVA/tPA/SPa 70/30/3(5) Electron beam 50 to 250 kGy 
with 10 kGy/pass

– Tensile properties, FTIR, 
DSC, SEM, DMA, and oil 
swelling test

[178]

PLA/Bamboo 95/5; 90/10 Electron beam at 30 kGy Epoxide silane (ES) at 0, 5, 
and 10 phr

Mechanical properties, FTIR, 
DSC, SEM, XRD, and 
hydrolytic degradation

[179]

LDPE/EVA 90/10; 75/25; 
50/50; 25/75; 
10/90

Electron beam at 78, 130, and 
200 kGy with 10 kGy/pass

– Mechanical properties, SEM, 
and gel content

[180]

PLA/Flax 95/5 Gamma irradiation at 5, 10, 
15, and 20 kGy

Triallyl isocyanurate (TAIC) 
at 3 wt%

Mechanical properties, TGA, 
Water absorption, Swelling 
morphology, and fraction 
of gel

[181]

PLA/PBAT 80/20; 20/80 Electron beam at 10, 40, and 
90 kGy

Triallyl isocyanurate (TAIC) 
at 3 wt%

Determination of 
uncrosslinked fraction, 
FTIR, DSC, and molecular 
weight

[182]

PBS/TPS 50/50 Electron beam at 5, 13, and 
26 kGy

– Mechanical properties, FTIR, 
DSC, TGA, SEM, Gas chro-
matography, microbiological 
analysis, and degradation

[183]

PLA/PCL 90/10; 70/30 Electron beam at 5, 10, 20, 50, 
100, and 200 kGy

Glycidyl methacrylate (GMA) 
at 3 phr

Mechanical properties, FTIR, 
SEM, Rheological proper-
ties, thermal stability, and 
biodegradability

[184]

PLA/PEGM 80/20 Electron beam at 20, 60, and 
100 kGy

– Mechanical properties, HDT, 
DSC, SEM, and hydrolytic 
degradation

[185]

PLA/PHBV 50/50 Gamma irradiation at 25, 50, 
and 100 kGy

Maleic anhydride (MA) at 
0,29 wt%

FTIR, Molecular weight, 
DSC, TGA, Nanoindenta-
tion test, SEM, and PCFC

[186]

PBAT/Starch 65/35 Gamma irradiation at 25 kGy – TGA, DSC, XRD, and SEM [187]
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biodegradation rate in the samples, 7.96%, 7,62%, and 7,41% 
after 12 weeks, respectively.

Studies show that the biodegradation rate of the PLA/
PBAT blend is lower than that of the neat PLA and PBAT 
[24, 80]. The inclusion of PBAT affects the molecular 
weight retention rate of PLA, which demonstrates that the 
PBAT content is an important factor in the PLA/PBAT com-
posite degradation rate. Elevating the PLA content in the 
composite leads to a higher increase in the O/C content ratio 
after degradation [24]. And the higher content of PBAT is 
in the blend, the higher is the degradation of the PLA/PBAT 
blend [81].

Manufacturing

Manufacturability development for batch and mass produc-
tion is one of the key aspects of product development due to 
application capability and commercial advantages. Manufac-
turing methods such as films, foams, and fused deposition 
modeling (FDM) are well-studied for the PLA/PBAT blends 
[68, 82–86].

Films of PLA/PBAT blends have application in the areas 
of medicine, industry, and packaging (such as food packag-
ing and agricultural commodities), they have low density, 
high toughness, and high-performance biodegradable plastic 
packaging films. However, PLA has limitations for use as a 
packaging film owing to its poor performance of mechani-
cal and physical properties such as being brittle. It has been 
blended with other polymers of high elasticity such as PBAT 
to improve these properties [29, 65, 87, 88].

Foams of PLA/PBAT blends have applications in packag-
ing, floating materials, paddings, shields for reducing noise, 
shoes, and others. They have low density, insulating capabil-
ity, and energy absorption. Foaming PLA is a challenging 
due to its low melt strength, melt viscosity and elasticity, and 
poor crystallization. The collapse and merging of cells often 
occur during the foaming process, particularly in extrusion 

foaming. The use of PBAT improves the foaming process 
and cell morphology [68, 86].

In addition, fused deposition modeling of PLA/PBAT 
blends is mostly used for 3D printing technology, like large-
scale wastewater treatment. Have a simple operation, high 
performance of printing products and is convenient to adjust 
and control the structure. Due to the layering caused by the 
printing method, the mechanical properties of the printed 
products largely depend on the printing direction of the 
blend [82, 85].

As previously discussed, PLA /PBAT blends are immis-
cible [18]. But, there is very little information on the blown 
film processing of PLA compounded with PBAT. Houg-
dilokkul et al. (2015) evaluated the properties of PLA/PBAT 
from a blown film process, from a PLA/PBAT blend, with 
a weight ratio of 80:20, together with peroxide as a reactive 
agent. Figure 3 shows the blown film processing of neat 
PLA, PBAT, and the reactive blend of PLA/PBAT (P0.02). 
Blowing neat PLA was difficult, and the bubble shape was 
unstable due to the low melt strength of PLA. The resulting 
film had a large variety of dimensions and thicknesses. The 
film was transparent as PLA was amorphous and had a low 
crystallization rate. In the case of neat PBAT film process-
ing, it was easier to blow. On the other hand, the PBAT 
film was stuck together after conveying into the nip roll. In 
the case of PLA/PBAT blends with and without peroxide, 
the films could be processed more easily when compared 
to neat PLA.

Pang et al. [90] reported three parameters that charac-
terize the cell structure: cell size, cell density, and expan-
sion ratio. Foamed plastics, also called cellular polymers 
or expanded plastics, can be made from almost any type 
of polymer: the type of polymer determines whether the 
resulting foam will be hard and rigid or soft and flexible. 
Cardoso et al. [68] studied PBAT/PLA foams reinforced 
with bio-calcium carbonate from avian eggshells (125 µm 
particle size) and compatibilized with gamma radiation at 

Fig. 3  Comparison of the 
illustration between a Neat 
PLA, b P0.02 and c Neat PBAT 
(Reprinted with the permission 
of IOP) [89]
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150 kGy. Figure 4 foamed samples obtained from a 4 mm 
die extruder and final specimens are shown. The higher the 
PBAT concentration in PLA/PBAT blends, the easier the 
miscibility between both PBAT and PLA. And the addi-
tion of PLA gamma-irradiated at 150 kGy contributed to 
an effective distribution of bio-calcium carbonate (125 μm) 
reinforcement in PBAT/PLA compositions and the buildup 
of structural foams.

Prasong [91] prepared superior toughened biodegradable 
polymer blend nanocomposites from PLA, PBAT, and nano 
talc for alternative materials in 3D printing by FDM. The 
printability and the dimension stability of the 3D printing 
products were evaluated from the vertical dumbbell and the 
overhang test specimens with PLA/PBAT blend samples in 
different proportions (100/0, 90/10, 80/20, 70/30, and 60/40 
wt%) and with the addition of nano talc at 0–40% by weight. 
PLA/PBAT blends up to 20% by weight PBAT show good 
formation, in the 70/30 blend a rough surface appeared, and 
in the 60/40 blend, the printing was not completed. This was 
attributed to the flexibility of the PBAT and the high value of 
the volume expansion coefficient at the printing temperature. 
In despite of that, when added nano talc significantly the 
printability of the PLA/PBAT blend improved in all formula-
tions, especially in the 60/40 blend. And the addition of the 
nano talc ratio on the overhang test products for the 70/30 
blend revealed that dimensional stability was improved by 
increasing the content of nano talc.

Nanocellulose

Cellulose nanoparticles are derived from various natural 
cellulosic sources and have great potential as alternatives 
to synthetic nanoparticles and unique properties resulting 
from their structural and chemical surface [92]. Cellulose is 
the most abundant biodegradable polymer available and is 
mainly extracted from plants such as wood, hemp, cotton, 
and linen, but it can also be produced by microorganisms 
such as fungi and bacteria with the same chemical com-
position, differing only in the degree of polymerization, 

purity and other characteristics [39]. Cellulose has excellent 
mechanical properties, such as tensile and flexural strength, 
tensile and flexural modulus, in addition to being low cost, 
as it is available in different resources and from abundance 
in nature [93, 94].

Cellulose is a long-chair linear polysaccharide com-
posed of β-D-glucopyranose  (C6H12O6) units formed by 
β-1,4-glycosidic bonds, in which the basic unit, called cel-
lobiose  (C12H22O11), which is nothing more than that two 
β-D-glucopyranose units, is rich in -OH groups, providing 
a medium for intermolecular and intramolecular hydrogen 
bonds, forming the elementary fibrils [95, 96],as shown 
in Fig. 1c. Materials based on this biopolymer have been 
widely used in various applications, such as textiles, food, 
medicine, paper, engineering materials, biofuels, and com-
posites [97].

In addition to the possibility of being obtained from vari-
ous sources, such as wood and plants, bacteria, algae, and 
even marine animals, such as tunicates, cellulose has several 
morphological forms in different dimensions, shapes, crys-
tallinity, and physicochemical properties, among them, are 
cellulose fibers, cellulose filaments, cellulose crystals, and 
cellulose micro/nanofibrils [98].

Fibers extracted from wood and plants, although they 
have the same chemical structure, have a different struc-
tural organization, also varying in the proportion of cellu-
lose, hemicellulose, and lignin [98]. The cellulose content 
in plants is generally 30–75% and in wood is 40–50% [98].

Nanocellulose can be characterized into two main groups: 
nanocrystalline cellulose (CNC) and nanofibrillated cel-
lulose (CNF). Nanocrystalline cellulose is extracted from 
cellulose through acid hydrolysis and it is less flexible com-
pared to CNF due to its greater crystallinity. Nanofibril-
lated cellulose, on the other hand, is commonly obtained 
by mechanical treatment, presenting an entangled network 
structure with flexible nanofibers and lower crystallinity [99, 
100].

For CNCs extraction, concentrated mineral acid, such as 
sulfuric acid, is wildly used for hydrolysis to remove the 
amorphous region containing lignin and non-cellulosic 

Fig. 4  Structural foams: a 
extruded foams from a 4 mm 
die extruder; b cylinder struc-
tural foams, of approximately 
400 kg.m−3 density (Reprinted 
with permission from IntechO-
pen) [68]
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components [101–103]. The hydronium ions produced dur-
ing the acid treatment can penetrate the amorphous region, 
allowing the cleavage of 1,4–glycosidic linkages within the 
cellulose chain and breaking the strong network of hydrogen 
bonds between the cellulose chains [103]. And for CNFs 
extraction, there are mainly two mechanical methods, 
namely conventional and non-conventional methods. Con-
ventional methods include homogenization, milling, etc., 
while non-conventional ones include mixing, cryo-crushing, 
ultrasonication, and others [104]. Figure 5 represents a sche-
matic isolation of CNC and CNF showing their structural 
differences by TEM images.

CNCs have a length of 100 to 600 nm and a diameter 
of 2 to 20 nm, whereas the CNFs are longer than 1000 nm 
and 5 to 30 nm in diameter [105]. CNCs and CNFs have 
different costs, morphologies, lengths, crystallinities, and 
surface charges. CNC films have better optical transparency 
than CNF films due to the smaller size of CNCs. On the 
other, the amorphous regions of CNFs can help to absorb 
more deformation, allowing CNF nanocomposites to have a 
higher tensile strain to failure compared to the CNC nano-
composite [106].

Natural fibers are considered potential material to be used 
as reinforcement materials in composite products, and the 
mechanical properties of plant fibers depend on factors such 
as physical, chemical, morphological, and geometric char-
acteristics [107].

Some fiber characteristics can change the mechani-
cal properties observed in the final composite as for: fiber 
length, fiber weight ratio, fiber orientation, fiber and matrix 
selection, manufacturing process, and interfacial interaction 
between fiber and matrix [108].

Many studies assess the increase in mechanical prop-
erties with the addition of natural fibers in PLA, PBAT, 
and their blends. Table 6 summarizes some results of 

mechanical properties reported in the literature for PLA, 
PBAT, and PLA/PBAT blend reinforced with natural 
fibers.

It is possible to notice in Table 6 that PLA/fiber compos-
ites have greater mechanical properties compared to PBAT/
fiber composites. Graupner et al. [109] report that this phe-
nomenon could be based on a combination of poor fiber/
matrix adhesion and very high elongation of the PBAT. PLA 
composites, on the other hand, show the opposite trend. It 
is assumed that the average fiber elongation is greater than 
that of PLA, leading to improved tenacity of the composite.

During the last few years, cellulose fiber reinforced poly-
mers have gained great importance among advanced engi-
neering materials and these composites have a wide range 
of applications [110]. The addition of natural fibers and cel-
lulose derivatives as reinforcing agents is an effective way 
to improve the polymer properties and lower its final price, 
maintaining the biodegradability of the matrix [54].

The effect of adding cellulose fibers on the biodegrada-
tion of composites with PLA, PBAT and PLA/PBAT blend 
is studied by some authors. In the work of Xu et al. [111], 
the percentages of degradation of cellulose, PLA, and Cel-
lulose/PLA films (C/PLA) as a function of burial time in 
soil were analyzed. C/PLA films were more degradable than 
neat cellulose and neat PLA films. The C/PLA (1:1) film was 
completely degraded when buried for up to 45 days, while 
for neat cellulose and neat PLA the degradation percentage 
was 81% and 68%, respectively, when buried in the soil for 
90 days.

Different stages of surface morphological characteristics 
of PBAT composites with microcrystalline cellulose sub-
jected to different burial periods were studied in the work 
of Giri et al. [112]. Compared to the highly ductile nature 
of PBAT, on composting soil, both PBAT and its compos-
ites become quite brittle. After 4 months of composting, 
the samples became very brittle, and as the amount of 

Fig. 5  General scheme of isolat-
ing nanocrystalline cellulose 
(CNC) and nanofibrillated 
cellulose (CNF). TEM micro-
graphs adapted with permission 
from [140]. (Reprinted with 
permission from MDPI)
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Table 6  Mechanical properties of PLA, PBAT, and PLA/PBAT composites reinforced with some natural fibers

Components Fiber (%) Processing Tensile 
strength 
(MPa)

Tensile modulus 
(GPa)

Flexural 
strength 
(MPa)

Flexural 
modulus 
(GPa)

Impact 
strength (kJ/
m2)

References

PLA
 PLA/Agave 

(untreated)
40 Extrusion and 

press mold-
ing

49.67 ± 2.46 2.9 96 3.77 ± 0.01 7.88 ± 0.29 [188]

 PLA/Agave (NaOH-
treated)

40 Extrusion and 
press mold-
ing

53.97 ± 1.07 2.8 98.8 3.81 ± 0.02 6.76 ± 0.32 [188]

 PLA/Agave 
(Enzyme-treated)

40 Extrusion and 
press mold-
ing

57.19 ± 0.90 2.9 98.5 3.82 ± 0.01 6.55 ± 0.27 [188]

 PLA/Aloe vera 
(untreated)

30 Extrusion-
Injection

molding 
process

44.7 3.5 74 5.2 40 J/m [189]

 PLA/Aloe vera 
 (NaHCO3-treated)

30 Extrusion-
Injection

molding 
process

52.4 7.30 91.2 7.01 33.4 J/m [189]

 PLA/Bagasse 
(untreated)

30 Extrusion-
Injection

molding 
process

60.3 ± 5.8 2.03 ± 0.33 85 ± 16 5.06 ± 0.19 2.86 ± 0.25 [190]

 PLA/Bagasse 
(Silane-treated)

30 Extrusion-
Injection

molding 
process

80.2 ± 6.7 2.57 ± 0.25 111 ± 19 5.24 ± 0.13 3.58 ± 0.27 [190]

 PLA/Flax 30 Compression 
molding

52.35 2.25 75.54 2.15 56.64 J/m [191]

 PLA/Hemp 25 Extrusion-
injection 
molding

54.31 ± 7.25 1.14 ± 0.11 99.25 ± 9.42 2.06 ± 0.21 – [192]

 PLA/Hemp 25 Injection 
molding

47.63 ± 5.62 1.42 ± 0.15 95.46 ± 7.48 2.34 ± 0.15 – [192]

 PLA/Jute 30 Compression 
molding

45.67 2.01 57 1.76 37.57 J/m [191]

 PLA/Jute/Flax 15/15 Compression 
molding

49.35 2.80 80.50 2.25 61.46 J/m [191]

 PLA/Kenaf 
(untreated)

2.5 Fused 
deposition 
modeling

40 0.87 MPa 59.30 1.9 MPa – [193]

 PLA/Kenaf (Silane-
treated) a

2.5 Fused 
deposition 
modeling

57.85 1.2 MPa 84.22 3.17 MPa – [193]

 PLA/Ramie 30 Compression 
molding

59.3 – 136.8 – 8.3 [194]

 PLA/Sisal 
(untreated)

20 Hand lay-up 
technique 
and static 
compression

24.71 ± 1.67 1.42 ± 0.08 55.12 ± 3.31 2.24 ± 0.17 20.22 ± 1.47 [195]

 PLA/Sisal (NaOH-
treated)

20 Hand lay-up 
technique 
and static 
compression

34.57 ± 2.01 2.11 ± 0.07 72.70 ± 4.45 3.52 ± 0.20 23.55 ± 1.98 [195]
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Table 6  (continued)

Components Fiber (%) Processing Tensile 
strength 
(MPa)

Tensile modulus 
(GPa)

Flexural 
strength 
(MPa)

Flexural 
modulus 
(GPa)

Impact 
strength (kJ/
m2)

References

 PLA/Sisal (PLA-
coated)

20 Hand lay-up 
technique 
and static 
compression

36.78 ± 2.21 2.32 ± 0.15 81.33 ± 5.45 3.67 ± 0.22 25.75 ± 2.01 [195]

 PLA/Wood 40 Fused 
deposition 
modeling b

35.9 0.81 70.4 2.70 – [196]

PBAT
 PBAT/Bamboo 

(untreated)
50 Injection 

molding
15 ± 1.5 0.69 ± 0.05 MPa – – 6.7 ± 0.8 [197]

 PBAT/Bamboo 
(compatibilized) c

50 Injection 
molding

28.6 ± 1.6 1.29 ± 0.08 MPa – – 45.6 ± 3.8 [197]

 PBAT/Curauá 
(Hydrolyzed)

5 Mixed and 
extruded

15.5 ± 3.2 84.0 ± 9.0 MPa – – – [198]

 PBAT/Curauá 
(Acetylated)

5 Mixed and 
extruded

19.4 ± 4.0 73.2 ± 12.1 MPa – – – [198]

 PBAT/EFB d 20 Compression 
molding

5.5 0.08 9.7 ± 0.44 0.21 – [199]

 PBAT/EFB d 40 Compression 
molding

7.5 0.21 10.3 ± 0.63 0.46 – [199]

 PBAT/Flax (non-
woven)

40 e Compression 
molding

6.16 0.20 7.1 0.38 9.4 [200]

 PBAT/Flax (woven) 
f

40 e Compression 
molding

28.5 0.36 12.1 1.12 13 [200]

 PBAT/Hemp 
(untreated)

40 Compression 
molding

111 ± 14 2.43 ± 0.25 – – – [201]

 PBAT/Hemp 
(NaOH-treated)

40 Compression 
molding

97 ± 12 4.80 ± 0.55 – – – [201]

 PBAT/Hemp 
(NaOH-treated 
with npMCO) g

40 Compression 
molding

76 ± 14 5.48 ± 0.28 – – – [201]

 PBAT/Peach palm 10 Extrusion-
injection 
molding

16.5 0.13 – – – [13]

 PBAT/Peach palm 20 Extrusion-
injection 
molding

13.7 0.23 – – – [13]

 PBAT/Peach palm 30 Extrusion-
injection 
molding

13.6 0.32 – – – [13]

PLA/PBAT
 (70/30)/Buckwheat 10 Extrusion-

injection 
molding

38.0 ± 0.7 2.39 ± 0.03 65.3 ± 7.5 2.25 ± 0.45 4.2 ± 0.3 [202]

 (70/30)/Corn 30 Compression 
molding

10.7 – 16.5 – 2.33 [203]

 (90/10)/Flax 54 h Compression 
molding

59.6 ± 5.5 4.46 ± 0.47 89.2 ± 8.3 6.64 ± 0.10 7.9 ± 1.1 [204]

 (80/20)/Flax 54 h Compression 
molding

52.0 ± 5.2 5.69 ± 0.24 74.7 ± 2.9 6.37 ± 0.15 10.4 ± 1.2 [204]

 (70/30)/Flax 54 h Compression 
molding

61.0 ± 3.3 4.58 ± 0.04 65.8 ± 4.7 5.57 ± 0.24 9.0 ± 0.4 [204]
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microcrystalline cellulose increased in the composts, the 
fragility of the composite became more pronounced.

Ramle et al. [83] analyzed bamboo cellulose incorporated 
into PLA and PLA/PBAT, and allowed the films under deg-
radation in soil containing abundant nitrogenous bacteria for 
15 days. The samples of PLA and PLA/PBAT with 9 wt% of 

cellulose showed the highest mass loss rates, 12.39%, and 
9.69%, respectively. And the neat samples of PLA and PLA/
PBAT were the ones with the lowest mass loss rates, 0.57%, 
and 0.44%, respectively. Therefore, the increase in cellulose 
content accelerated the degradation of the films beyond the 
nominal presence of cellulose.

Table 6  (continued)

Components Fiber (%) Processing Tensile 
strength 
(MPa)

Tensile modulus 
(GPa)

Flexural 
strength 
(MPa)

Flexural 
modulus 
(GPa)

Impact 
strength (kJ/
m2)

References

 (87/13)/Hemp 40 Extrusion-
injection 
molding

57.5 – 84 3.9 42.9 J/m [205]

 (90/10)/Kenaf 10 Compression 
molding

36.69 1.15 37.50 3.84 191.97 J/m [206]

 (90/10)/Kenaf 30 Compression 
molding

28 0.93 31.5 3.35 116 J/m [206]

 (90/10)/Kenaf 50 Compression 
molding

17.7 0.42 17.11 3.11 39 J/m [206]

 (95/5)/Ramie 30 Compression 
molding

52 – 101 – 9.4 [194]

 (90/10)/Ramie 30 Compression 
molding

40 – 99 – 11.8 [194]

 (85/15)/Ramie 30 Compression 
molding

27 – 72 – 10.9 [194]

 (70/30)/Rice 30 Compression 
molding

12.5 – 17.8 – 2.7 [203]

 (92/8)/Sisal 20 Compression 
molding

41 1.63 MPa 76 4.09 – [207]

 (92/8)/Sisal 30 Compression 
molding

40 1.84 Mpa 77 4.34 – [207]

 (92/8)Sisal 40 Compression 
molding

34 1.97 MPa 62 3.71 – [207]

 (70/30)/Sorghum 30 Compression 
molding

12.2 – 18.2 – 3.2 [203]

 (70/30)/Soybean 30 Compression 
molding

14.3 – 19.5 – 3.2 [203]

 (70/30)/Wood 30 Extrusion-
injection 
molding

60.6 ± 0.7 3.11 ± 0.02 65.2 ± 1.1 4.26 ± 0.06 3.8 ± 0.1 [208]

 (86/14)/Wood 
(treated) i

30 Injection 
molding

43.4 ± 3.8 4.22 ± 0.03 – 4.09 ± 0.03 3.11 ± 0.24 [209]

 (71/29)/Wood 
(treated) i

30 Injection 
molding

40.2 ± 3.1 4.11 ± 0.04 – 3.99 ± 0.04 3.82 ± 0.33 [209]

a 1.0 wt % silane concentration + 6% alkali concentration kenaf fibre composites;
b on-edge orientation printing and 0°/90° layer deposition;
c With 2 phr of 4,40-methylenebis(phenyl isocyanate) (MDI) as a reactive compatibilizer to modify the bamboo-flour surface;
d Oil palm empty fruit bunch;
e Composites laminates were prepared with two layers of fibers placed alternately between three layers of PBAT films in parallel arrays;
f PBAT/4 × 4 plain weave flax composites;
g macrocyclic oligomers non-purified (npMCOs) were pre-adsorbed onto hemp fibers NaOH-treated by immersing the fibres in a CHCl3 solution 
(5% wt./v) of npMCOs;
h Composites samples were prepared by stacking 6 layers of flax fabric and 5 films of PLA/PBAT;
i treated by a titanate coupling agent; “- “ Unknown
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Nanocellulose have a wide range of applications, for 
example, in packaging [113, 114], nanocomposites in tex-
tiles [115], for wastewater treatment [116], in cementitious 
materials [117], nanocomposites for energy applications 
[118], and in biomedical and biosensing [119]. Polymeric 
nanocomposites (composites in which at least one of the 
phases shows dimensions in the nanometer range) using 
nanocellulose have been of increasing interest due to their 
unique characteristics, such as high strength, (potentially) 
low cost, and renewability [120].

The main processing methods used to obtain CNC-based 
nanocomposites are Solvent Casting, Melt Blending, and 
In-situ Polymerization. Each of these methods has some 
advantages and disadvantages. The Solvent Casting method 
is easy to prepare and there is the possibility of forming a 
three-dimensional CNC network within the polymer matrix. 
Nonetheless, this method makes use of generally hazardous 
solvents (environmental issues) and therefore they are pro-
duced on a small scale. The Fusion Mixing method has great 
potential for large-scale mass production, in which the use 
of hazardous solvents is not necessary. However, CNCs can 
degrade during the process and high shear applied during 
the process does not allow the formation of the three-dimen-
sional CNC network. Finally, the in-situ polymerization 
method allows the formation of a polymeric network with 
relatively uniformly embedded CNCs and with the cova-
lent bond between CNCs and the polymer matrix having the 
potential for large-scale production. But the polymerization 
temperature in this method can degrade the CNCs during the 
process and the dispersion of the CNCs in the monomeric 
phase can lead to a low degree of polymerization [121].

Nanocellulose has also gained much research attention as 
a filler application due to its biodegradability. These nano-
cellulose-based polymers have the advantage of being bio-
degradable but are based on matrix and reinforcement in the 
polymers. Nanocellulose is actively used in the preparation 
of polymers, films, nanocomposites, hydrogels, and various 
other prospects [122]. Besides contributing to improving 
the stability and strength of the films, the addition of CNC 
promotes the biodegradation process, since CNC has a high 
surface area, increasing exposure to microorganisms in the 
soil and improving the rate of degradation. Thus, the higher 
the proportion of CNC in polymer films, the higher the deg-
radation rate together with greater weight loss [123].

PLA/CNC Nanocomposites

Nanocellulose has low compatibility with a hydrophobic 
polymer like PLA. To overcome this problem, it is neces-
sary to introduce a plasticizer [124]. Asraf et al. [125] 
used various proportions of epoxidized palm oil (EPO) as 
a plasticizer in PLA and nanocrystalline cellulose blends. 
In which the mechanical properties were improved and 

the rate of soil degradation was increased as the plasti-
cizer amount increased. As the proportion of CNC in PLA 
increases, the flow resistance decreases. Therefore, with an 
increase in wt% CNC Young's Modulus increases, indicat-
ing that the addition of CNC has good adhesion to the PLA 
matrix. The elongation at break for the CNC composite 
with 10% by weight of EPO is the highest (213%), which 
indicates that the ductility of the composite is increased. 
However, the elongation at break of nanocomposite starts 
to decrease with EPO at 15% by weight, due to the accu-
mulation of excess EPO in the interfacial area of the 
material.

In the study of Faraj et al. [126], they analyzed two types 
of surface compatibilizer (fatty acids and PGMA with reac-
tive end-groups) in nanocomposites of PLA and surface-
grafted CNC with concentrations up to 50 wt% CNC par-
ticles. The CNC-g-PGMA epoxy groups reacted with each 
other and with the PLA, forming a phase separation system. 
This system did not percolate, and its mechanical perfor-
mance was governed by the covalent filler/matrix coupling. 
However, the fatty acids were efficient CNC dispersants 
in the matrix and the gain in the rubbery elastic modulus 
was very important. This can be attributed to percolation, 
although the strength of the percolated network was trans-
mitted by the surface graft because it prevented the estab-
lishment of inter–CNC H-bonds. Therefore, in this case, the 
system that uses fatty acids and a very simple and scalable 
surface grafting method was the most efficient.

And Mujica-Garcia et al. [127] analyzed the compati-
bilization of PLA/CNC with 1 wt% of CNC using PLLA 
chains grafted onto the CNC surface using a “grafting from” 
reaction. The results show that mechanical properties of the 
PLA nanocomposite fibers were significantly improved with 
the addition of only 1 wt% of CNC, with and without the 
compatibilizer agent. However, PLLA-grafted nanocrystals 
(CNC-g-PLLA) resulted in higher stress and toughness. 
These results showed better interfacial adhesion between 
CNC-g-PLLA and the PLA matrix, indicating that the graft-
ing is affecting positively the properties acting as a flexible 
interface between the nanocellulose and the PLA, leading to 
a greater degree of alignment of the molecular chains of the 
CNC and the polymer.

Many studies analyze changes in mechanical proper-
ties when adding CNC to PLA. Table 7 summarizes some 
literature reports of tensile strength, tensile modulus and 
elongation at break characteristics in neat PLA and in the 
PLA/CNC nanocomposites. Through these studies it was 
observed that the addition of small amounts of CNC can 
generate an increase in the tensile strength of the nanocom-
posite, but as this proportion increases, there is a tendency 
towards a reduction in tensile strength. The tensile mod-
ulus of PLA shows a tendency to increase when CNC is 
added to its composition. On the other hand, as expected, 
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the elongation values at break of PLA were, in most cases, 
reduced with CNC loading.

In the study of Zaaba et al. [128], they investigated two 
types of nanocellulose (CNC and CNF) used in PLA bio-
nanocomposites. The addition of CNC generated brittle 
PLA nanocomposites. But in addition, this can be solved 
by performing a pre-treatment on nanocellulose particles 
to increase the interfacial interaction between the bionano-
composites elements. The incorporation of CNF reduced 
elongation at break, improved tensile strength, and modulus 
of PLA composites.

The method of preparation of PLA/CNC is an aspect that 
can influence the properties of the nanocomposites. In the 
work of Bagheriasl et al. [129], the efficiency PLA/CNC 
nanocomposites preparation was compared by two differ-
ent methods, via a solution-cast method and further diluted 
with neat PLA in the melt state using either a twin-screw 
extruder or an internal batch mixer, and via direct melt mix-
ing method. When the solution-prepared PLA/CNC mas-
terbatch was used to develop the nanocomposites via extru-
sion and internal batch mixing occured a good dispersion of 
the hydrophilic CNCs within the PLA matrix and led to the 
formation of a network of CNCs. Consequently, improved 
the thermal and mechanical properties of the PLA, in con-
strast to the cases of neat PLA and PLA/CNC prepared by 
direct melt blending. Therefore, the most efficient method 
for preparing PLA/CNC nanocomposites in was the use of 
solution-based in PLA/CNC masterbatch, followed by melt 
extrusion of the masterbatch and PLA.

By the other way, the study of Arslan et al. [130], PLA/
CNC nanocomposites were prepared via solution cast-
ing and via dilution of solution-casted PLA/CNC master-
batch though melt mixing in a twin screw extruder. CNC 

nanoparticles revealed a better dispersion quality in the 
samples prepared through the casting solution, whereas 
the formation of CNC agglomerates was observed in the 
melt-processed nanocomposites. And CNC incorporation 
promoted heterogeneous crystal nucleation in PLA/CNC 
nanocomposites prepared by masterbatch though melt mix-
ing during cooling, whereas in solution casting samples, 
crystal nucleation was observed to be more dominant in the 
first scan of heating.

Numerous studies are carried out to indicate the biodeg-
radability of such polymers. For instance, Asraf et al. [125] 
evaluated the effects of the altered ratios of CNC and plasti-
cizer (EPO) in PLA on soil burial tests. And it was observed 
that the degradation rate of the PLA/EPO/CNC in the soil, 
in  6th month, increased with the increasing of the CNC 
weight% (by 11.29%, 12.04% and 12.30% for PLA/EPO5% 
with CNC5%, CNC10%, and CNC15%, respectively) but 
increased even more with a higher % by weight of EPO (at 
13.06% and 15.37% for PLA/CNC5% with EPO10% and 
EPO15%, respectively).

Sucinda et al. [123] analyzed the soil burial biodegra-
dability of neat PLA and PLA/CNC, in which neat PLA 
degraded slowly in the soil, with a total weight loss of only 
3.93% at day 75. In contrast, the nanocomposite samples 
PLA/CNC achieved greater weight loss at 75 days, whereas 
the CNC content increased, and the degradation rate of the 
PLA/CNC films improved. For PLA with the addition of 
0.5, 1.0, 1.5, 2.0 and 3.0% of CNC, the total weight loss 
was observed to be 4.30%, 6.57%, 6.78%, 7.30% and 7.57%, 
respectively.

Wang et al. [131] evaluated the weight loss in hydrolytic 
and soil degradation of PLA with the addition of 0 to 15 wt% 
of crystalline nanocellulose with zinc oxide (CNC–ZnO) 

Table 7  Mechanical properties of PLA and PLA/CNC

a using poly(vinyl alcohol) (PVA) solvent in CNCs solution and polyethylene glycol (PEG) as plasticizer; “- “ Unknown

CNC 
content 
(wt%)

Preparation procedure Tensile strength (MPa) Tensile modulus (GPa) Elongation at break (%) References

PLA PLA/CNC PLA PLA/CNC PLA PLA/CNC

1 Solvent casting + Melting mixing 48.08 ± 1.62 48.82 ± 2.65 2.188 ± 0.348 2.425 ± 0.168 4.04 ± 0.77 3.45 ± 0.14 [210]
3 Solvent casting + Melting mixing 48.08 ± 1.62 47.83 ± 0.59 2.188 ± 0.348 2.240 ± 0.069 4.04 ± 0.77 2.86 ± 0.32 [210]
5 Solvent casting + Melting mixing 48.08 ± 1.62 46.07 ± 1.30 2.188 ± 0.348 2.331 ± 0.270 4.04 ± 0.77 3.56 ± 0.28 [210]
1 Extrusion + compression molding 54.6 ± 0.3 56.2 ± 0.9 1.166 ± 0.055 1.343 ± 0.041 6.3 ± 0.4 6.4 ± 0.4 [211]
3 Extrusion + compression molding 54.6 ± 0.3 59.9 ± 2.4 1.166 ± 0.055 1.419 ± 0.029 6.3 ± 0.4 5.5 ± 0.5 [211]
5 Extrusion + compression molding 54.6 ± 0.3 54.9 ± 0.8 1.166 ± 0.055 1.442 ± 0.027 6.3 ± 0.4 4.9 ± 0.1 [211]
1 Solvent casting 52.3 ± 0.02 72.9 ± 0.05 1.95 ± 0.05 2.12 ± 0.07 3.86 ± 0.13 4.02 ± 0.12 [212]
2 Solvent casting 52.3 ± 0.02 68.6 ± 0.06 1.95 ± 0.05 2.05 ± 0.03 3.86 ± 0.13 3.51 ± 0.10 [212]
3 Solvent casting 52.3 ± 0.02 65.5 ± 0.06 1.95 ± 0.05 1.92 ± 0.03 3.86 ± 0.13 3.54 ± 0.13 [212]
0.5 Solvent  castinga 47.9 ± 4.6 52.0 ± 2.2 1.61 ± 0.16 1.66 ± 0.16 3.4 ± 0.4 4.3 ± 0.8 [213]
1 Solvent  castinga 47.9 ± 4.6 45.3 ± 2.3 1.61 ± 0.16 1.82 ± 0.16 3.4 ± 0.4 12.3 ± 4.6 [213]
3 Solvent  castinga 47.9 ± 4.6 40.2 ± 1.2 1.61 ± 0.16 1.72 ± 0.14 3.4 ± 0.4 8.3 ± 2.5 [213]
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hybrids as green nanofillers. The neat PLA and PLA nano-
composite films were incubated for 70 days under compost-
ing conditions in phosphate buffered saline (PBS) and in soil 
burial for 110 days. For the hydrolytic degradation, the more 
CNC–ZnO hybrids were added the faster degradation rate 
was obtained. After 70 days of exposure, the weight loss of 
neat PLA reached only 9%, while for PLA nanocomposite 
film with 15 wt% CNC–ZnO hybrids reached 25% of weight 
loss. For the soil burial degradation, neat PLA showed the 
smallest degradation rate, 8% weight loss after 110 days, 
while by adding 15 wt% CNC-ZnO hybrids, the PLA nano-
composite film degraded about 28% after 110 days, therefore 
it can be fully degraded within 1 year. It was also observed 
that due to the hydrophobic nature of PLA, it is difficult for 
water to pass into the films, but due excellent hydrophilic-
ity and water solubility of CNC, PLA/CNC nanocomposites 
could benefit absorbs and maintain the water.

PBAT/CNC Nanocomposites

A few studies report the properties of PBAT/CNC nano-
composites. Bauli et al. [132] studied nanocellulose crystal-
line, obtained by enzymatic hydrolysis, incorporated into the 
PBAT matrix (at 1%, 3%, and 5% by weight) by a solvent 
casting method. Nanocellulose composites with and without 
alkaline pretreatment for lignin removal, called P and N, 
respectively, were prepared. The mechanical properties of 
PBAT nanocomposites with 1%P and 1%N showed improve-
ment of 12% and 11% in Young's modulus, respectively. The 
tensile strength in 1%P increased by 12% but in 1%N was 
maintained, considering the error, compared with the neat 
matrix. The degradation analysis in simulated soil showed 
that both material with P and N showed degradation rates 
like those of neat PBAT. Therefore, according to the proper-
ties analyzed, the pre-treatment process was not considered 
necessary, as the results for P and N were similar.

This behavior of improving the mechanical properties and 
not changing the biodegradation of the nanocomposite was 
also observed in Morelli et al. [133], PBAT nanocompos-
ites with cellulose nanocrystals with 2.5, 5, and 10 wt% of 
CNC chemically modified with phenylbutyl isocyanate was 
analyzed. This modification aims to avoid CNC aggrega-
tion during the drying and extrusion process. PBAT is very 
ductile and after the incorporation of the CNC, its ductility 
has not changed. The samples with CNC also had an elas-
tic modulus considerably higher than the values of the neat 
PBAT, and higher CNC contents led to higher increases. The 
addition of non-modified and modified CNC increased the 
modulus of elasticity of the PBAT for about 55% and 39%, 
respectively, in the 10 wt% nanocomposites. The chemi-
cal modification of the CNC increased its thermal stabil-
ity and reduced the water vapor permeability of PBAT, 
and this decrease was greater in the modified CNC-based 

nanocomposites (approximately 63%). However, the incor-
poration of CNC did not compromise the biodegradation of 
PBAT, even after its chemical modification.

Different methods of preparation were evaluated in the 
study of Vatansever et al. [134], in which they evaluated two 
different preparation methods for PBAT/CNC nanocompos-
ites, the solution casting (SC) and dilution of the solution-
casted masterbatch through TSE (mTSE) preparation meth-
ods. The neat PBAT and PBAT/CNC with 1, 3, and 5 wt% 
of CNC for both preparation methods were analyzed. It was 
reported that the tensile strength of PBAT was increased 
upon the addition of 1 wt% CNC for both preparation meth-
ods. However, the increase of CNC content led to a decrease 
in tensile strength of the nanocomposites. The tensile modu-
lus of PBAT was not affected with 1 w% of CNC but at 5wt% 
CNC the nanocomposites showed higher elastic modulus 
because of a better CNC dispersion. On the other hand, the 
elongation at break values of PBAT was lowered with the 
CNC loading regardless of preparation method.

Also considering the work of Zhang et al. [135], nano-
composites of PBAT with cellulose nanocrystals (PBAT/
CNC) and with acetylated CNC modified by acetic anhy-
dride (PBAT/ACNC) were evaluated. After the modification 
of acetic anhydride, the hydrophilicity of CNC decreased 
and the dispersion of CNC in PBAT was improved. PBAT/
ACNC nanocomposites had better mechanical properties, 
thermal stability and glass transition temperature than 
PBAT/CNC, however, the biodegradable properties do not 
appear to change with the addition of ACNC in the PBAT.

PLA/PBAT/CNC Nanocomposites

As shown by some studies, the addition of nanocellulose 
in the PLA/PBAT blend can impose variable mechanical 
properties according to the phase in which the nanocellulose 
is added (either in the PLA matrix phase, in the PBAT dis-
persed phase, or in both phases) and the type of processing 
of the material [26, 27, 31, 136].

In the work of Mohammadi et al. [27], mechanical prop-
erties of PLA/PBAT (75 wt%/25 wt%) blends, alternating 
with semicrystalline PLA (scPLA) and amorphous PLA 
(aPLA), and with the addition of 1 wt% of CNCs was inves-
tigated. The CNCs were incorporated in the matrix phase 
(PLA) and in both phases (matrix phase—PLA and dis-
persed phase—PBAT). In both interface localizations, con-
siderable improvements in elongation at break and impact 
properties of scPLA/PBAT were observed with the addition 
of 1 wt% CNCs. These improvements were less effective 
in the case of PLA/PBAT/CNC due to the higher residual 
solvent in this system and the better affinity of CNCs with 
the solvent.
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Considering the work of Mohammadi et al. [26], they 
also analyzed PLA/PBAT (75 wt%/25 wt%) blends, alternat-
ing with semicrystalline PLA (scPLA) and amorphous PLA 
(aPLA), and with the addition of 1 wt% of CNCs incorpo-
rated in the matrix phase and in both phases, but focusing in 
rheological and morphological properties. Mostly, the incor-
poration of CNCs shown to decrease the PBAT droplet size 
and create a finer morphology in the blended nanocompos-
ites, but when the CNCs were initially dispersed in the PLA 
and in both phases, they tended to be located at the interface 
of the PLA and PBAT phases, favoring the stabilization of 
the blend morphology under shear flow. The introduction 
of 1 wt% of CNC in PLA and in both phases delayed the 
relaxation of the drops due to the formation of the network 
of CNCs.

Hosseinnezhad et al. [136] investigated the mechanical 
properties of PLA/PBAT (90/10 wt%) blends and compos-
ites with 3% and 7% of CNFs in both phases. The introduc-
tion of CNFs showed an increase in modulus of elasticity, 
yield stress, and tensile strength in both blends and nano-
composites. However, unlike the highly embrittled PLA/
PBAT/CNFs blends, PLA/PBAT/CNFs nanocomposites 
retain a sufficiently high degree of plasticity. Then, in situ 
generated products can be considered effective polymer 
materials with triple shape memory.

The methods used for the preparation and processing 
can also affect the final properties of the PLA/PBAT/CNC 
nanocomposites. In Sarul et al. [31], mechanical proper-
ties of PLA/PBAT (75 wt%/25 wt%) blends with 3 wt % 
of CNC were analyzed with different processing techniques 
(by a corotating twin-screw extruder (TSE) and by an inter-
nal mixer (IM)) and different localization of CNCs (matrix 
phase—PLA, dispersed phase—PBAT, and in both phases). 
It was found that the tensile strength of the blend prepared 
with IM was lower than that prepared with TSE. The tensile 
modulus of PLA/PBAT blends with 3 wt% of CNC, was 
higher than the neat PLA only for the blend with CNC local-
ization in PBAT phase ((PBAT/CNC)/PLA) and prepared 
with IM. Also, higher elongation at break was found for this 
formulation but prepared with TSE instead. Izod impact tests 
revealed that the toughness decreased in the blend contain-
ing 3 wt% of CNC prepared with TSE and increase prepared 
with the IM compared to the neat blend. Therefore, solvent 
preparation methods can make the samples quite brittle in as 
much as that compression molding is not possible, and the 
expected enhancement in the impact strength, ductility, and 
toughness was not attained despite significant rheological 
improvements obtained.

Also, in Sarul et al. [30], the effect of CNC on the prop-
erties of PLA/PBAT blends was investigated and prepared 
by two methods, solution casting (SC), and a combination 
of solution casting and melt mixing through twin-screw 
extruder (mTSE). For the samples prepared via SC, the 

rheological experiments, with the addition of 3% by weight 
of CNC, shown a large increase in complex viscosity and in 
the storage modulus at low frequencies, which was pointed 
that this can be attributed to the formation of the CNC net-
work in the PLA matrix. With the increase to 5 wt% of CNC 
this was more evidenced. And for the samples prepared via 
mTSE, no significant increase in the rheological properties 
was observed, because the reagglomeration of CNCs could 
suppress the melting properties of the nanocomposites. 
The mechanical properties of neat PLA, PLA/PBAT blend, 
and PLA/PBAT/CNC nanocomposites prepared by mTSE 
are illustrated in Fig. 6. Comparing the PLA/PBAT blend 
with the PLA/PBAT/CNC nanocomposites, it is possible 
to observe a improvement in tensile strength as the CNC 
content increases, a increase in Young’s modulus for PLA/
PBAT containing 5 wt% of CNC, but as the CNC content 
increases, the elongation at break decreases, and for the 
energy at break, a reduction in the nanocomposites com-
pared to the blend is shown.

CNC is more dispersed in the PLA phase than in the 
PBAT phase, because when CNCs are introduced into the 
blend through the PBAT phase, they remain in the PBAT 
droplets reducing their droplet size, while when added in the 
PLA matrix phase or in both phases, it results in elongated 
PBAT droplets with a tendency for the PLA matrix to show 
a co-continuous morphology [27, 31].

Efforts were concentrated to understand the contribution 
of the degradation promoted by radiation in the nanocom-
posites [137, 138]. However, the evaluation of the biodeg-
radability of the PLA/PBAT blend reinforced with nanocel-
lulose is still a poorly studied field in the literature, other 
than, the effects of radiation on the nanocellulose in polymer 
blends.

Andrade et al. [139] analyzed nanocomposite films of 
PLA/PBAT blends containing different amounts of crys-
talline nanocellulose (CNCs, 0–2% by weight), extracted 
from agricultural residues using a twin screw extruder and 
blown extrusion process. The PLA/PBAT/CNC nanocom-
posites showed better hydrophobic character and thermal 
stability than the PLA/PBAT blend. Furthermore, the tensile 
strength, elongation at break and Young's modulus for the 
nanocomposites were about 52%, 29% and 118%, respec-
tively, higher than the blended films.

Conclusion

PLA is a very attractive biopolymer due to its characteris-
tics of rigidity and tensile strength. To improve the ductility 
of PLA, its combination with PBAT has been considered. 
PBAT films take longer to degrade than PLA films, and 
besides that, when blended the biodegradation rates of PLA/
PBAT are lower than those for the neat PLA and neat PBAT. 
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The PLA/PBAT blends, despite having low compatibility, 
have been widely studied as an alternative to the use of con-
ventional petroleum-based plastics for packaging applica-
tions. In most cases, the compatibilization of multiphase 
polymers is through the addition of chemical compatibiliz-
ing agents, which leads to an increase in tensile strength, 
elongation at break, and impact strength of the PLA/PBAT 
blend. Although exposure to high energy radiation (such 
as gamma rays and electron beams) is a method that has 
been studied as an alternative to enhance the compatibil-
ity of multiphase polymers, there are however few studies 
that report the behavior of compatibilization by high energy 
radiation in PLA/PBAT blends. But studies with other poly-
mers have shown an improvement in the interfacial adhesion 
of the blend, proving the efficiency of this method in the 
compatibilization of immiscible blends.

Nanocrystalline cellulose (CNCs) has been widely stud-
ied as a reinforcement phase in biodegradable polymers due 
to its biodegradability, wide availability in nature, and ability 
to improve the properties of composites. The polymer prop-
erties can be improved with the addition of CNC, but this 
can vary according to the fiber source, the extraction, and 
processing method, concentration, and the phase in which 
it is added to the polymer composite. Both CNCs and CNFs 
enhance the mechanical properties of the PLA/PBAT blend, 
and the properties may vary with the phase in which the 

nanocellulose is being inserted, the type of fiber treatment, 
the proportion of fiber in the blend and the preparation meth-
odology. Nevertheless, few studies evaluate the behavior of 
the addition of crystalline nanocellulose in the PLA/PBAT 
blend, much less the compatibilization of this biocomposite 
by ionizing radiation.

PLA films are more transparent than PBAT films, and the 
color of PLA/PBAT composite films became more off-white 
with the increase of PBAT content. The addition of nanocel-
lulose in PLA, PBAT, and in the PLA/PBAT blend shows 
an increase in the opacity of the films, but there are still no 
studies that report whether the immiscible blends are opaque 
and become transparent after compatibilization.

Studies of blends and nanocomposites of biodegradable 
polymers have been focused on the search for reinforcing 
agents and suitable processes that promote the physical and 
mechanical properties with the protection of the relative 
integrity of the components in conditions of compatibility, 
and adhesion at the level of the polymer-nanofiber inter-
faces. In this sense, the development of such materials is still 
on the way to investigating the use of radiation or chemical 
modification as a compatibilizer promoter for blending, and 
surface modifier of cellulosic nanoparticles for superior filler 
dispersion and interfacial mechanical resistance to assure 
the better properties of such a short time shelf-life of the 
biodegradable products derived from PLA/PBAT.

Fig. 6  Tensile properties of the 
neat PLA, PLA/PBAT blend, 
and PLA/PBAT/CNC nanocom-
posites with 1, 3, and 5 wt% 
of CNC content prepared via 
mTSE. (Reprinted with permis-
sion from SpringerNature) [30]
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