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Abstract: We report a Nd:YLF laser, side-pumped by a diode-stack at 797 nm with 1545 W peak
power, resulting in triple-wavelength emission at 1314 nm, 1053 nm, and 1047 nm. The resonator is
capable of emitting each wavelength separately as well as any combination of them simply by cavity
alignment. When operating at 1314 nm, the laser reached record optical-to-optical efficiency of 49%,
with a slope efficiency of 53%.
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1. Introduction

Nd-doped crystals have demonstrated simultaneous laser emissions at different wave-
lengths, a property known as multichromatic emission. This can be observed for 1053 nm
and 1047 nm emission from a Nd:YLF laser, or more distant emissions, such as 1064 nm and
1342 nm or 1064 nm and 946 nm for Nd:YAG lasers [1,2]. One of the remarkable features of
multichromatic lasers is their ability to access multiple absorption lines of various materials.
One notable application in this regard is Laser-Induced Breakdown Spectroscopy (LIBS). In
this process, a short-to-ultrashort laser pulse turns a tiny fraction of a material sample into
plasma for spectral analysis, thus avoiding extensive sample preparation. This technology
can be used for several processes, including environmental monitoring through rapid
analysis of air, soil sewage sludge, and wastewater, material analysis in the metal industry,
and in mining as a tool for establishing ore composition [3].

Multichromatic lasers can also be applied in coating inspection [4], depth-resolved
measurement of element composition [5], and microwave and terahertz generation [6,7].
Additionally, the frequency of the emitted beams can be doubled or tripled through second
and third harmonic generation (SHG and THG), leading to green, red, and blue emissions
that are interesting for applications in Light Detection and Ranging (LIDAR) and range
finding [2,8,9]. These emissions can be Raman shifted before frequency double, leading to
interesting medical applications such as retinal photocoagulation [10,11].

Amongst Neodymium (Nd)-doped crystals, which are well known for their 1 µm
emissions, Yttrium Aluminum Garnet (Nd:YAG) and Yttrium Orthovanadate (Nd:YVO)
emitting at 1064 nm, and Yttrium Lithium Fluoride (Nd:YLF), emitting at both 1053 nm
(σ) and 1047 nm (π), are most commonly used [12–14]. Recently grown crystals, such as
Lutetium Aluminum Garnet (Nd:LuAG), have also garnered interest for potential new ap-
plications, especially for the generation of Q-switched pulses with saturable absorbers [15].

Emissions at 1 µm are favored for efficient high-power lasers due to their greater
emission cross-section. Emissions at 1.3 µm can be particularly advantageous when Raman-
shifted, as their proximity to the 1.4 µm region makes them suitable for lower-cost eye-safe
lasers and applications such as free space communications [16,17].
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While Nd:YVO and Nd:YAG exhibit higher emission cross-sections compared to the
Nd:YLF, they are more susceptible to thermal effects and have shorter lifetimes. Nd:YLF, in
contrast, boasts twice the upper-state lifetime of Nd:YAG and nine times that of Nd:YVO,
making it an excellent choice for high-power and Q-Switched operations, especially in a
side-pumping configuration for a better pump-power density distribution, reduced thermal
lensing, and, consequently, greater output power [18,19]. Additionally, Nd:YLF emits at
1.31 µm, distinguishing it from Nd:YAG and Nd:YVO, which emit at around 1.34 µm,
making it suitable, for example, as a local oscillator for the optical atomic calcium clock [20].

The double-wavelength emission of an Nd:YLF laser at the 1.05 µm and 1.31 µm
regions was first demonstrated in 1983 [21]. However, its lamp-based pumping scheme
significantly restrained efficiency. Diode-pumping overcomes this issue due to the narrow
emission bandwidth of common diode lasers (<3 nm), and it is further enhanced by
the use of technologies, such as volume Bragg gratings (VBG), for an even narrower
emission (<0.5 nm) [22]. In 2001, Damzen et al. achieved a 75% slope efficiency and
64% conversion efficiency with diode-pumped Nd:YVO lasers in grazing-incidence single-
bounce resonators. In this configuration, the laser beam undergoes a total internal reflection
(TIR) at the crystal’s pump face, exposing the intracavity beam’s peak intensity to the area
of the highest population inversion. These results were essential to establish this cavity
design as an excellent alternative to highly efficient side-pumped configurations [23,24].
Recently, single-bounce resonators yielded the record-breaking slope efficiency of 68% for
an Nd:YLF diode-pumped at 797 nm, although it has failed to attain a diffraction-limited
output beam [25,26]. An intriguing strategy to balance efficiency and high-beam quality in
these side-pumped resonators involves the incorporation of a third folding mirror within
the cavity. This addition results in two, close-to-parallel laser beams undergoing both total
internal reflection at the pump face of the crystal. Controlling the distance between these
laser beams within the crystal diminishes the oscillation of higher-order modes, leading to
a TEM00 output beam. This approach has been named the Double-Beam Mode Controlling
Cavity (DBMC) [22,27]. It has been effectively implemented for laser emissions at 1053 nm
and 1314 nm. At 1053 nm, this approach achieved a slope efficiency of 65% with TEM00
emission [22], while at 1314 nm, with its smaller cross-section, slope efficiencies of 54% and
optical-to-optical efficiencies of 34% have been achieved with 792 nm pumping [28].

Single-bounce resonators can achieve diffraction-limited beam quality alongside re-
markable efficiency values. In 2022, a side-pumped Nd:YLF laser achieved a near-quantum
defect slope efficiency of 78% by directly pumping at the 863 nm wavelength. A plane-
plane resonator was employed to reconcile this efficiency achievement with the desired
TEM00 laser beam, incorporating intracavity cylindrical lenses to mitigate diffraction losses
at the crystal’s borders [29,30]. These single-bounce cavities are especially interesting
for passively Q-switching laser applications. Their inherent simplicity aligns seamlessly
with the ease of integrating a saturable absorber in the laser cavity. Furthermore, their
compact nature facilitates the generation of shorter pulses without compromising energy
capabilities, favoring higher peak power emissions. Recent work in 2023 showcased a
Cr:YAG/Nd:YLF laser within a compact single-bounce cavity, achieving a peak power
of 46 MW coupled with a pulse energy of 41 mJ. Notably, this configuration set a new
benchmark for energy per pulse in passively Q-switched Nd:YLF lasers and demonstrated
Q-switched dual-wavelength laser beams at 1047 nm and 1053 nm wavelengths [31].

The importance of efficient triple-wavelength emission lies in its potential to open
doors to a wider array of laser applications, particularly in the generation of diverse
wavelengths through phenomena such as second harmonic generation (SHG), sum- and
difference frequency generation (SFG and DFG). This capability not only enriches the ver-
satility of these lasers, but also expands their utility across various fields. A diverse range
of Nd3+-doped lasers have demonstrated the ability to emit triple-wavelength (multichro-
matic) emissions, with Nd:YGG emitting at 1062 + 1060 + 1058 nm [32], Nd:SYSO emitting
at 1075 + 1076 + 1078 nm [33], Nd:YVO emitting at 1062 + 1064 + 1066 nm [34], and Nd:YAG
with emissions of 1064 + 1319 + 1338 nm or even at 469 + 471 + 473 nm via frequency
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doubling and sum-frequency mixing [35,36]. So far, however, Nd:YLF lasers have only
presented double-wavelength emission, such as 1314 + 1321 nm [37], 1047 + 1053 nm [38],
and 1047 + 1314 nm [21], presenting trichromatic emission only through the use of nonlin-
ear effects.

To the best of our knowledge, this work demonstrates the first fundamental, triple-
wavelength emission of a Nd:YLF crystal. The presented laser displays efficient multichro-
matic emissions at combinations of 1047 nm, 1053 nm, and 1314 nm. Each wavelength
operation can be selected by simple cavity alignment, allowing for a single, double, or
triple-wavelength emission. This design reached efficiencies above 31% for all wavelength
operations, achieving record values for slope- and optical-to-optical efficiency at 1314 nm
with 797 nm pumping.

2. Materials and Methods

A VBG-equipped 12-bar diode stack (Northrop Grumman, St. Charles, MO, USA),
with 1544.8 ± 8.8 W peak power, was employed to side-pump a 13 × 13 × 3 mm3, a-cut,
Nd:YLF crystal (Crystech, Qingdao, China), with 1 mol% Nd3+ doping. The pumping
duty cycle of 0.17% (350 µs; 5 Hz) was set by the manufacturer to maintain the 797 nm
emission line at a measured width of 0.92 ± 0.03 nm at Full Width at Half Maximum
(FWHM). The pump diode’s emission was focused by a doublet lens (D), with f = 30 mm,
to guarantee good spatial overlap between pump- and laser beams. A half-wave plate (HP)
was employed to set the polarization of the pump diode to be parallel to the c-axis of the
crystal, improving absorption.

The resonator configuration used a total internal reflection at the pump facet of the
crystal to expose the center of the TEM00 mode (the peak intensity of the intracavity beam)
to the area of highest population inversion. A Brewster’s angle of incidence (ΘB = 55.4◦ for
the σ-transition) was employed at the uncoated lateral faces of the crystal for the intracavity
beam to achieve wavelength emission at 1314 nm (σ-polarized) and to reduce Fresnel
reflection losses.

Due to its significantly lower emission cross-section at 1.31 µm, laser emission requires
the employment of mirrors with high transmittance at 1.05 µm. Therefore, a plane output
coupler (M1), with transmissions of T−1.31 µm = 10% and T−1.05 µm = 75%, and a highly
reflective (HR) concave mirror at 1.31 µm (M2), with a radius of curvatures (ROC) of
8 m and T−1.05 µm = 92%, were used to achieve emission of 1314 nm. In this two-mirror
configuration, the reflection of M1 and M2 in the 1.05 µm region is still sufficient for 1047 nm
oscillation when at least one of the laser mirrors is slightly misaligned to impede 1314 nm
oscillation. The misalignment effectively diminishes reflectivity at 1314 nm, increasing
the resonator’s tendency to oscillate at the 1.05 µm region due to its larger emission cross-
section, as shown in Table 1.

Table 1. Nd:YLF stimulated emissions cross sections at 1047, 1053, 1321, and 1314 nm [18,39].

Nd:YLF
4F3/2 → 4I11/2

4F3/2 → 4I13/2

1047 nm (π) 1053 nm (σ) 1321 nm (π) 1314 nm (σ)

σe (10−19 cm2) 1.8 1.2 0.27 0.33

The low reflectivity of both mirrors at 1.05 µm, together with the lower emission cross-
section of the 1053 nm wavelength, favors the oscillation of the π-polarized wavelength of
1047 nm, despite the use of a Brewster angle of incidence for the σ-transition. Therefore, to
achieve 1053 nm wavelength emission, a 1.05 µm HR plane mirror (M3) was added behind
the M2 mirror, as shown in Figure 1A.
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Figure 1. (A): Single-bounce resonator configuration. M1, M2, and M3 are laser mirrors; D is a
doublet with a 30 mm focal distance; HP is a half-wave plate. (B): Diagram of the relevant energy
transitions in Nd:YLF [40,41].

Figure 2 presents the transmittance spectrum, measured by a Varian CARY® 5000 spec-
trometer (Agilent Technologies, Santa Clara, CA, USA), of all three mirrors utilized in the
laser resonator.
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Figure 2. Spectrum of laser mirrors (950 nm to 1350 nm). (A): Transmission of M1. (B): Transmission
of M2. (C): Transmission of M3.

The cavity length between M1 and M2 was set to 140 mm, resulting in a (simulated;
LASCAD v. 3.6) mode spot radius inside the crystal of 1983 µm× 1148 µm in the horizontal
and vertical directions, respectively, using the M2 beam quality factor, shown in Figure 6
(measured for the σ–transition of 1314 nm. The cavity length between M1 and M3 was set
to 180 mm, resulting in a spot size (radius) of 1931 µm × 1275 µm in the horizontal and
vertical directions, respectively. It should be noted that the larger horizontal dimension
is caused by two factors, the Brewster angle of incidence at the crystal’s side facets and
the larger M2 beam quality factor in the horizontal direction. With a measured pump spot
size of 2100 ± 250 µm × 145 ± 30 µm, we guarantee good spatial overlap by focusing the
pump light into a smaller spot size at the crystal’s pump surface than the area of the TIR of
the simulated laser mode, especially in the vertical direction. We remark that because of
Brewster angle of incidence of the laser mode at the TIR surface inside the crystal, the beam
size in the pump direction is an additional n times larger (n being the refractive index of
the σ–transition) than the mode spot size inside the crystal. Therefore, the overlap integral
benefits from the geometry of this set-up is responsible for an n2 -times larger laser beam
mode in the pump direction. Specifically in the above case, the 1/e2 mode size in the pump
direction is 5.75 mm for the M1–M2 cavity.

The spectral overlap was calculated with a MatLab script in which, in the first step,
convolutes the emission curve of the pump diode with the absorption spectrum of the
Nd:YLF crystal with 1% doping, shown in Figure 3A,B, respectively. As a result, the
effective absorption coefficient decreases non-exponentially as a function of the absorption
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depth inside the crystal, because the diode’s frequencies closest to its emission peak are
more efficiently absorbed by the crystal’s narrow absorption peak if both spectra overlap
perfectly, when compared to frequencies farther away from the diode’s emission peak.
Figure 3C displays the effective absorption as a function of the pump depth. The absorption
at 5.75 mm is higher than 97%. The effective absorption coefficient needs to be considered
in order to calculate the overall overlap efficiency below (Equation (1)).
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measured by a Varian CARY® 5000 spectrometer. (C): Effective absorption in function of the pump depth.

In agreement with the theory of Kubodera et al. [42], the total overlap efficiency
of the system can be defined as the integral of the spatial, normalized population in-
version saturated by the oscillating field, also called remaining inversion, divided by
non-saturated inversion.

y r0(x, y, z)
1 + ∑j Sjs0j(x, y, z)/I0

dυ/
y

r0(x, y, z)dυ (1)

where dv is integrated over the pump volume, I0 is the saturation intensity, Sj the photon
number in TEM mode j, s0j and r0 the normalized distribution function of mode j and the
pump mode, respectively. The Matlab script calculates which ressonator mode j enters
oscillation first, under the condition of a specific pump distribution. From there on it
calculates, for each pump power, the denominator in Equation (1) for the sum of all
oscillating modes j and checks if another additional mode i can oscillate (reach threshold)
at the same pump power R. The Matlab code then resolves the system of i non-linear
equations and calculates the values of Sj for each mode, which is proportional to the
fractional output power of each mode. The calculated resultant overlap efficiency is 98.3%
for the 1314 nm transition.

Wavelength Selection

To comprehend the mechanism of selection of each wavelength, we first examine
a resonator equipped with only two laser mirrors, M1 and M2. When both mirrors are
precisely aligned, the laser cavity is optimized for single-wavelength operation at 1314 nm.
This occurs due to both mirrors having high transmittance in the 1 µm range and optimal
reflectivity for 1314 nm. Since the 4F3/2 → 4I11/2 transition has a much larger emission
cross-section compared to the 4F3/2 → 4I13/2 transition, emission at 1.05 µm is achieved
by intentionally disturbing the alignment of M2 for 1314 nm emission. This misalignment
disrupts the conditions for 1314 nm emission, reducing the competition from 1314 nm
and allowing the emergence of the 1047 nm wavelength. The transition from 1314 nm to
1047 nm, or vice versa, occurs gradually as we reduce alignment for the 1314 nm wavelength.
As a result, we can achieve any combination of both wavelengths simultaneously just by
controlling the alignment of the cavity’s mirrors. Mirror M3 assumes a pivotal role by
increasing reflectivity at 1.05 µm, thereby enabling the emission of the 1053 nm wavelength
and also enhancing efficiency at the 1.047 µm transition. By adjusting the alignment of M3
and considering the 1047 nm losses induced by the Brewster angle of incidence, which
causes an 8% reflection loss per surface for this wavelength, we can facilitate the emission
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of either 1047 nm or 1053 nm, or even a combination of both simultaneously. Therefore,
triple wavelength emission of 1047 nm, 1053 nm and 1314 nm is achieved by using main
alignment of M3 for controlling the relative emission intensity of 1047 nm and 1053 nm
while M2 controls the 1.3 µm emission.

3. Results and Discussion

Figure 4 shows the spectrum of the laser emitting in single-wavelength operation at
1047 nm, 1053 nm, and 1314 nm in the dual-wavelength regime at 1047 nm and 1053 nm,
1047 nm and 1314 nm, 1053 nm and 1314 nm, and during triple-wavelength emission of
1047 nm, 1053 nm and 1314 nm. The 1047 nm and 1053 nm emissions were measured
with a fiber-coupled (50 µm fiber) high-resolution spectrometer (HR2000; Ocean Optics
Inc., Orlando, FL, USA, 0.24 nm resolution at FWHM), yielding an emission line width at
FWHM of 0.27 ± 0.1 nm and 0.38 ± 0.1 nm for 1047 nm and 1053 nm, respectively. The
emission at 1314 nm was measured by a fiber-coupled InGaAs spectrometer (NIR quest;
Ocean Optics Inc., 3.3 ± 0.2 nm FWHM resolution) using a 10 µm fiber.
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1314 nm. (G): 1047 nm, 1053 nm, and 1314 nm (resolution of 3.3 ± 0.2 nm).

Even at high-pump powers the laser did not present thermal lensing or any special
cooling requirements due to the low duty cycle; the maximum average pump power was
of the order of 2.7 W. Figure 5 shows the peak output power vs. the incident pump power
after the 3.6% Fresnel losses at the pump face of the crystal for each of the three emission
regimes of the laser cavity.
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A slope efficiency of 52.8 ± 0.7% and an optical-to-optical efficiency of 48.6 ± 0.3%
were achieved for the single wavelength emission at 1314 nm. To the best of our knowledge,
this represents the highest optical-to-optical efficiency achieved at 1314 nm to date and
the best slope efficiency for 797 nm pumping. When optimized for 1047 nm or 1053 nm
emission, measured slope efficiencies were 34.7 ± 0.9% and 43.5 ± 0.5%, respectively. Dual-
wavelength emission at 1047 + 1053 nm or at 1047 + 1314 nm resulted in slope efficiencies
of 38.9 ± 0.5% and 31.5 ± 0.5%, respectively, while 1053 + 1314 nm emission yielded a
value of 41.1 ± 0.4%. Finally, the triple-wavelength emission of 1047 + 1053 + 1314 nm
presented a slope efficiency of 42.5 ± 0.6% and an optical-to-optical efficiency of 38.4 ± 0.3.
Table 2 presents the results of peak output power, pulse width, slope efficiency, and optical
efficiency for each wavelength combination.

Table 2. Measured Nd:YLF monochromatic, bichromatic, and trichromatic laser results (* optical
efficiency calculated from slope efficiency).

Nd:YLF Laser
Laser Emission Regime

1314 nm 1047 nm 1053 nm 1047 + 1053 nm 1047 + 1314 nm 1053 + 1314 nm 1047 + 1053 +
1314 nm

Peak Output Power (W) 726 ± 3 434± 11 124 ± 1 514 ± 4 400 ± 9 102 ± 1 574 ± 3
Pulse width (µs) 342 ± 0.1 315 ± 1 338 ± 2 332 ± 0.2 314 ± 1 335 ± 1 331 ± 0.2
Slope efficiency (%) 53 ± 1 35 ± 1 43 ± 0.5 39 ± 0.5 31 ± 0.5 41 ± 0.4 42 ± 1
Optical efficiency (%) 49 ± 0.3 29 ± 1 40 ± 0.2 * 34 ± 0.3 27 ± 1 37.5 ± 0.2 * 38 ± 0.3

The provided peak output power and pulse width values include standard deviation
(SD) errors. Slope and optical efficiency values incorporate errors from curve fitting and
uncertainty propagation, respectively. The relatively low standard deviation (SD) values in
the peak output power demonstrate the stability and minimal power fluctuation between
different laser operation modes.

The unoptimized mirror reflectivity of M2 at 1047 nm and 1053 nm limits the efficiency
values achieved at these wavelengths. One could increase their efficiencies simply by
exchanging the order of placement of M2 and M3, but at the cost of the high-efficiency
emission at 1314 nm.

The M2 value was measured by the knife edge technique using 10/90 clip levels and a
correction factor of 1.561 to calculate the beam waist at 1/e2 [43,44]. Figure 6 shows the
measured and corrected beam waist of the 1314 nm emission as a function of the distance
from a spherical focusing lens with f = 40 mm. A similar curve fit was used to determine
the M2 for wavelengths at the 1.05 µm region.
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These M2 measurements were made for each wavelength during simultaneous triple
wavelength operation with near equal amplitude. To separate the beams, a combination
of a high-pass filter at 1.3 µm (Thorlabs, FELO1300), a HR mirror for 1.3 µm with high
transmission at 1.05 µm, and a polarizer to isolate the emissions of the 1.05 µm emission
were employed. For each wavelength, horizontal and vertical values were measured, all of
which are shown in Table 3.
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Table 3. M2 values 1047 nm, 1053 nm, and 1314 nm wavelengths.

Wavelength
M2

x y

1314 nm 4.2 ± 0.1 2.93 ± 0.4
1047 nm 2.4 ± 0.3 2.2 ± 0.4
1053 nm 4.1 ± 0.2 2.4 ± 0.1

Compared to other simple single-bounce, diode-pumped Nd:YLF lasers operating in
the 1 µm region, the achieved Mx

2 values of 2.4 at 1047 nm and 4.1 at 1053 nm perform
well [25,31]. The M2 values obtained for 1314 nm emission fare well when compared with
similar compact cavities, especially considering the absence of any configuration for beam
quality improvements, such as a DBMC or a larger resonator with intracavity cylindrical
lenses [28].

The advantage of achieving efficient triple-wavelength emission, without the need
for additional optical elements within the cavity, holds great value in the development of
compact, cost-effective, and versatile lasers suitable for a wide range of applications. This
is particularly evident in its application within χ2 nonlinear phenomena, including Second
Harmonic Generation, Sum Frequency Generation, and Difference Frequency Generation.
These nonlinear processes allow for wavelength transformations, leading to a diverse range
of multichromatic visible- and near-infrared (NIR) radiation, producing frequencies as low
as 1.6 THz, using DFG for the 1047 + 1053 nm emission, and extend to 58 THz by employing
SFG for the 1047 + 1314 nm emission, for example. Furthermore, although considerably
more challenging, nonlinear transformations with triple-wavelength emission have the
potential to generate radiation up to the 800 THz range when combined with SFG.

4. Conclusions

Simultaneous triple-wavelength emission at 1047 + 1053 + 1314 nm of a side-pumped
Nd:YLF laser in a simple and compact cavity is presented for the first time. The wavelength
selection of single, double, and triple-wavelength operation was made exclusively by
cavity alignment and delivered a record slope and optical-to-optical efficiency of 53%
and 49%, respectively, when optimized for the single 1314 nm emission, representing the
highest efficiency achieved at this wavelength while pumped at 797 nm. Meanwhile, other
wavelength operations remained, in all cases, above 31% of slope efficiency.

The beam qualities of all three wavelengths fare well when compared with related
works. However, they could be further improved by employing techniques such as double-
beam mode controlling the cavity or increasing the crystal’s laser mode size by applying
cylindrical intracavity lenses. The resonator shows good promise for passive Q-switch
applications, especially with broadband saturable absorbers such as V3+:YAG. The high-
peak power multichromatic emission could facilitate the operation of a compact, multi-
wavelength laser in the visible NIR and infrared by using non-linear processes such as
SHG, DFG, and SFG.
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