Assessment of ²³⁸U and ²²⁶Ra activity concentration along the Amazon Tall Tower Observatory site

B. Tappiz¹, P. S. C. Silva¹, C. K. Ostermann¹, N. P. Lima¹, L. N. M. Braguin¹, S. Botía², I. Levin³, O. V. Bustillos¹

¹Instituto de Pesquisas Energéticas e Nucleares (IPEN – CNEN/SP). Av. Professor Lineu Prestes 2242, 05508-000-São Paulo, Brasil. email: brunotappiz@usp.br

²Max-Planck-Institut für Biogeochemie, Jena, Deutschland

³Institut für Umweltphysik, Universität Heidelberg, Heidelberg, Deutschland

Keywords: 226-radium, 222-radon, ATTO tower, soil analysis

The Amazon Tall Tower Observatory (ATTO) site is a region located within the Uatumã Sustainable Development Reserve (USRD), approximately 150 km northeast of Manaus city, in the Brazilian state of Amazonas. At the ATTO site, there are 3 tall towers, which are used for studies on the Amazon rainforest and its interaction with the soil and the atmosphere. The activity concentration of ²³⁸U and ²²⁶Ra was determined in soil samples collected in the footprint of the ATTO site by gamma spectrometry. The activity concentration of these radionuclides is important for understanding the ²²²Rn exhalation rate and ²²²Rn flux from soils. Knowledge of the ²²²Rn flux at the ATTO site can be useful for applications in atmospheric research, e.g., the ²²²Rn tracer method can be used to estimate local and regional emissions of greenhouse gasses; simulating 222Rn transport is a powerful tool for evaluation and validation of transport schemes in atmospheric chemical transport models. In this study, 39 samples collected from 13 sampling sites along a transect from the ATTO site to the river were analyzed. The highest activity concentrations were found in the Igapó forest (69 \pm 2 Bq/kg for ²³⁸U and 47 \pm 5 Bq/kg for ²²⁶Ra), a region near the Uatumã river with prevailing flooded black-water forest, whereas the lowest activity concentrations occurred in the Campina (Savanna on white-sand soils) and Campinanara (white-sand forest) ecosystems (18 ± 1 Bq/kg for 238 U and 13 ± 2 Bq/kg for ²²⁶Ra), a transition area located between river terraces and the Terra Firme forest.