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This paper compares the performance of CaSO4:Dy and LiF dosimeters irradiated with a 15 MV photon
beam of a clinical linear accelerator to 0.1-10 Gy in a liquid water. The dose-response curves are linear
up to 5 Gy. The average TL sensitivity of CaSO,4:Dy is 26 and 287 times higher than the sensitivities of
LiF:Mg,Ti and microLiF:Mg,Ti, respectively. CaSO4:Dy has an intrinsic efficiency 71% and 94% higher
than the intrinsic efficiencies of LiF:Mg,Ti and microLiF:Mg,Ti, respectively.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

An important requirement in radiation therapy is that cancer-
ous tissues are irradiated uniformly and precisely to the radiation
dose prescribed by the oncologist. The objective of radiotherapy
dosimetry is to determine the absorbed dose to the patient by
calibrating the radiation beam. This is important because keeping
the dose variation within + 5% is crucial for reducing the risk
of sequelae or recurrences. An effective and accurate calibration
of the radiation beam ensures knowledge of the radiation dose
delivered to the patient, supporting overall efforts towards
successful radiotherapy. The small size, high sensitivity and
linearity of response over a wide range of useful doses are some
of the advantages of thermoluminescent dosimeters used for this
purpose (Metcalfe et al., 2007; Nelson et al., 2010).

Thermoluminescent dosimeters (TLD) have been used for a
long time (Eggermont et al., 1971; Gooden and Brickner, 1972;
Hufton, 1984). Due to the high sensitivity of thermoluminescent
materials and a possibility of constructing robust detectors of various
shapes and sizes, thermoluminescence dosimetry has become a
useful tool in radiation oncology, particularly for measurements in
regions of high dose gradients (Duch et al., 1998; Venables et al.,
2004). Optimization of dose distribution in patients is essential for
controlling the risks associated with exposure to radiation (Kron,
1999). A research performed in the United States revealed that
about 50% of hospitals and 90% of academic institutions used
thermoluminescence for in vivo dosimetry (Kron, 1999).
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The most common thermoluminescent material used in radio-
therapy is lithium fluoride (LiF), usually in the form of TLD-100
marketed by Harshaw (Olko et al., 2006; Livingstone et al., 2010;
Nelson et al., 2010). Another thermoluminescent material,
calcium sulfate doped with dysprosium (CaSO4:Dy), has a linear
dose response over a wide range from micrograys to grays
(Campos and Lima 1987). Due to its high sensitivity, CaSO4:Dy
has been used in radiation protection dosimetry for a long time
(Campos, 1983; Campos and Lima 1987), and recent studies have
evaluated its performance in photon and electron beams used in
radiation therapy (Nunes and Campos, 2008; Matsushima, 2010;
Bravim et al., 2011). This dosimeter is manufactured and mar-
keted by the Dosimetric Materials Laboratory of the Center of
Radiation Metrology at IPEN.

In radiation therapy, dose measurements in tissue-equivalent
phantoms are more accurate than measurements in the air
(McKeever, 1985). The aim of this study was to evaluate the TL
response of CaSO,4:Dy, LiF:Mg,Ti and microLiF:Mg,Ti dosimeters to
doses from 15-MV clinical photon beams in a liquid-water
phantom.

2. Materials and methods

Before irradiation, 200 CaSO4:Dy TL dosimeters used in
this study were heated at 300° C for 3 h in a VULCAN furnace
(Model 3-550 PD). Sets of 80 microLiF:Mg,Ti and 160 LiF:Mg,Ti TL
dosimeters were preheated at 400° C for 1 h in the same furnace
and then at 100° C for 2 h in a FANEN furnace (Model 315-IEA
11200). Three cycles of heat pretreatment, irradiation in air with a
60Co gamma-radiation source (656.4 MBq) under electron-equili-
brium conditions and TL reading were carried out. The individual
and average TL responses of the dosimeters were measured with a
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Harshaw TL reader (Model QS 3500). Based on the results of these
measurements, the dosimeters were sorted in five groups accord-
ing to their sensitivity.

A Varian Clinac 23EX linear accelerator operating at 15 MV
was used. Five dosimeters of approximately identical sensitivity
were positioned in water at the depth of 5cm in a PMMA
phantom (40.0 x 40.0 x 40.0 cm?). The dosimeters were irradiated
to doses from 0.1 to 10 Gy. The field size at the water surface
was 10 x 10 cm?, and the source-surface distance was 100 cm.
TL readings were performed 24-32 h after the irradiation. Each
value quoted in this paper is the average of measurements of five
CaS04:Dy, LiF:Mg,Ti or microLiF:Mg,Ti dosimeters of the same
sensitivity group, and the error bars represent the standard devia-
tions of the mean (1a). The intrinsic efficiency (IE) is defined as

E= . (1)
where A is the slope of the linear least-squares fit provided by
Origin 7.0 and m is the mass of the dosimeter.

3. Results

Fig. 1 shows responses of the dosimeters to doses in liquid
water at the depth of 5 cm. The dependences of the responses on
dose are linear in the range from 0.1 to 5 Gy. Fig. 2 confirms
supralinear deviations at doses beyond 5 Gy. This behavior is
similar to what was observed with a 6-MeV electron beam in
Solid Water™ and PMMA phantoms (Bravim et al., 2011). The TL
sensitivities of CaSO,4:Dy dosimeters ranged from 17.41 4+ 0.25 to
22.61+0.06 uC Gy~ L. In the case of LiF:Mg,Ti, the sensitivity
varied from 0.6543 + 0.0036 to 0.7565 + 0.0036 uC Gy~ !, and in
the case of microLiF:Mg,Ti, the range was from 0.0612 + 0.0009 to
0.0737 +0.0008 uC Gy~ .

The intrinsic efficiencies of the CaSO4:Dy, LiF:Mg,Ti and micro-
LiF:Mg,Ti dosimeters in the 15-MV clinical photon beam and
the liquid-water phantom were 1.30+0.13 uCGy~ ' mg~ !,
03677 +0.3819 uC Gy~ ' mg~"' and 0.0712 + 0.0075 uC Gy~ 'mg~",
respectively. As for the response reproducibility, the relative standard
deviations of readings of the replicate dosimeters were found to be
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Fig. 1. Dose-response curves for the CaSO,4:Dy and LiF:Mg,Ti TL dosimeters.
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Fig. 2. Average TL sensitivity of the CaSO4:Dy and LiF:Mg,Ti TL dosimeters.

within 1.25%, 0.812% and 2.08% for the CaSO4:Dy, LiF:MgTi and
microLiF:Mg,Ti dosimeters, respectively.

4. Conclusions

The dose-response curves were found to be linear in the
photon dose range from 0.1 to 5 Gy. The dependence is supra-
linear at higher doses. The CaSO4:Dy dosimeters are 26 and 287
times more radiation-sensitive than the LiF:Mg,Ti and micro-
LiF:Mg,Ti dosimeters, respectively. The intrinsic efficiency of
CaS04:Dy is 3 times higher than that of LiF:Mg,Ti and 18 times
higher than that of microLiF:Mg,Ti.

As the CaSO,4:Dy dosimeters produced by the Instituto de
Pesquisas Energéticas e Nucleares/IPEN respond to doses in the
same way as LiF:Mg,Ti and microLiF:Mg,Ti, but have higher
sensitivity and intrinsic efficiency, they can be a viable alternative
in radiotherapy dosimetry.
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