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a  b  s  t  r  a  c  t

Toxoplasma  gondii  is  an  obligate  intracellular  parasite  that  infects  a variety  of  mammals  and  birds.  T.
gondii  also  causes  human  toxoplasmosis;  although  toxoplasmosis  is  generally  a benign  disease,  ocular,
congenital  or  reactivated  disease  is  associated  with  high  numbers  of  disabled  people.  Infection  occurs
orally  through  the ingestion  of  meat  containing  cysts  or by  the intake  of food  or  water  contaminated
with  oocysts.  Although  the immune  system  responds  to acute  infection  and  mediates  the  clearance  of
tachyzoites,  parasite  cysts  persist  for the  lifetime  of the  host  in  tissues  such  as  the  eye,  muscle,  and  CNS.
However,  T.  gondii  RH  strain  tachyzoites  irradiated  with  255  Gy do not  cause  residual  infection  and  induce
the same  immunity  as  a natural  infection.  To  assess  the  humoral  response  in BALB/c  and  C57BL/6J  mice
immunized  with  irradiated  tachyzoites  either  by oral  gavage  (p.o.)  or intraperitoneal  (i.p.)  injection,  we
analyzed  total  and  high-affinity  IgG  and  IgA antibodies  in  the  serum.  High  levels  of  antigen-specific  IgG
were  detected  in  the  serum  of  parenterally  immunized  mice,  with  lower  levels  in mice  immunized  via
the oral  route.  However,  most  serum  antibodies  exhibited  low  affinity  for antigen  in both  mice  strain.  We
also found  antigen  specific  IgA  antibodies  in  the stools  of  the  mice,  especially  in  orally  immunized  BALB/c
mice.  Examination  of  bone  marrow  and  spleen  cells  demonstrated  that both  groups  of  immunized  mice
clearly  produced  specific  IgG,  at levels  comparable  to  chronic  infection,  suggesting  the generation  of  IgG
specific  memory.  Next,  we  challenged  i.p.  or p.o. immunized  mice  with  cysts  from  ME49,  VEG or P  strains

of  T.  gondii.  Oral  immunization  resulted  in  partial  protection  as compared  to  challenged  naive  mice;
these  findings  were  more  evident  in highly  pathogenic  ME49  strain  challenge.  Additionally,  we  found
that  while  mucosal  IgA  was  important  for  protection  against  infection,  antigen-specific  IgG  antibodies
were  involved  with  protection  against  disease  and disease  pathogenesis.  Most  antigen  responsive  cells
in culture  produced  specific  high-affinity  IgG  after  immunization,  diverse  of the  findings  in  serum  IgG  or

 whic
from cells  after  infection,

. Introduction

The causative agent of toxoplasmosis, Toxoplasma gondii,  is an
bligate intracellular protozoan parasite that is of significance as it
nfects a wide variety of animals in addition to humans. Although

pproximately 40% of adults worldwide exhibit evidence of T. gondii
nfection, toxoplasmosis is usually an asymptomatic disease in nor-

al  individuals. Disease occurs in two stages, the acute phase,
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characterized by rapid tachyzoite proliferation that can occasion-
ally cause symptoms, and the chronic phase, where the parasites
form cysts that can remain in tissues throughout the lifetime of the
host [1].  In AIDS, transplant, oncologic or other similarly immuno-
suppressed patients, toxoplasmosis can be severe, and encephalitis
is the leading cause of death in these individuals [2].  Congenital
toxoplasmosis is also of great clinical importance. It occurs in acute
maternal infection during pregnancy and affects the foetus, result-
ing in foetal malformations, central nervous system impairment,
and blindness; further, vertical transmission of virulent tachyzoites

through the placenta can lead to spontaneous abortion [3].

In livestock, infection with T. gondii has economic importance
due to neonatal loss predominately in sheep and goats [4].  Fur-
thermore, eating raw or undercooked meat from infected animals

dx.doi.org/10.1016/j.imlet.2011.04.007
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s the main source of parasite transmission to humans [5].  Another
mportant route of infection is the ingestion of vegetables or water
ontaminated with oocysts eliminated by cats.

Chronic infection is similar in humans and animals and results
n lifelong immune protection against reinfection [6];  specific
mmunity against T. gondii infection involves both cellular [7] and
umoral [8] mechanisms. Studies evaluating immune responses to
oxoplasmosis vaccines based on recombinant proteins or attenu-
ted or mutant parasites have reported varying levels of vaccine
fficacy [9].

A live vaccine based on attenuated parasites, TOXOVAX®

Schering-Plough, Walton, Greater, London, England) is currently
eing used in animals in New Zealand; however, the vaccine does
ot exhibit high levels of protection and the logistics of immunizing
nimals in countries far from the site of vaccine production are dif-
cult [10]. Other attempts using intact altered parasites provided
romising results, as thermosensitive mutants [11] or parasites
efective in pyrimidine salvage pathways parasites [12].

Vaccines containing gamma-irradiated parasites have been used
uccessfully for both helminths [13] and protozoa [14]. T. gondii
achyzoites that have been irradiated at a dose of 255 Gy with
obalt-60 maintain most biological features, including the preser-
ation of cellular structures, DNA and protein synthesis, and the
bility to invade mammalian cells; however, irradiated parasites
ose reproductive capacity and undergo mitotic death after host
ell invasion. Mice immunized with irradiated parasites show high
evels of protection against challenge with T. gondii ME49 strain
ysts [15], although immunization with gamma  irradiation T. gondii
achyzoites does not promote infection, it induces immunity simi-
ar to natural infection with no residual tissue cysts.

Even though all aspects of an immune response should be ana-
yzed to evaluate a vaccine [9],  most studies assess only one portion.
or example, TOXOVAX® (Schering-Plough, Walton, Greater Lon-
on, England) vaccination was evaluated by examining antigen
pecific IgG antibody responses by Western blot [16]. Further, while
tudies with recombinant products generally only assess antigen-
pecific antibody responses [17], few studies are devoted to cellular
esponses or the immune memory of vaccinated animals [18].

The induction of humoral immune memory is very important
or the success of a vaccine; and memory B cells are strategically
ocated in places where antigen drainage occurs, including the
pleen, mucosal epithelium and bone marrow [19]. Secondary lym-
hoid tissues such as the spleen, lymph nodes, and lymphoid tissues
ssociated with mucosal surfaces provide an important environ-
ent for the development of immune response. These sites are

ssential for interactions between antigen presenting cells, T cells,
 cells and other accessory cells; cooperation between these cells
esults in an effective humoral immune response [20]. Although

 primary lymphoid organ, the bone marrow may  also serve as a
econdary lymphoid organ [21], and also participate in the induc-
ion of humoral immune responses [22]. Circulation memory B
ells and neutralizing antibodies provide the first line of defence
gainst various pathogens [23]. Humoral immunity after vacci-
ation or infection predominately results from two cell types:
lasma cells and memory B cells. Plasma cells maintain a basal
roduction of antibodies, while memory B cells can proliferate

n response to antigenic stimulation [24]. Affinity maturation of
ntibodies occurs during the primary response, with initial pro-
uction of low affinity antibodies being replaced over the course
f the immune response by the production of high-affinity antigen
pecific antibodies [25]. All these steps can be identified by anti-
en proliferation assays, which assess antigen driven proliferation

f memory cells (immune memory) and the consequent produc-
ion of antibodies or cytokines from these cells [26], especially for
umoral immune response, allowing quantification and avidity of
hose antibodies.
tters 138 (2011) 187– 196

We  studied the immune memory in infection and after immu-
nization with irradiated tachyzoites in Toxoplasma mouse models.
We evaluated antibody-producing cells in the spleen and bone
marrow and the avidity of these antibodies, compared with the
production and avidity of antibodies in the serum. Additionally,
we evaluated the IgA levels in the stools of immunized animals,
in order to evaluate the protection induced by immunization after
challenge with different strains that have distinct genetic profiles.
All those findings were related to protection from infection or dis-
ease in immunized mice challenged with ME49, VEG and P T.gondii
strains.

2. Material and methods

2.1. Parasites and animals

Four cryopreserved strains of T. gondii RH (I), ME49 (II), VEG (III)
and P (III) were maintained in liquid nitrogen and recovered by
passage in mice (Protozoology Laboratory, IMTSP). Isogenic 20 g
young BALB/c and C57BL/6J male mice were obtained from our
colony (Bioterism Center of School of Medicine of University of São
Paulo), and maintained in sterilized cages with commercial food
(Nuvital® – Nutrients Nuvital S/A, Colombo, PR, Brazil) and water
were provided ad libitum. Animal manipulation was  conducted
in accordance with the rules for the care of laboratory animals
and with the “Principles of Ethics in Animal Experimentation” –
Brazilian Society of Laboratory Animal Science SBCAL). All animal
protocols were submitted and approved by the Animal Experimen-
tation Ethic Council – Institute of Biomedical Sciences/University of
São Paulo (ICB/USP).

2.2. Irradiation and immunization

Viable irradiated tachyzoites were produced as previously
described [15]. Briefly, T. gondii RH strain tachyzoite were obtained
from the peritoneal cavity of infected mice i.p. by phosphate
buffered saline (PBS) washings. Parasite suspensions were filtered
through a 5 �m polycarbonate filter and maintained in ice-cold
baths until the moment of irradiation with 255 Gy from a uniform
source of 60 Cobalt (-rays (Gammacell®, Atomic Energy of Canada,
Pinawa, Canada). Sham non-irradiated parasites were also pro-
duced and both suspensions were cryopreserved in liquid nitrogen.
Mice in groups of 5 were immunized with 3 biweekly doses of 107

irradiated tachyzoites; parasites were administered either by i.p.
injection or by oral gavage of 107 irradiated tachyzoites suspended
1:1 (v/v) in 6% aluminium hydroxide.

2.3. Stools collection and processing

The stools of immunized animals were collected three times
per week during the immunization period by removing mice to
individual cages without absorbent bedding for one hour. Stool
pellets were collected and homogenized in 10 volumes of PBS pH
7.2, containing 0.05% Tween 20 and 0.1 �M phenyl methyl sulfonyl
fluoride (PBSTP) in an ice bath. Next, faecal extracts were cen-
trifuged at 10,000 × g for 3 min  at 4 ◦C; supernatants were collected
and immunoglobulins were recovered by precipitation in neutral
50% ammonium sulphate for 1 h in an ice bath. Samples were cen-
trifuged at 10,000 × g for 3 min  to recover globulin pellets; pellets

were then washed with 1 volume of ice-cold 50% ammonium sul-
phate in PBS and recentrifuged. Supernatants were drained and the
pellets were resuspended in the original stool volume of PBSTP and
stored at −20 ◦C prior to the specific immunesorbent assay.
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.4. T. gondii antigen preparation, ELISAs and antibody affinity
etermination

T. gondii RH strain tachyzoites were harvested from the peri-
oneal cavities of previously infected mice using PBS washes;
uspensions were filtered through a 5 �m polycarbonate filter, par-
sites were recovered by centrifugation, counted and recentrifuged.
ellets were suspended in ice-cold water at a parasite density of
08 tachyzoites/mL and submitted to sonication until complete cell

ysis. Next, 1 volume of 0.3 M NaCl was added to the lysed sus-
ensions and suspensions were centrifuged at 10,000 × g for 3 min
t 4 ◦C. Supernatant were harvested and used as T. gondii antigen
fter determination of protein concentration. ELISA plates were
oated overnight at 4 ◦C with 1 �g protein/mL of T. gondii anti-
en in 0.05 M carbonate buffer, pH 9.0. Plates were washed with
BST (PBS containing 0.05% Tween-20) for 5 min  and blocked with
.3% milk in PBST for 1 h at 37 ◦C. After blocking, serum or stool
lobulins diluted in PBST were added. To test for IgG avidity, an
dditional step of 15 min  incubation with a 6 M urea chaotrope
olution was added for the removal of low avidity antibodies.
ext, plates were washed and appropriately diluted anti-mouse

gG or IgA peroxidase-conjugated antibodies were added (Sigma®

 Sigma–Aldrich Co., St. Louis, MO,  USA). After further washes,
ound IgG was revealed with by the o-phenylenediamine sys-
em for 1 h; reactions were stopped by adding 4 M hydrochloric
cid (HCl). Absorbance at 492 nm was determined using an auto-
atic microplate reader (Multiskan MS® Labsystems, Vienna,
SA).

.5. In vitro induced antibody production (IVIAP) by spleen and
one marrow cells

All steps were conducted in laminar flow hood with sterile han-
ling. Sterile 96-well flat-bottom plates were coated overnight at
◦C with sterile 10 �g/mL T. gondii antigen in 0.1 M carbonate
uffer, pH 9.6. Plates were washed with PBST and blocked with
terile 2% bovine serum albumin (BSA) in PBS for 1 h at 37 ◦C. After
locking, plates were washed with sterile saline. Serum, spleen
nd bone marrow cells were obtained from mice immunized with
rradiated T. gondii tachyzoites, mice infected with ME49 strain
nd control mice that were not immunized. Harvested organs
ere dissociated with needles in RPMI 1640 culture medium with

mphotericin B, 5 mg/mL; penicillin, 500 UI/mL; streptomycin,
00 mg/mL; and �-mercaptoethanol (complete culture medium).
uspensions were filtered through gauze for removal of debris
nd isolated cells were recovered by centrifugation at 1000 × g
or 15 min. Pelleted erythrocytes were lysed by suspension in
olume of 0.15 M ammonium chloride, sodium bicarbonate and
.5 M EDTA pH 7.4. After centrifugation at 1000 × g for 15 min,
upernatants were discarded and cells were resuspended in 1 mL
f complete culture medium; cells were counted in a Neubauer
hamber. Cell concentrations were adjusted to 107 cells/mL in
omplete culture medium and plated into pre-coated plates at

 density of 106 cells/well. Next, complete culture medium with
0% foetal bovine serum and 10 �g/mL of the T. gondii antigen
as added. Cells were incubated in 5% CO2 at 37 ◦C for periods of

 h, 4 days or 6 days. For avidity IVIAP, at this step an additional
ashing was performed with 6 M urea chaotrope solution. Plates
ere washed with PBST, and anti-mouse peroxidase-conjugated

gG was added in a volume of 100 �L/well; plates were then
ncubated for 1 h at 37 ◦C for 15 min. After further washings,
etramethylbenzidine (TMB) and hydrogen peroxide (H2O2) were

dded for 30 min. Reactions were stopped with 1 M sulphuric
cid, and absorbance 450 nm was determined using an auto-
atic microplate reader (Multiskan MS® Labsystems, Vienna,
SA).
tters 138 (2011) 187– 196 189

2.6. Challenge of immunized mice

Infective T. gondii ME49, P and VEG cysts were obtained from
the brains of chronically infected mice. Briefly, after a minimum of
30 days of infection, mice were sacrificed, and their brains were
removed and homogenized in 10 mL  of sterile saline. Cysts counts
were performed using a phase contrast microscope. Immunized or
control mice were challenged with 10 cysts of the respective strain
administered by oral gavage 15 days after the last immunizing dose;
mice were observed for daily survival determination. After 30 days,
surviving animals were sacrificed and brain cysts were counted
by microscopy. Infection was  defined as cyst presence and disease
was expressed as cysts/brain in each challenged animal. We  also
defined infection protection as the proportion of challenged non-
infected animals and disease protection as the percent decrease of
cyst counts in brains of the immunized animals after challenge.

2.7. Statistical analysis

Comparisons of quantitative values, such as the percentage
of avidity, antibody concentration, and the number of antibody-
producing cells in the different groups were performed using the
ANOVA test, after checking the homogeneity of variances. In the
absence of this homogeneity, we used the nonparametric Kruskal
Wallis test. Comparisons between groups were performed by post-
test Bonferroni and Dunn tests, respectively. Comparisons were
considered significant when a probability of equality was  less than
5% (p < 0.05). The relationships between the various quantitative
values were made using Pearson correlation with the same sig-
nificance. All statistical estimates were made using the statistical
package GraphPad Prism5.0® (GraphPad Software, Inc., San Diego,
CA, USA).

3. Results

3.1. Humoral immune responses in the serum of BALB/c and
C57BL/6J mice immunized by i.p. injection or oral gavage of
irradiated T. gondii tachyzoites

We analyzed humoral immune responses induced by immu-
nization with irradiated T. gondii tachyzoites by measuring the
levels and avidity of IgG antibodies in the serum. We  immunized
groups of 5 BALB/c or C57Bl/6J mice according to the protocol
described in Section 2.1; stools were collected throughout the
experiment, and serum was collected 15 days after the last immu-
nization. Mice infected with 10 T. gondii ME49 cysts by oral gavage
were sacrificed 45 days after infection and used as positive controls.
Serum and globulin stool fractions were tested in the anti-T. gondii
IgA and IgG ELISA (Fig. 1).

3.1.1. Antigen-specific IgG in the serum
The production of antigen specific IgG antibodies in the serum

of the immunized mice is shown in Fig. 1A; data represents one
of four experiments. BALB/c mice immunized i.p. had higher serum
levels of specific IgG antibody compared to mice immunized by oral
gavage. Serum antigen-specific IgG levels in BALB/c mice immu-
nized i.p. were similar to levels in control mice infected with strain
ME49. Although animals immunized by oral gavage presented low
levels of serum IgG, IgG levels were clearly higher than uninfected
controls. C57BL/6J mice immunized i.p. showed serum levels of

IgG intermediate between naive and ME49 infected mice. Over-
all, animals immunized by oral gavage failed to show significant
serum levels of specific IgG compared to ME49 infected controls.
Additionally, these data show significant production of IgG in mice
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ig. 1. Detection of total IgG antibodies (A), high-avidity IgG antibodies (B), IgA a
njection or by oral gavage with 107 T. gondii RH strain tachyzoites irradiated wit
resence of an asterisk indicates a significant difference (*p < 0.05) between infectio

mmunized i.p.; however, variations exist depending on mouse
train.

.1.2. High avidity IgG in the serum
In addition to testing for total IgG, the same serum samples

ere tested for the detection of high-avidity antigen-specific IgG
Fig. 1B). BALB/c and C57BL/6J mice immunized by i.p. injection
howed significant serum levels of high-avidity antibodies when
ompared to naive controls. However, both mice strains immunized
y oral gavage failed to exhibit significant levels of high-avidity IgG

n the serum. Mice infected with T. gondii strain ME49 had higher
evels of high-avidity IgG in serum. Thus, our data show that immu-
ization by oral gavage is not effective in inducing the production
f high-affinity antibodies.

.1.3. Antigen specific IgA in the serum
The presence of specific IgA was also studied in same serum sam-

les (Fig. 1C). Immunized BALB/c mice had higher levels of antigen
pecific IgA in the serum as compared to immunized C57BL/6J mice.
nterestingly, both strains of mice exhibited similar levels of anti-
odies for both i.p. and oral gavage immunization routes, which

s different from the IgG results. Animals infected with T. gondii
train ME49 had the highest levels of specific IgA in the serum. Thus,
mmunization induces increased IgA levels in serum independently
f the route of inoculation.

.1.4. Anti-T. gondii specific IgA humoral responses in the stool
To evaluate intestinal mucosal immune responses, we  exam-
ned antigen specific IgA in the stools of immunized mice. Stool
gA was measured throughout the immunization process and the
esults are shown in Fig. 1D. Quantitative data were compared at
he end of the immunization schedule but also during the immu-
ies (C) in the serum and S-IgA antibodies in stools (D) of immunized mice by i.p.
 Gy of source 60 Cobalt. Bars represent the mean and standard deviation, and the
hout immunization.

nization to search for a plateau response. BALB/c mice immunized
by oral gavage showed higher IgA levels in the stools as compared to
BALB/c mice immunized i.p.; stool IgA levels in mice immunized by
oral gavage rapidly established a plateau in production. Regardless
of the route of immunization, C57BL/6J mice had lower Secretory
immunoglobulin A (S-IgA) secretion and were delayed in reach-
ing a level of stabilization compared to BALB/c mice. Additionally,
we observed that the measurement of S-IgA in stools was  highly
variable due to issues related to measurement of faecal volume,
faecal composition, and aspects related to excretion; further, IgA
could be subjected to degradation by proteases from either the host
or luminal intestinal bacteria. Despite these limitations, it is clear
that BALB/c mice exhibit strong IgA independent of the route of
immunization.

3.2. In vitro IgG production (IVIAP) by spleen and bone marrow

3.2.1. Direct ex vivo in vitro IgG production
The direct ex vivo production of T. gondii-specific IgG from bone

marrow and spleen cells in a 3 h culture was assessed as described
in Section 2.5.  Antigen-specific IgG production was evaluated in
groups of 5 mice (BALB/c or C57Bl/6J) immunized by i.p. injection
or by oral gavage. Additionally, 5 ME-59 infected C57Bl/6J mice
were used as controls, similar to the previously described protocol
for detecting serum IgG (Section 2.4). We  show in Fig. 2 a com-
pilation of data from three similar experiments. Spleen and bone
marrow cells from BALB/c and C57BL/6J mice immunized either by
i.p. injection or oral gavage exhibited a direct ex vivo production of

T. gondii-specific antibodies regardless cell reproduction. In BALB/c
mice immunized by i.p. injection, the direct ex vivo production of
IgG antibodies by cells from bone marrow and spleen cells was
higher compared to same mice immunized by oral gavage (Fig. 2A).
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Fig. 2. Detection of IgG antibody production by bone marrow cells and spleen cells
in  BALB/c and C57BL/6J mice immunized either i.p. or orally with 107 T. gondii RH
strain tachyzoites irradiated with 255 Gy from 60 Cobalt source. (A) In vitro direct
ex vivo production after 3 h of culture. (B) Antigen-specific IgG production after 6
days  of in vitro cell culture. The symbols represent single measurements of antibody
production by cells from bone marrow (open symbols) and spleen (closed sym-
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Fig. 3. Detection of high-avidity IgG antibodies after 24 h in vitro culture from bone
marrow (open symbols) or spleen (closed symbols) cells from BALB/c or C57BL/6J
mice immunized either i.p. or orally with 107 T. gondii RH strain tachyzoites irra-
diated with 255 Gy from a Cobalt 60 source. Additionally, mice were infected with
ols). Bars represent the mean and standard deviation. (*) represents a significant
ifference compared to ME49 infected mice. (#) represents a significant difference
etween routes of inoculation in the same mice strain.

n C57BL/6J mice, we observed that both routes of immunization
nduced similarly low levels of antigen-specific IgG antibody pro-
uction by bone marrow cells; however, spleen cell production of
ntigen-specific IgG was higher in mice immunized by i.p. injection
ompared to mice immunized by oral gavage (Fig. 2A). Compared
o mice sacrificed 45 days after ME49 strain oral infection, i.p.
mmunized mice had smaller direct ex vivo production of IgG by
one marrow cells, however, this effect was not seen in spleen
ells.

.2.2. Late production of antigen-specific IgG from bone marrow
nd spleen cells

In order to examine the influence of continued cell–cell inter-
ctions and the possible selection of antigen responsive cells,
pleen and bone marrow cells from the groups of immunized mice
ere also submitted to a longer culture period of 6 days. In vitro
roduction of T. gondii-specific IgG increased in all groups, with
reatest production of antibodies occurring after 6 days of cul-
ure (Fig. 2B). This result suggests a higher number of committed
nti-T. gondii cells in these organs. BALB/c mice immunized by i.p.
njection also showed greater production of antigen-specific IgG
rom both spleen and bone marrow cells after extended periods
f culture compared to BALB/c mice immunized by oral gavage
Fig. 2B). In C57BL/6J mice, antigen-specific IgG production by
one marrow cells was similar and independent of immuniza-
ion route; however, spleen cells from C57Bl/6J mice immunized

y oral gavage produced more specific IgG than spleen cells from
57Bl/6J mice immunized by oral gavage. Compared to ME49

nfected mice that were used as controls 45 days after infection,
oth i.p. immunized BALB/c or C57Bl/6J mice presented similar lev-
ME49 strain of T. gondii.  Bars represent the mean and standard deviation. (*) rep-
resents a significant difference compared to ME49 infected mice. (#) represents a
significant difference between routes of inoculation in the same mice strain.

els of late in vitro IgG production from spleen and bone marrow
cells.

3.2.3. In vitro production of high-avidity antigen-specific IgG
Next, we  wanted to assess the avidity of the antigen-specific

IgG produced in ex vivo spleen and bone marrow cell cultures. Cells
were cultured for 24 h ex vivo and high-avidity antibody production
in the supernatants was assessed using an ELISA that was adapted
to remove low avidity antibodies by adding a chaotrope wash step
(Fig. 3). Bone marrow and spleen cells from mice immunized either
by i.p. injection or by oral gavage produced significant levels of
high-avidity IgG (Fig. 3). According to the route of immunization,
bone marrow cells from i.p. immunized C57BL/6J mice produced
higher levels of antigen-specific IgG when compared to C57BL/6J
mice immunized by oral gavage, similar to our earlier findings (Sec-
tion 3.2.1). Antigen-specific IgG production from spleen cells was
equivalent in BALB/c and C57BL/6J mice, regardless of route of inoc-
ulation; however, antibody production was lower than production
in spleen cells from infected mice with ME49 strain (p < 0.001). In
these infected mice, antigen-specific IgG production by bone mar-
row cells was higher than by spleen cells (p < 0.0001). Our data
support the concept that high-avidity memory immune cells are
located mostly in bone marrow. Additionally, our findings sug-
gest that while high-avidity memory immune cells are primarily
generated during infection, low levels are also generated by immu-
nization protocols.

3.3. Immune protection in immunized mice from challenge with
genetically distinct strains of T. gondii

3.3.1. Quantitative protection
To assess the protective efficacy of the different immunization

protocols we challenged groups of five immunized mice with three
different and genetically diverse strains of T. gondii.  In these exper-
iments, protection was defined as the number of cysts present in
the brain; results are depicted in Fig. 4. The numbers of brain cysts
at 30 days after challenge or infection are shown in Fig. 4. Both
BALB/c (Fig. 4A) and C57BL/6J (Fig. 4B) immunized mice exhibited
a clear decrease in brain cyst numbers compared to mice infected
without immunization. In ME49 strain infections, C57Bl/6J mice
had higher cyst numbers compared to BALB/c mice. Interestingly,

BALB/c mice exhibited similarly low numbers of brain cysts regard-
less of the T. gondii strain used in the challenge. Mice immunized
by oral gavage had higher numbers of brain cysts as compared to
their counterparts immunized by i.p. injection.
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Fig. 4. Numbers of brain cysts of immunized BALB/c mice (A) and C57BL/6J mice (B) immunized either i.p. or orally with 107 T. gondii RH strain tachyzoites irradiated with
2 r VEG stain. Solid symbol: i.p. immunization; empty symbol: oral gavage immunization;
s eviation, and the presence of an asterisk indicates a statistically significant difference
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Table 1
Qualitative distribution of absolute protection (lack of infection) in mice immunized
with irradiated T. gondii tachyzoites and challenged with 3 different strains of T.
gondii.

Strain Immunization Protection (infected mice/total
challenged)

BALB/c C57BL/6J

ME49 None 0 (5/5) 0 (4/4)
Per os 80% (1/5)* 0 (3/3)
i.p. 80% (1/5)* 0 (5/5)

VEG None 0 (15/15) 8% (11/12)
Per  os 25% (9/12) 40% (9/15)
i.p. 53% (7/15)* 75% (3/12)*

P None 0 (15/15) 13% (13/15)
Per os 40% (9/15)* 53% (7/15)*
55  Gy from a Cobalt 60 source and challenged with 10 cysts of T. gondii ME49, P o
ymbol  with point: ME49 infected mice. Bars represent the mean and standard d
*p  < 0.05) compared to infection.

In order to quantify the effect of immunization regardless of
he challenging infection, we normalized the numbers of cysts
bserved in immunized mice to the mean of cysts observed in
rimary infection, thus determining the proportion of infection
Fig. 5). Using this proportion, the effect of immunization is more
vident, and shows that immunization by oral gavage generally
rovided less protection than i.p. immunization for both BALB/c
Fig. 5A) and C57Bl/6J (Fig. 5B) mice.

.3.2. Qualitative protection
Protection can also be measured in terms of the proportion

f animals without cysts in the brain; the percentage of animals
ree of detectable brain cysts is presented in Table 1. BALB/c mice
mmunized i.p. and by oral gavage showed significant protection
n this analysis. Protection was 80% when BALB/c mice were chal-
enged with ME49 strain for both routes of immunization. When
hallenged with strain P, BALB/c mice immunized by oral gavage
howed a 40% protection while mice immunized by i.p. injec-
ion exhibited 84% protection. However, when BALB/c mice were
nfected with the VEG strain, i.p. immunization showed only 53%
rotection and immunization by oral gavage showed 25% protec-
ion (Table 1). C57BL/6J mice showed susceptibility when chal-
enged with ME49, as no animals were protected from T. gondii cysts
n the brain. However, i.p. immunization of C57BL/6J mice induced

ignificant protection as 80% of the animals were protected against

 strain challenge and 75% of mice were protected against VEG
train. Overall, the protection by oral gavage immunization was not
ery effective; as only 53% of mice were protected against strain P
nd 40% protected against VEG strain challenge (not significant).
i.p. 84% (2/12)* 80% (3/15)*

* p < 0.05 by Fisher’s exact test, when compared to the non-immunized mice.

3.4. Correlation between immunologic events and protection
against challenge in mice immunized with irradiated T. gondii
tachyzoites

Immunological events were quantified and analyzed in all mod-
els, according to each challenging strain, immunization route and
host mouse strain looking for mathematical Pearson correlation
with protection both either as the observed brain cyst reduction,

quantitative protection; or frequency of animals without brain
cysts, qualitative protection (Table 2).

We used mean data for immunological events after 2 weeks
of the end of immunization protocol for each group. Events
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Fig. 5. Proportion of infection in immunized BALB/c mice (A) and C57BL/6J mice (B) immunized either i.p. or orally with 107 T. gondii RH strain tachyzoites irradiated with
2 strain
s n, and
c

w
a
s
s

T
C
q
c

55  Gy from a Cobalt 60 source and challenged with 10 cysts of ME49, P or VEG 

ymbol  with point: no immunization. Bars represent the mean and standard deviatio
ompared to infection without immunization.
ere defined as serum levels of antigen specific IgG, high-avidity
ntigen specific IgG, antigen specific IgA, production of antigen
pecific IgG after 6 days of culture by bone marrow cells and
pleen cells and the production of high-avidity IgG after 24 h

able 2
orrelation between quantitative immunological events and the proportion of reduction
ualitative protection, analyzed in immunized mice challenged with different strains o
orrelation and 90% confidence interval are presented. Significant events are marked in b

Event ME49 + VEG + P (12) 

Protection

Quantitative Qualitative 

IgG in serum (r, C.I. 90%, p) 0.64 0.47 

0.20–0.86 −0.14 to 0.82 

0.012 NS 

IgG  of high avidity in serum (r, C.I. 90%, p) 0.68 0.40 

0.27–0.88 −0.22 to 0.79 

0.007 NS 

IgA  in serum (r, C.I. 90%, p) 0.15 0.32 

−0.37  to 0.61 −0.31 to 0.76 

NS  NS 

IVIAP  in bone marrow (r, C.I. 90%, p) 0.60 0.25 

0.14–0.84 −0.37 to 0.72 

0.020 NS 

IVIAP  high avidity bone marrow (r, C.I. 90%, p) 0.52 0.16 

0.02–0.81 −0.45 to 0.67 

0.042 NS 

IVIAP  in spleen (r, C.I. 90%, p) 0.56 0.21 

0.09–0.83 −0.41 to 0.70 

0.028 NS 

IVIAP  high avidity in spleen (r, C.I. 90%, p) 0.38 0.04 

−0.14  to 0.74 −0.54 to 0.60 

NS NS 
 of T. gondii.  Solid symbol: i.p. immunization; empty symbol: oral immunization;
 the presence of an asterisk indicates a statistically significant difference (*p < 0.05)
of culture from bone marrow and spleen cells. These data were
related to quantitative protection, as percent of cyst reduction
in brain as compared to infection in each model or qualitative
protection, as the proportion of challenged mice without brain

 of brains cysts or quantitative protection and percent of non infected animals or
f T. gondii compared to mice infected without immunization. One-tailed Pearson
old, NS – not significant.

VEG + P (8) ME49 (4)
Protection Protection

Quantitative Qualitative Quantitative Qualitative

0.74 0.62 0.57 0.42
0.22–0.93 −0.15 to 0.92 −0.76 to 0.98 −0.91 to 0.98
0.017 NS NS NS
0.88 0.81 0.37 0.07
0.56–0.97 0.25–0.96 −0.85 to 0.97 −0.95 to 0.96
0.002 0.007 NS NS
−0.10 −0.29 0.85 0.99
−0.68 to 0.56 −0.82 to 0.52 −0.35 to 0.99 0.94–1.00
NS NS NS 0.001
0.86 0.87 0.12 −0.32
0.50–0.96 0.42–0.97 −0.91 to 0.94 −0.98 to 0.92
0.003 0.002 NS NS
0.81 0.85 −0.06 −0.49
0.36–0.95 0.37–0.97 −0.93 to 0.92 −0.98 to 0.89
0.008 0.003 NS NS
0.81 0.84 0.10 −0.37
0.38–0.95 0.32–0.97 −0.913 to 0.94 −0.98 to 0.92
0.007 0.005 NS NS
0.70 0.79 −0.29 −0.69
0.12–0.92 0.19–0.96 −0.96 to 0.87 −0.99 to 0.80
0.027 0.01 NS NS
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ysts using unicaudal Pearson correlation r and its confidence
nterval.

The relationship of immunological events and the quantitative
rotection using all models show significant direct correlation with
erum IgG, serum high-avidity IgG, production of IgG by bone mar-
ow and spleen cells and production of high-avidity IgG by bone
arrow cells. Challenge with isolated T. gondii strains failed to

how significant correlations, but challenge with P and VEG strains
howed similar correlations with association to the production of
igh-avidity IgG by spleens cells. However, there was  a lack of asso-
iation with specific IgA in serum with neither protection against
nfection nor disease.

The relationship between immunological events studied and
ualitative protection (percent of protection) showed a lack of asso-
iation of immune events with this type of protection if all models
ere considered. Isolated ME49 challenge resulted in direct rela-

ionship with serum specific IgA only, and the joined P and VEG
train challenge models showed the same relationships found in
uantitative protection, except for the significance of serum spe-
ific IgG levels which was lacking.

. Discussion

Our model, using irradiated parasites, has ideal characteristics
or the study of vaccine-induced immune protection without the
se of viable agents. Ionizing radiation maintains the whole struc-
ure and cell biology of the parasite without damaging proteins;
hus, the host is exposed to the same parasite antigens and the
mmunity that results is similar to immunity induced by natural
nfection [15].

We  analyzed humoral immune responses using specific enzyme
mmunoassays to detect serum levels of anti-T. gondii IgG and IgA
n BALB/c and C57BL/6J mice immunized with irradiated T. gondii
achyzoites. Most humoral immune responses studies have evalu-
ted mice immunized with isolated recombinant proteins, such as
urface proteins, called SAGs [27], or proteins associated with cell
nvasion, called ROPs, AMAs, MICs and GRAS [17], which are con-
idered the major T. gondii antigens. These immunizations cause
ifferent types of protection, according to the strain mouse chal-

enged [9,28].  Mice immunized with isolated recombinant proteins
xhibit little protection against reinfection with no reduction in
he number of brain cysts [29] or combined with adjuvants that
ctivate the immune system [30]. Our model does not use any
djuvants; irradiated T. gondii tachyzoites alone were sufficient
o induce immunity similar to a natural infection [15] that pro-
ided protection against challenge with different T. gondii strains.
he production of high-affinity antibodies during primary anti-
en exposure is important for protection against reinfection and
he immunity of the host [31]. Our data also detected specific
igh-avidity IgG antibodies in the serum in immunized mice that
orrelates well with protection, suggesting that these antibodies
ay  be a good marker for protection.
We demonstrated that the secretion of anti-T. gondii IgA in the

tools of mice immunized with irradiated tachyzoites was greater
n BALB/c mice immunized by oral gavage. Immunization via the
ral route is of great importance for toxoplasmosis vaccination
tudies, as this is the main route of infection and parasites first
ontact the host intestinal mucosa [32]. S-IgA antibodies have
een shown to reduce tachyzoite infection of human enterocytes

n vitro, thus suggesting that IgA secretion is important in defend-
ng the intestinal mucosa from pathogen invasion [33]. Studies

f mucosal immunity report that often antigen alone is not suf-
cient to induce an effective humoral immune response; however,
his immunity can be increased significantly with the use of adju-
ants [34]. Cholera toxin (CT) and labile enterotoxin are considered
tters 138 (2011) 187– 196

strong mucosal adjuvants and are therefore used for strengthen an
immune response [35]. Mice immunized intranasally with purified
SAG1 protein associated with non-toxic labile enterotoxin induced
both a mucosal and systemic response with the production of anti-
gen specific IgG and IgA [36]. Our model of oral immunization with
aluminium hydroxide maintains the immunogenicity of the anti-
gen [37], while protecting the parasites from the destructive effect
of gastric acid environment preserving them to reach the intesti-
nal mucosa. Our results also showed intestinal mucosal immune
responses in immunized animals through the detection of anti-
gen specific S-IgA in stools; importantly, antigen-specific S-IgA is
produced both by i.p. injection or oral gavage immunized mice.

Our data showed that both strains of mice immunized by both
routes of inoculation showed antigen experienced cells that pro-
duced anti-T. gondii antibodies 15 days after the last immunization,
probably memory B cells. The direct ex vivo production of antibodies
demonstrates the presence of plasma cells producing antibod-
ies directed against T. gondii specific antigens in the spleen. Our
data showed significant levels of direct ex vivo anti-T. gondii anti-
body production from bone marrow cells from immunized mice by
either route; these data indicate that T. gondii humoral responses
also occur in the bone marrow. Humoral immune responses in
the bone marrow can be observed in splenectomised mice and
mice deficient in lymphotoxin-alpha that lack lymph nodes and
Peyer’s patches. These animals were challenged with Salmonella
typhimurium and were found have specific antibody-producing
cells in their bone marrow [38]. Other authors suggest that the
events inducing immunological memory take place in secondary
lymphoid organs, but that there is a recirculation of these cells to
the bone marrow, which is considered of great importance in the
induction of humoral immune responses [21]. Our data suggest that
the bone marrow, aside from being a primary lymphoid organ, may
also be an important secondary lymphoid organ with the presence
of antigen-specific memory B cells.

Our data showed antigen high-avidity IgG production by bone
marrow cells and spleen by IVIAP of mice immunized by both
routes of inoculation. Antibody production by these cells was simi-
lar to antibody production by spleen cells and bone marrow of mice
infected with T. gondii strain ME49; these results suggest that the
humoral immune response in vaccination is similar but lower to
the response to infection.

Protection against toxoplasmosis infection can be measured in a
qualitative form (pathogen clearance) or against disease in a quan-
titative form (decreased parasite burden) as previously described
[39]. Quantitative protection of immunized BALB/c mice was higher
when challenged with ME49 strain and lower when challenged
with P and VEG strains. ME49, a type II strain, showed higher vir-
ulence in relation to other T. gondii strains than demonstrated by
other authors [40], however, the proportion of protection was also
higher with ME49 compared to less virulent strains. Immunized
C57Bl/6J mice exhibited similar results but with less quantitative
protection. The amount of quantitative protection is associated to
the T. gondii susceptibility of different mouse strains; as expected;
BALB/c mice were more resistant to infection [41]. Other authors
also reported that C57BL/6J mice are more susceptible to T. gondii
infection and exhibit a larger number of brain cysts as compared to
BALB/c mice [42].

Qualitative protection against infection showed similar results,
with immunized BALB/c mice showing greater protection; both
routes of immunization resulted in 80% protection to the ME49
strain, which was  similar to the P strain. Immunized C57BL/6J mice
showed total susceptibility to infection with ME49 strain, while i.p.

immunization resulted in partial protection (80% and 75%) when
challenged with P and VEG strains, respectively.

Several studies have assessed immunization with vaccines for
toxoplasmosis protection through challenge with less virulent
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trains [9].  To prepare a model vaccine for toxoplasmosis, it is
ecessary to assess strategic points, not just survival or minor infec-
ions, but total protective immunity. The challenge of simulating
ral infection, the use of more than one type of parasite strain for
hallenge and the use of different mouse strains is recommended
o verify the efficacy of immunization in different genetic situa-
ions [9]. Our vaccination model with the use of irradiated T. gondii
achyzoites induced protective immunity against different T. gondii
trains as mice showed reduced numbers of brain cysts. Addition-
lly, in immunized BALB/c mice challenged with strain ME49, there
as a total reduction of cysts by conventional microscopy. Vac-

ination induced a memory immune response in the spleen and
he bone marrow, with the production of high-affinity antibodies
imilar to natural infection.

We  tried to correlate immune events with these two forms of
rotection against Toxoplasma, prevention of the infection or the
isease. Determination of the correlation between protection and
vents is often the first step toward developing a vaccine against a
isease and current vaccines are usually assessed by measuring the

nduction of antibodies in the serum or mucosa, where the objec-
ive is to block or interfere with the infection, with few studies
ooking for neutralizing effect on the agent [18]. When we analyzed
he correlation of quantitative protection of the three genetically
iverse strains of T. gondii used in challenge with all immune events,
e observed that specific immune memory events are important

or associated models; however, serum IgA does not seem to be
mportant, except for protection against the virulent ME49 strain.
hese results suggest that the presence of antibodies and specific
emory cells are important to prevent disease but not infection.
ualitative protection showed similar results as quantitative pro-

ection, and also related to producing high-affinity antibodies in
he serum and antibody production by bone marrow and spleen
ells.

We studied in our models oral immunization, which is rarely
sed in T. gondii vaccination [9]. Other approaches targeting
ucosal immunity use the nasal route [43]. Prevention of infec-

ion requires mucosa immunity. Low inflammatory activity of IgA
revents the entry of bacteria and other pathogens without causing

nflammatory damage at the site [44]. Other authors also evaluated
he importance of IgA present in mucosal surface in other diseases
uch as poliomyelitis [45], rotavirus [46] and influenza [47].

The production of anti-T. gondii antibodies by memory cells
n the spleen and bone marrow was shown to be important in
oth quantitative and qualitative in protection. Other studies have
hown that mice vaccinated with non-virulent T. gondii tachyzoites
ad a higher survival rate after challenge with virulent strain, sug-
esting that B cell production of specific antibodies protects from
n vivo infection by blocking the entry of tachyzoites into host cells
48]. The immune system is complex and redundant, and a vaccine
o protect the individual should induce a variety of mechanisms to
efend against the invading agent.

In toxoplasmosis, cats are responsible for contaminating the
nvironment [49], and the development of an oral vaccine for these
nimals could interrupt the transmission of disease to humans or
ther animals. Such a vaccine could access free-living felids that
re important in disease dissemination. Wild animal immunization
ith oral bait has already been used successfully for immunization

gainst rabies (Raboral VR-G®, Merial Inc., Georgia, USA); it is effec-
ive in the immunization of dogs, foxes, cats and other animals that
re located in large inaccessible areas [50]. Our studies show that
mmunization with irradiated T. gondii tachyzoites may  be an effec-
ive vaccine for oral use in cats and other animals, reducing disease

ispersion in the environment and consequently reducing contam-

nation of man  and livestock. Our vaccination approach has proven
ffective in determining various aspects of humoral immunological
emory, opening prospects for the use of vaccines with irradiated

[

[

tters 138 (2011) 187– 196 195

T. gondii tachyzoites in prevention models for animal and perhaps
human toxoplasmosis.
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