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Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Centro de Engenharia Nuclear (CEN), Av. Prof. Lineu Prestes,

2242, 05508-000 Cidade Universitária, São Paulo, SP, Brazil
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Abstract

In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a perfor-
mance function for the separative power dU of an ultracentrifuge as a function of variables that are experimentally controlled. The exper-
imental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties
related to these independent variables are considered in the calculation of the experimental separative power values, determining an
experimental data input covariance matrix. The process variables, which significantly influence the dU values, are chosen to give infor-
mation on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut h and pressure in the product line, Pp.
After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and
independence and mainly the existence of residual heteroscedasticity with any explained regression model variable.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The nuclear fuel cycle has several stages, from the min-
ing of the uranium to the final assembly of the fuel elements
used in a PWR reactor. The uranium is a mineral found in
the nature in the form of a mixture of isotopes 235UF6 and
238UF6, in the proportion of 0.71% and 99.28% in mass,
but only the isotope 235UF6 is fissile, in the conditions used
for energy generation, demanding the increase of the con-
centration of the fissile isotope 235UF6 to the desirable lev-
els. The uranium enrichment is the most critical stage in the
nuclear fuel cycle. The objective of this work is to obtain
models which relate the separative performance of an ultra-
centrifuge and the controlled variables in the separation
process, through the application of the least square method
with covariance matrix, in a data set representing 460
experiments, with varied conditions of feeding flow F, cut
h and pressure in the product line Pp. These variables are
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taken into account with the propagation of their associated
experimental uncertainties.

2. Description of the process

A gas ultracentrifuge, shown in Fig. 1 is composed of a
long, thin vertical cylinder (rotor), rotating around its axis
at a high velocity, inside a case under vacuum. The process
gas, assumed to be a binary isotopic mixture with 235UF6

and 238UF6, inside the cylinder, is subjected to a centrifuge
force that establishes a pressure gradient in the radial direc-
tion, increasing from the center to the rotor wall (Jordan,
1980). That pressure distribution is slightly dissimilar to
the different isotopes because it is proportional to the mass.
This results in a partial separation of the feed F, into two
fractions: an enriched one (product) and another depleted
(waste) in the desired isotope (235UF6). The ultracentrifuge
performance and its production capacity evaluation are
usually done by means of the required work to isotope sep-
aration, which is proportional to the amount of processed
material and to the obtained separation degree. Denoting
by F, P and W, the streams of feed, product and waste
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and by z, y and x, the respective isotope desired composi-
tions, the dependent variable that best defines the separative
efficiency of any isotope separation unit, is the separative
power or capacity dU, given by the following expression:

dU ¼ P ð2y � 1Þ ln y
1� y

þ W ð2x� 1Þ ln x
1� x

� F ð2z� 1Þ ln z
1� z

; ð1Þ

where F, P and W are the operational variables and the re-
sponse variables are the abundance rations of product
Rp = y/(1 � y) and waste Rw = x/(1 � x).

3. Experimental methodology

An isotopic separation test is carried out by the opera-
tion of an ultracentrifuge in a bench plant shown in
Fig. 2. The ultracentrifuge receives an input of a binary iso-
topic mixture with 235UF6 and 238UF6 as feed flow F, and
allows the extractions of the product flow P and waste flow
W. Samples are collected for verification of the separation
obtained by the measures of the abundances rations of the
enriched and depleted streams, Rp and Rw, respectively,
allowing to calculate the separative power dU, given by
Eq. (1). Defining the cut h as the relation between the prod-
uct and feed flow and fixing the product pressure line Pp,
several groups of data are generated with the variation of
the cut h and the feed flow F. Each of them is denominated
a separation experiment, resulting in an ultracentrifuge
performance function like dU(F,h,Pp).

4. Least squares method with covariance matrix

The measurements of Rp, Rw, P and W, involved in the
determination of separative power dU, provide correlated
uncertainties and define a covariance among them. These
statistical uncertainties are propagated in Eq. (1) in order
to obtain the dU final uncertainty using the expression
(Cowan, 1998):

ðrdU Þ2 �
Xn

i¼1

odU
oxi

� �2

r2
i ; ð2Þ

where xi are the independent variables Rp, Rw, P and W; ri

express their respective variances. Rp and Rw variances are
directly given by mass spectrometry analysis while the P
and W variances are calculated from mass flow meters cal-
ibration curves. Each dU experimental data covariance ma-
trix element is calculated by the expression:

ðV dU Þij ¼
XL

l¼1

qijleilejl ði; j ¼ 1; nÞ; ð3Þ

where eil, ejl are the partial uncertainties magnitudes of any
independent variable Rp, Rw, P and W; qijl represents the
micro correlations between these variable measurements
due to each attribute l (Smith, 1991). These micro correla-
tions values are safely determined by the experienced pro-
cess analyst.

5. Data curve fitting

The dU experimental data fitting through a performance
function of the kind dU(F,h,Pp) is obtained due to dU and
(F,h,Pp) relation, that may be written as a second order
polynomial given by

Y ¼ b0 þ
X

bixi þ
X

biix
2
i þ

X
bijxixj þ

X
biijx

2
i xj

þ
X

biijjx
2
i x2

j i 6¼ j; ð4Þ

where Y is the response dU, bi are the equation coefficients,
xi and xj are the controlled variables (F,h,Pp). This equation
is used to evaluate the linear, quadratic and interaction ef-
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fects of these variables providing the project matrix A, which
contains all the fitted model explained variables. Eq. (4) is a
linear function in the bi parameters and, although we can
perform the least-squares method to any function, in this
case the chi-square (v2) and estimators resulting values have
desired properties: the estimators and their variances can be
analytically obtained; they will be unbiased with minimum
variance no matter the number of experiments and the
experimental data distribution function. According to the
least-squares method with covariance matrix, the best possi-
ble solution is the one which minimizes the v2. The v2 value
for this particular problem is given by (Smith, 1981, 1993)

v2 ¼ ðdU exp � dU calcÞtV �1
dU ðdU exp � dU calcÞ; ð5Þ

where dUcalc = Ab, and b are the coefficients estimates vec-
tor of the fitted equation. Under the following conditions:
(i) the dU experimental data is distributed according to a
normal with a known covariance matrix, which allows to
use the chi-square statistic, (ii) the fitted function, Eq. (4)
is linear in the coefficients bi, allowing to obtain an analyt-
ical solution for Eq. (5) and (iii) the functional form of the
fitted function, Eq. (4), is corrected; it is possible to obtain
the minimum deviation between the experimental and pre-
dicted values, so the quadratic form v2 should be distrib-
uted in conformity with the chi-square tables, allowing to
evaluate the model goodness-of-fit (Cowan, 1998). The de-
sired least-squares solution is given by

b ¼ V bAtV �1
dUdU exp; ð6Þ

where the covariance matrix for the solution b is given by

V b ¼ ðAtV �1
dU AÞ�1 ð7Þ

that gives the coefficients estimates variances and covari-
ances of the experimental data fitted curves. In this case,
a FORTRAN program (Migliavacca, 2004) was used.

6. Results and discussion

The experimental data performed with only one ultra-
centrifuge covered the whole domain of interest, consisting
of eight values of feed flow F, seven values of cut h and five
levels of product pressure line Pp. Due to the confidential-
ity, inherent to the process development, the sensitive data
were normalized, with all variables related to arbitrary
units. The abundance rations Rp and Rw, obtained by gas-
eous spectrometry analyses, allowed the calculation of the
separation power dU. After a detailed verification of the
data, the same ones were checked, initially eliminating
the experiments with inadequacy of samples and the incon-
gruous ones in the values of the uncertainties in the abun-
dance rations and, later on, eliminating the experiments
that did not match the material balance.

6.1. Evaluation of the regression model

The model should be tested after its coefficients have
been estimated and several specification tests can be used.
The evaluation of the regression model is performed by
two fundamental stages, the tests in the estimated parame-
ters and the analysis of the residues. The test in the esti-
mated coefficients is based on the null hypothesis that the
theoretical value of a certain coefficient is zero. The t-Value
is obtained by

t-Value ¼ estimate=standard deviation ð8Þ

and through statistical tables, the level of significance of
each coefficient of the equation is calculated. Those pre-
senting p-Value 6 0.05, are accepted as statistically signifi-
cant. Those are typical values in this kind of analysis.

6.2. Regression models

Applying the method described, the first model obtained,
Model 1, presented the term b112 with p-Value > 0.05, caus-
ing its elimination and the proposal of the Model 2, reduced
model that describes the response variable dU and the con-
trolled variables (F,h,Pp) with all the coefficients statisti-
cally significant (Table 1).

In the next step, a residual analysis of the model is per-
formed where it is initially verified whether there is a ran-
dom scattering of the residues around zero. Through a
detailed analysis of the data, three physically inconsistent
values (negative values) of the separation power predicted
by the model are identified. Those values were referring to
extreme values of the independent variables, that is, high
experimental values of F, Pp and h, whose elimination can
be justified. With that, a new regression curve was generated
through the same adjustment procedure and finally yielding
to the ultimate model, Model 3, represented by Table 2.

6.3. Residual analysis

The normality of the residues of the Model 3 was accepted
because the percentage of values, in the range of their aver-
age taking into account two pattern deviation was 95.15%.
The verification of the heteroscedasticity existence was made
through the Spearman and Park tests. The correlation of
Spearman test assumes that the variables can be ranked in
two orderly series. In this case, it is calculated the Spearman
correlation between the absolute value of the residues and
each explanatory variable of the model, being tested the
hypothesis that these correlations are null, through the value
t, from a Student distribution. The Park test presented a
regression with R2 = 0.0454 and not any significant param-
eter, accepting the null hypothesis of homoscedasticity of the
residues. On the other hand, the Spearman correlation test
drove to the rejection of the same hypothesis, due to the
slightly correlation existence among the residues of the
regression with two explanatory variables: h2 and h2F2.

6.4. Correction of the residues heteroscedasticity

Once it is not totally satisfied the premise of the non
existence of the heteroscedasticity of the residues for the



Table 1
Estimates of coefficients of the variables in second-order polynomials and the associated statistical tests for the obtained models

Coefficient Variable Model 1 Model 2 Model 3

Estimate t-Value p-Value Estimate t-Value p-Value Estimate t-Value p-Value

b0 Constant 0.2472 4.8528 0.000 0.2452 4.8162 0.000 0.1711 3.7598 0.000
b1 h 2.3944 14.0410 0.000 2.6032 22.0950 0.000 2.8038 26.6738 0.000
b2 Pp 0.2844 3.4541 0.000 0.2285 3.0291 0.003 0.3830 8.3328 0.000
b11 h2 �2.8879 �11.4831 0.000 �3.2914 �40.7340 0.000 �3.3685 �42.3127 0.000
b22 P 2

p �0.4287 �11.0172 0.000 �0.3916 �12.1740 0.000 �0.4533 �24.5722 0.000
b23 PpF 7.33E�04 2.2116 0.027 7.14E�04 2.1545 0.032
b122 hP 2

p 0.1420 2.4301 0.015 4.57E�02 3.4083 0.000
b223 P 2

pF 3.03E�03 16.4288 0.000 3.05E�03 16.5582 0.000 3.52E�03 29.9228 0.000
b112 h2Pp �0.2891 �1.6940 0.091

b1133 h2F2 3.08E�06 2.8299 0.004 3.05E�06 2.8089 0.005 3.99E�06 3.6234 0.000
b2233 P 2

pF 2 �9.21E�06 �23.2400 0.000 �9.24E�06 �23.3200 0.000 �9.55E�06 �24.2044 0.000

Table 2
Estimated coefficients for the Model 3

Coefficient Variable Value B0 b1 b2 b11 b22 b223 b1133 b2233

B0 Constant 0.1711(455) 0.002072 �0.002942 0.000530 �0.001475 0.001383 8.680E�09 �1.162E�09 1.781E�08
B1 h 2.8038(1051) �0.6148 0.011049 0.000081 0.000183 �0.004584 �5.373E�08 9.455E�09 �2.532E�06
B2 Pp 0.3830(184) 0.6309 0.0420 0.000340 �0.000761 0.000080 �1.678E�09 2.519E�09 �8.462E�07
b11 h2 �3.3685(460) �0.7048 0.0378 �0.8971 0.002113 �0.000068 �3.181E�10 4.054E�10 �9.014E�08
b22 P 2

p �0.4533(796) 0.3817 �0.5478 0.0544 �0.0187 0.006338 �2.972E�08 3.788E�09 �1.244E�06
b223 P 2

pF 3.52E�03(1.1E�6) 0.1733 �0.4647 �0.0827 �0.0063 �0.3393 1.210E�12 �1.676E�13 4.353E�11
b1133 h2F2 3.99E�06(3.9E�7) �0.0647 0.2281 0.3462 0.0224 0.1206 �0.3864 1.556E�13 �4.499E�11
b2233 P 2

pF 2 �9.55E�06(1.2E�4) 0.0033 �0.2049 �0.3901 �0.0167 �0.1329 0.3366 �0.9703 1.382E�08

v2/m 0.94

The values in the parentheses are the standard deviation in the last digits. Covariances between coefficients are shown in the upper triangle (including the
main diagonal). Correlations are shown in the lower triangle. The last row gives the reduced v2.
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proposed model, some type of correction should be used so
that the residues become homoscedastic, or to have con-
stant variances, giving credibility to the used statistical
tests. Gujarati (2000) presented several types of transfor-
mations that can be applied to the experimental data to
turn the residues homoscedastic. Box-Hunter (1978) shows
that the tendency to a linear relationship of the residues
with some explanatory variable of the model or even with
the values predicted by the model, makes it possible to seek
a convenient transformation of the experimental data, so
that the variances of the residues become constant. Eq.
(9) shows the transformation of the data

u ¼ ðdU expÞk ð9Þ
and it was applied to the proposed statistical model. Using
the experimental values of the separation power dU as
dependent variable and the same explanatory variables of
the Model 3, the program Boxcox.stb (STATSOFT,
1998) allowed to obtain the value of k = 0.3158. Calculat-
ing the values of the dU experimental data according to
the expression:

dU transf : ¼ ðdU expÞk¼0:3158 ð10Þ
and the new experimental data covariance matrix accord-
ing to the expression

ðrdU Þtransf : � k � ðdU expÞk�1 � ðrdU Þexp ð11Þ
a new regression was accomplished, yielding to new esti-
mates of the coefficients of the representative model. How-
ever, applying the Spearman correlation test to the residues
of the transformed model, it did not allow the acceptance
of the null hypothesis of homoscedasticity between the res-
idues and the explanatory variables. Such result can be
interpreted as consequence that the tests for verification
of the homoscedasticity were built for small samples. When
applied to larger volume of data, they become very rigor-
ous and any small variation has stronger probability of
being considered. Parallelly, studies on the same experi-
mental database indicated a degradation of part of the
data, resultant of slow progressive alterations in the condi-
tions of accomplishment of the experiments (Andrade,
2004). Due to these considerations the transformed Model
3 was discarded.

6.5. Model 3 goodness-of-fit

The quality of the adjustment of a regression model can
be evaluated through the analysis of several statistical
parameters, such as the variance–covariance coefficients
matrix, the correlation coefficient, and the determination
coefficient. The Model 3 determined a matrix with small
variances of the coefficients, implying in small variability
of the representative model. The correlation coefficient
(R = 0.9627) represents a suitable linear correspondence
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among the experimental values and the values predicted by
the Model 3 and finally, the determination coefficient
(R2 = 0.9268) means the amount of 92.68% of the total var-
iance of the experimental data be explained by the model,
with the remaining variance attributed to the variability
of the data.

6.6. Graphic verification of the curve adjusted to the
experimental points

If the regression model represents an appropriate math-
ematical relationship between the separation power dU and
the process controlled variables, then necessarily, the theo-
retical curve should fit within the experimental points.
Throughout the final theoretical model, represented by
the Table 2, we can obtain the dU variation curves against
the control variables h and F presented in Figs. 3 and 4.

7. Conclusion

As a conclusion, the least squares method with covari-
ance matrix demonstrated to be an efficient tool in the fit-
ting curve determination of the ultracentrifuge separative
power dU as a function of the process controlled variables.
The value of the reduced v2, v2/V = 0.94, indicated a good
agreement between the dispersion of the experimental data
of the dU and the estimates of the uncertainties contained
in its covariance matrix. It is shown in the graphs of the
response curves, Figs. 3 and 4, that the theoretical model
is in a good agreement with the experimental data.
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