PRODUÇÃO E CARACTERIZAÇÃO DE FIBRAS ÓPTICAS DE GeO₂-PbO-Nb₂O₅ DOPADAS COM Er³⁺

Francisco Araújo Bomfim Júnior*, Luciana Reyes Pires Kassab**, Jonas Jakutis Neto***, Frank Ferrer Sene****, José Roberto Martinelli****, Niklaus Ursus Wetter*****

* Aluno de iniciação científica do curso de MPCE da FATEC-SP.
**Prof^a. Plena FATEC-SP, Doutora em Física Nuclear.
*** Graduado em MPCE da FATEC-SP, Mestrando – IPEN.
***Pesquisadores do Laboratório de Vidros e Compósitos – IPEN.
**** Pesquisador do Centro de Lasers e Aplicações – IPEN.

Resumo

Reportamos neste trabalho o método de fabricação e caracterização de fibras vítreas de germanato à base de GeO_2 –PbO–Nb₂O₅ (GPN). Através dos espectros de emissão da fibra notamos a possibilidade de aplicações com dispositivos ópticos para as regiões do visível e do infravermelho.

Introdução

Os vidros de germanato [1,2] apresentam características especiais para aplicações com fibras ópticas: larga janela de transmissão (400-4000nm), alto índice de refração (~2.0) e baixa energia de fônon (~700 cm⁻¹). Este trabalho apresenta o procedimento experimental usado para a produção da fibra e resultados das medidas de fluorescência a partir da excitação com laser de infravermelho.

Materiais e Métodos

A fibra foi produzida a partir de uma amostra vítrea de germanato ($60\text{GeO}_2 - 25\text{PbO} - 15\text{Nb}_2\text{O}_5$) dopada com 1% de Er^{3+} com dimensões de ($20 \times 20 \times 2$)mm². A fibra vítrea foi obtida a partir de amostra produzida com 15g de reagentes. Fibra com diâmetro médio de 150 µm e 5 m de comprimento foi obtida através de puxamento manual com bastão de sílica, a uma temperatura de 500 °C; esta temperatura está vinculada à viscosidade adequada para o puxamento e foi determinada empiricamente.

Medição da Conversão Ascendente e Infravermelho

A emissão da luz visível da fibra foi obtida utilizando-se o sistema da figura abaixo (Figura 1) onde a amostra é excitada por laser de infravermelho (960nm). sistema 0 foi especialmente montado para medir a emissão da fibra GPN. Para as medidas da região do infravermelho usamos detector de infravermelho no lugar de uma fotomultiplicadora. A luz emitida pela fibra atravessa os furos do chopper, usado para separar o sinal do ruído, fornecendo uma freqüência bem definida de referência para o Lock-in, que por sua vez elimina o ruído e amplifica o sinal para aquisição; em seguida é focalizada pela fenda do monocromador que faz uma varredura da luz incidente, a partir de um determinado intervalo de comprimentos de onda cujas intensidades são detectadas pela fotomultiplicadora que os transforma em sinal elétrico para ser enviado para o Lock-in. Este último é responsável pelo tratamento, amplificação do sinal e envio das informações para o software.

Resultados

A Figura 2 mostra a incorporação do Er_2O_3 no vidro GPN na forma de íon trivalente. Isto pode ser visto através das bandas de absorção relativas às transições ${}^{4}I_{11/2}$, ${}^{4}I_{92}$, ${}^{4}F_{9/2}$, ${}^{4}S_{3/2}$, ${}^{2}H_{11/2}$, ${}^{4}F_{7/2}$, ${}^{4}F_{3/2}$ e ${}^{4}F_{5/2}$, a partir do estado fundamental.

Figura 1 - Sistema utilizado para medição da conversão ascendente da fibra GPN.

Figura 2 - Espectro de absorção óptica da preforma GPN

A preservação da característica da amostra vítrea pode ser observada pela concordância entre os sinais de fluorescência das regiões do visível e infravermelho com as fibras vítreas. As emissões dominantes na região do visível em 530nm e 550nm são associadas às transições ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ e ${}^{2}\text{H}_{11/2} \rightarrow {}^{4}\text{I}_{15/2}$ do Er^{3+} , respectivamente; o sinal em 668 nm é associado à transição ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (Figura 3). As emissões associadas à região do visível são decorrentes do mecanismo de conversão ascendente. A emissão no infravermelho, com aplicação na terceira janela de telecomunicações, está relacionada com a transição ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ com pico em 1532nm (Figura 4).

O mecanismo responsável pela conversão ascendente está baseado na absorção do estado excitado; neste processo um fóton é inicialmente absorvido e causa a transição ${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$; em seguida um segundo fóton induz a transição ${}^{4}I_{11/2}$; $\rightarrow {}^{4}F_{7/2}$. O nível ${}^{4}F_{7/2}$ é populado e a partir dele ocorrem transições não radiativas para os níveis excitados ${}^{2}H_{11/2}$ e ${}^{4}S_{3/2}$. A partir destes níveis são emitidos fótons para o estado fundamental, com comprimentos de 530 e 550nm, que podem também decair, não radiativamente, para o estado excitado ${}^{4}F_{9/2}$, para em seguida fazerem uma transição para

o estado fundamental resultando a emissão de fóton com comprimento de onda de 660nm (Figura 5)[2,3].

Figura 4 – Espectro de emissão no infravermelho da fibra e preforma GPN.

Figura 5 - Diagrama dos níveis de energia do Er³⁺ e o mecanismo da conversão ascendente. As linhas sólidas representam os processos de absorção e de emissão e as tracejadas os processos não radiativos.

Conclusão

Os resultados obtidos até o momento indicam que os materiais vítreos desenvolvidos neste trabalho são bons candidatos para aplicações com dispositivos ópticos para as regiões do visível e do infravermelho.

Referências

- [1] Balda, R.; Adeva-Garcia, A.J.; Fernandez, J.; Navarro-Fdez, J.M.; "Infrared to visible upconversion of Er³⁺ ions in GeO 2-PbO-Nb₂O₅ glasses "J. Opt. Soc. Am. B. 21 (2004) 744.
- [2] Kassab, L.R.P.; Preto, A. O.; Maciel, G.; Lozano. W.; Journal of Non-Crystaline Solids 351 (2005) 3468.
- [3] Pan. Z.; Morgan, S.H.; Dyer. K.; Ueda. A .; J. Appl. Phys. 79 (12) (1996) 8906.