
Journal of Radioanalytical and Nuclear Chemistry, Vol. 269, No.2 (2006) 335–338

0236–5731/USD 20.00 Akadémiai Kiadó, Budapest
© 2006 Akadémiai Kiadó, Budapest Springer, Dordrecht

Stopping rule for variable selection using stepwise discriminant analysis
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In general, when characterizing samples, such as ceramic samples or other types of samples, for first time by means of chemical elements, the 
analyst measures a large number of variables, many of which may not be very informative. In fact, some may even be unrelated to the issue at hand 
and blur the picture instead of making it clearer. In subsequent studies the analyst may wish to measure fewer variables for several reasons, such as 
being very time consuming; in cases where measurement time is important, such as on-line monitoring; in order to reduce cost or effort; etc. 
Therefore, the hope is to determine those variables that are most relevant without losing essential information and to remove the less productive 
information. The problem is how to perform this in an objective way and to capture crucial information using a multivariate analysis. This paper 
aims to describe and illustrate a stopping rule for the identification of redundant variables, and the selection of variable subsets, preserving 
multivariate data structure using stepwise discriminant analysis, selecting those variables that are in some senses adequate for discrimination 
purposes. One illustrative example using data sets obtained via INAA of ceramic samples from two archaeological sites is provided.

Introduction

Very often chemists face analytical problems whose 
properties are unknown or not clearly defined, thus a 
goal in analytical chemistry could be to unravel 
information hidden in experimental data. Moreover, 
problems can be difficult to handle not only because of 
the multivariate nature of the data but also because 
investigators do not know what are the characteristic 
variables or if some of them are more important than 
others. Even when the main goal was clearly defined, 
there could be serious doubts about particular 
parameters to measure. Thus, various times, as many 
variables as possible are measured in order to capture 
crucial information. This is naturally very time 
consuming and expensive. Such multidimensional data 
sets must be closely examined to draw useful 
information. Moreover, investigators would have to 
decide if it is really necessary to measure all the 
variables on a particular set of samples to describe the 
problem. In such cases the problem is choosing a subset 
of the available variables, which hopefully will in some 
sense be almost as informative as the entire set of 
variables. One approach is to consider every subset of 
the variables, and to choose an optimal subset by some 
suitable criterion. For more than about 14 or 20 
variables, the number of subsets involved becomes 
unmanageable.

The problem is how to perform this in an objective 
way and to capture the crucial information using a 
multivariate analysis. There are a number of statistical 
methods, which have been suggested and used as rules 
for selection of a subset of variables.1–4 COSTANZA and
AFIFI5 studied seven methods of the selection of 
variables. Similar techniques were discussed by 
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SCHAAFSMA and VARK6 to decide how to use different 
stopping rules. Possibly the best known is the stepwise 
F-procedure.7

The selection of the most useful variables in 
discriminant analysis is an important contribution in 
analytical chemistry. The analyst may wish to measure 
fewer variables in subsequent studies, to reduce cost or 
effort of measurement or to try to reduce the complexity 
of the problem. 

In this work, a stopping rule for the identification of 
redundant variables, and the selection of variable 
subsets, preserving multivariate data structure for 
stepwise discriminant analysis is presented, i.e., 
selecting those variables which are in some sense 
adequate for discrimination purposes, without losing 
essential information. Although many criteria are 
available, the stopping rule most commonly employed 
uses a sequence of standard F-tests to determine the 
significance of the additional distance contributed by 
each forward stepwise entry. Stopping occurs just before 
the first insignificant entry. The rule is based on the 
maximum estimated unconditional probability that often 
performs better than the strict use of all variables. The 
procedure was illustrated using a data set of 114 
ceramics samples analyzed by INAA from two 
archaeological sites, named A, and B. 

Variable selection procedure

Suppose that p variables have been measured on 
each of n samples, and that the essential dimensionality 
of the data to be used in any comparison is k. A criterion 
for assessing a particular variable xp+1 increases the 
separation provided by variables x1, …, xp which is 
obtained by means of an analysis of covariance, treating
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xp+1 as the response, and x1, …, xp as covariants. Then 
xp+1 provides significant additional information at level 
α if the partial F-statistic:5
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and q = 0, 1, …, (p–1)

exceeds the critical value:

Fcrit ≤ F1–α(p–q, n1+n2–p–1) (3)

A sequence of partial F-statistics results:

F1, F2.1, F3.12, …, Fp+1.12…p, …, Fk,12…(k–1)

F1 is the usual analysis of variance F-statistics for 
testing whether x1 separates the population.

The procedure starts by using Fk,12....(k–1) to test 
whether xk can be deleted; if it can, xk–1 is examined in 
the same way, and so on until a deletion is not justified 
by the corresponding test. The variables remaining after 
the sequence of deletions are then considered adequate. 
If all k tests are carried out without a significant result, 
the conclusion is that x1,…, xk provide no separation.

In other words, for each variable, the F statistic is 
computed. The variable corresponding to the largest of 
these statistics is the first selected, provided the statistic 
exceeds a specific value. Variables are then added one at 
a time based on an examination of partial F-statistics. 
Suppose that variables x1, …, xp have been selected. The 
partial F-statistic reflecting additional information 
supplied by each of the remaining variables 
independently of x1, …, xp is computed. The variable 
corresponding to the largest of these statistics is 
selected, provided that statistics exceed the specified 
critical point calculated by Eq. (3). The procedure 
terminates when none of the selected variables can be 
excluded, and no further variables can be included.

Results and discussion

The procedure was applied on a real database, for 
this the data set obtained by MUNITA et al.8 was 
considered. These data comprise the determination of 13 
elements (As, Ce, Cr, Eu, Fe, Hf, La, Na, Nd, Sc, Sm, 
Th, and U) in 114 ceramic fragments from two archaeo-
logical sites named A and B. The full data matrix and 
details of the analyses are given in MUNITA et al.8

Initially, the results were transformed to log base 10 
to compensate for the large differences of magnitudes 
between the measured elements for the trace level and 
the larger ones.9 The log base 10 transformation of data 
before a multivariate statistical method is common. One 

reason for this is the belief that, within the 
manufacturing of raw material elements there is a 
natural log-normal distribution, and this data normality 
is desirable. Another reason is that a logarithmic 
transformation tends to stabilize the variance of the 
variables and would thus give them approximately equal 
weight in a non-standardized multivariate statistical 
analysis. All individual determinations in each data set 
were tested for discordant results. The Mahalanobis 
distance, Di, is suggested by many authors as a method 
for detecting outliers in multivariate data.10,11 For each 
of the n observations (samples) in a p variable data set, a 
distance value Di was calculated. Let x– be the sample 
mean vector and let S be the sample covariance matrix,
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for i = 1, …, n, where (xi–x–) is the difference vector 
between the measured values in one group and the mean 
values of the other group. WILKS12 suggested the use of:

p (n–1)2 Fp,n–p–1/n(n–p–1+pFp,n–p–1) (5)

to calculate the critical values for Di when searching for 
a single outlier. WILKS

12 used so-called scatter ratios to 
search for outliers in multivariate normal data. To search 
for a single outlier, the author calculates a scatter ratio 
Ri:

Ri = |Ai|/|A|

where ∑
=

−−=
n

i

T
ii xxxxA

1

))((

and |A| = determinant (A), Ai is calculated as for A with 
observation i eliminated from the sample. The most 
outlying observation is that which has the smallest 
scatter ratio Ri, where R1 = min{Ri}, i.e., the observation 
whose removal leads to the greatest reduction in |A|. 
This procedure at confidence level of 95% was applied 
at data set and the D values were calculated for all 
samples. When the D calculated in the sample was 
higher than D critical value the sample was eliminated 
and calculated a new D. The procedure ended when the 
Dcrit>Dcal. In all two samples were eliminated (one in 
each site).

The variable with the smallest partial F-statistic was 
eliminated with the purpose to study a subset of 
variables, of the partial F-statistics and to examine 
whether that variable supplied additional information 
independently of the remaining k – 1 variables or not. 
All this is done provided that the statistic does not 
exceed a specified critical value. If the variable can be 
eliminated, the process is repeated on the remaining
k – 1 variables, and so on.
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Table 1. Partial F-statistic for variable selection, for sites A and B

Step
Variable

1 2 3 4
As 0.020 0.021 0.022 0.022
Ce 0.00009*
Cr 0.001 0.0026 0.0016*
Eu 0.015 0.015 0.015 0.019
Fe 0.095 0.098 0.097 0.096
Hf 0.018 0.018 0.018 0.017
La 0.562 0.628 0.632 0.674
Na 0.001 0.0018*
Nd 0.014 0.014 0.015 0.014
Sc 0.083 0.085 0.135 0.135
Sm 0.234 0.241 0.242 0.248
Th 0.168 0.173 0.182 0.189
U 0.018 0.019 0.019 0.019

Critical value:** 0.0039 0.0039 0.0039 0.0039

* Variable deleted at each step.
** Nominal 5% test.

Table 1 contains the partial F-statistic involved in the 
database. The smallest value in the first column, 
0.00009, corresponds to the variable Ce. For the sake of 
discussion, this is compared with the critical value at 
95% of confidence level (0.0039). Hence, Ce can be 
eliminated. The smallest partial F-statistic in the second 
column, 0.0018, corresponds to the variable Na. The 
comparison of this with the critical value at 95% of 
confidence level (0.0039) leads to the deletion of Na. 
Continuing in this way, Cr is eliminated at the third step. 
The procedure terminates at the fourth step when the 
smallest partial F-statistic, 0.014, exceeds the critical 
value at 95% of confidence level (0.0039). Thus the 
variables selected are As, Eu, Fe, Hf, La, Nd, Sc, Sm, 
Th, and U.

Fig. 1. Discriminant functions for all variables. Ellipses represent 95% confidence level

Fig. 2. Discriminant functions for selected variables. Ellipses represent 95% confidence level
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To determine how well these subsets capture the 
structure of the complete data, Fig. 1 shows the plot for 
discriminant function 2 versus discriminant function 1 
for all the variables (As, Ce, Cr, Eu, Fe, Hf, La, Na, Nd, 
Sc, Sm, Th, and U), and Fig. 2 shows the plot of 
discriminant function 2 versus discriminant function 1 
using the variables selected (As, Eu, Fe, Hf, La, Nd, Sc, 
Sm, Th and U). The comparison of Figs 1 and 2 
confirms that discriminant analysis based on ten 
variables produce similar results to a discriminant 
analysis using all variables.

Conclusions

The procedure presented in this paper provides a 
useful descriptive tool in discriminant analysis to 
eliminate variables maintaining low probabilities of 
misclassification. The performance of the method was 
validated using concentration data of the ceramic 
sample. The plots of the discriminant functions using all 
the variables or with the selected variables are similar. 
The procedure aims to isolate subsets of variables, 
which separate the groups involved essentially in the 
same extent as the set of all available variables. The 
method can be useful in archaeometric studies to 
consider only the variables that might contribute to 
discrimination.
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