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NOMENCLATURE

F feed tlow rate, a.u.

P product tlow rate, a.u.

w waste flow rate, a_u.

z 1sotope desired composition in feed F, a.u.
y isotope desired composition in product P, a.u.
X 1sotope desired composition in waste W, a.u.
R, abundance ratio of the product.

R, abundance ratio of the waste.

R, abundance ratio of the feed.

n size of the sample
L number of attnbutes of the total uncertainty.
e partial uncertainty magnitude.

Y generic dependent variable.

x,x, generic controlled variables.

v covariance matrix.

A project matrix

Pp pressure, a.u.

Greek symbols

o independent variable standard deviation

x’ chi-square
xr,, normalized chi-square

8U  ultracentrifuge separative power,
P microcorrelation between uncertainties for x,
andx .

0 cut

B coefficients estimates

B coefficients estimates vector.

Subscripts

il jl  attribute uncertainty values

il attribute relating uncertainty values

exp. experimental value

calc. calculated value

p product line ’\;\

w waste line q’
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ABSTRACT

In this work, the least-squares methodology with covariance matrix is applied
to determine a data curve fitting in order to obtain a performance function for
the separative power U of an ultracentrifuge as a function of variables that
are experimentally controlled. The experimental data refer to 173
experiments on the ultracentrifugation process for uranium isotope
separation. The experimental uncertainties related to the independent
variables measurements are considered in the calculation of the experimental
separative power values, determining an experimental data input covariance
matrix. The process control variables, which significantly influence the U
values, are chosen in order to give information on the ultracentrifuge
behaviour when submitted to several levels of feed flow F and cut . After the
model goodness-of-fit validation, a residual analysis is carried out to verify
the assumed basis concerning its randomness and independence and mainly
the existence of residual heteroscedasticity with any regression model
variable. The response curves are made relating the separative power with the
control variables Fand , to compare the fitted model with the experimental
data and finally to calculate their optimized values.

Keywords: ultracentrifuge, uranium hexafluoride, isotopic separation,
covariance matrix, least-squares method.
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INTRODUCTION

A gas ultracentrifuge, as schematized in Fig. | 1s
composed of a long, thin vertical cylinder (rotor), rotating
around its axis at a high velocity inside a case under
vacuum.. The process gas, assumed to be a binary 1sotopic
mixture with ““UF, and "“UF, inside the cylinder is
subjected to a centrifuge force that establishes a pressure
gradient in the radial direction, increasing from the center
to the rotor wall (Jordan, 1980). That pressure distribution
1s slightly dissimilar for the different isotopes because it is
proportional to mass. This results in a partial separation of
the feed F, into two fractions: an enriched one (product)
and another depleted (waste) in the desired isotope (*“UF,).
The ultracentrifuge performance and production capacity
evaluation is usually done by means of the required work to
isotope separation, which is proportional to the amount of
processed material and to the obtained separation degree.
Denoting by F, P e W, the streams of feed, product and
waste and by z, y e x, the respective isotope desired
compositions, the dependent variable that best defines the
separative efficiency of any isotope separation unit, is the
separative power or capacity dU, given by the following

expression:
R - R - R, -1 :
SU=P-L lnR,+W—"‘—llnR“—F—’—lan (N
Rp+l ! Rw+l Rf+|

where F, P and W are the operational variables and the
response variables are the abundance rations of product
R =y/(1-y) and waste R =x/(I-x).
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Figure 1. Countercurrent ultracentrifuge design.

. EXPERIMENTS

An isotopic separation test consists in the operation
“of an ultracentrifuge in a bench plant shown in Fig. 2. The
ultracentrifuge receives an injection of a binary isotopic
mixture with "“UF, and ""UF, as feed flow F and permits
the extractions of the product flow P and waste flow W.
Samples are collected for verification of the separation
obtained by the measures of the abundance ratio of the
enriched and depleted streams, R, and R, respectively,
allowing to calculate the separative power dU, given by
Eq. (1). Defining the cut 6 as the relation between the
product and feed flow and fixing the product pressure line
p,, several groups of data are generated with the variation
of the cut © and the feed flow F. Each of them is
denominated a separation experiment, resulting in an
ultracentrifuge performance function like U/ (F, 6).
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Figure 2. Experimental bench plant design.
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STATISTICAL THEORY

The measurements of R,, R,,, P and ¥, involved in the
separative power determination 83U, provide correlated
uncertainties and define a covariance between them. These
statistical uncertainties are propagated in Eq. (1) in order to

obtain the 8U final uncertainty with the expression
(Cowan,1998):

) =3 2 |o? @

i=| i

where x, are the independent variables R,, R,,, Pand W, G,
express their respective vanances. The R, and R,
variances are directly given by mass spectrometry analysis
while the P and W variances are calculated from mass
flowmeters calibration curves. Each 8/ experimental data
covariance matrix element is calculated by the expression:

L
(PESU );j = preﬁeﬂ (z',j = L”) 3)
=1

where ¢,, e, are the partial uncertainty magnitude of any
independent variable R,, R,,, P and W, p ., represents the
microcorrelations between these variable measurements
due to each attribute /. The process analysis permits to
determine these microcorrelations values with safety. The
dU experimental data fitting through a performance
function of the kind 8U (F, 9) is obtained due to 8/ and

(F,0) relation, that may be written as a second order
polynomial given by:

Y =B+ Y Bx,+ D B+ Y Bxx,

(4)
+ z Pkt z Pt  iEj

where Y is the response (dU), pJ, are the equation
coefficients and x, , x, are the controlled variables (£, 9).
This equation is used to evaluate the linear, quadratic and
interaction effects between these variables providing the
project matrix A, that contains all the fitted model
explained variables. The Eq. (4) is a linear function in the 3,
parameters and although we can perform the least-squares
method to any function, in this case the chi-square and
estimators resulting values have desired properties: the
estimators and their variances can be analytically obtained,
they will be unbiased with minimum variance no matter the
number of experiments and the experimental data
distribution function. According to the least-square
method with covariance matrix, the best possible solution
is the one which minimizes the chi-square X°. The X’
value for this particular problem is given by (Smith, 1981
and 1993):

x ’ = @Uexp _SUm.’c )’ VSU_l 6Uc.\p - aUruh') (5)
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where 8U _,, =AP ,and B is the coefficients estimates
vector of the fitted equation. Under the following
conditions: (i) the U experimental data is distributed
according to a normal with a known covariance matrix,
which permits to use the chi-square statistic, (ii) the fitted
function, Eq.(4) is linear in the coefficients i, allowing to
obtain an analytical solution for Eq.(5) and (iii) the
functional form of the fitted function, Eq.(4), is corrected, ,
1.e., itis possible to obtain the minimum deviation between
the experimental and predicted values, so the quadratic
form y’ should be distributed in conformity with the chi-
square tables, allowing to evaluate the model goodness-of-
fit(Cowan, 1998).
The desired least-square solution is given by:

ﬁ = VB A" VBLE 6{Jrcxp (6)

where the covariance matrix for the solution f is givén by:
= - Y

v, = vl 4) @)

That gives the coefficients estimates variances and
covariances of the experimental data fitted curves. In this
case, a FORTRAN program (Migliavacca, 2004) is used.

RESULTS AND DISCUSSION

The experimental data performed with only one
ultracentrifuge covered the whole domain of interest,
consisting of eight values of feed flow F, seven values of
cut 0 and fixing the product pressure line p,, resulting in a
group of 173 experiments. Due to secret character inherent
to the process development, the sensitive data were
codified, with all variables related to arbitrary units. The
isotopic abundance ratios R, R, e R, , and the flow values
F, Pe W, with their respective uncertainties; the separative
power 8/ and cut B experimental values are presented in
Tab. (1). In Tab. (2), are presented the coefficients
estimates of the fitted equation, the determination
coefficient, the chi-square and normalized chi-square and
in Tab. (3) are presented their variances and covariances in
the upper triangle and their correlations in the lower
triangle.

Table 1. Codified variables and their uncertainties values.

E.\'p 'Rr RJ’ R«- O a*ﬂ
10 | edo™y | x10™) | xio™) | (x10")
| 98086 | 1.1982 | 8.9588 | 1.1900 4.2337
2 D814 | 11622 | 9.0964 | 23143 | 12,1834
3 98114 | 11645 | 9.0994 | 2.3143 | 15.8560
4 9.8114 11619 9.1356 23143 6.6741
5 - 9.8014 1.1784 9.0483 2.0429 18.4626
6 9.8014 1.1779 9.0272 2.0429 6.7377
7 98014 | 11729 | 90604 | 2.0429 | 19.3306
T7% | 98971 | 1.0970 | 8.1057 | 0.5257 1.5282
i P W (o a, 2] U
x1g”
4.11 67.478 75853 1 0124 | 0.734 | 0.4631 .02
0.79 98.048_| 102.216 | 0112 | 0.675 | 0.4995] 1.01
8.67 97547 | 102216 | 0112 | 0.675 | 0.4945] 1.03
2851 8048 | 102216 | 0.112 | 0.675 | 0.4922 | 0.98
1. 36 6021 90.278 0116 | 0.700 4790 ] 1.04
1243 | 85018 | 91273 [ o117 | 0698 [0.4837 | 1.05
587 86.021 | 90278 | 0.116 | 0.700 | 0.4863 | 0.99
505 | 805081 | 221319 | 0.118 | 0.883 | 0.7863 | 0.50
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Table 2. Model coefficients estimates and model
goodness-of-fit parameters.

Bo | B B | Bu| Bz Bz

~0,2845) 2,8816 | 8,857E-03 | -3,989| -2,75E-05 | 3,458E-03
2 | 09931 v A 1.06

Table 3. Covariance and correlation matrices.

Bo| B B2 B B | Bu:

0,005 } -39E-04 | -2.8E-05 | 4,4E-03 0,00 3,8E-06
-0,04 0,02 -2,1E-05 | -2,7E-03 0,00 2.3E-05

0,81 1 -0,329 | 2,3E-07 2,6E-05 0.00 0,00
0,45 0,178 -0.39 0,02 0,00 0,00
0,58 0,17 -0.89 0,42 1,7E-12 0,00
-0,11 -0,36 0,32 0,737 -0,41 1,3E-07

In Figs. 3 - 4 are presented the residuals graphs
against the controlled variables, which permit to evaluate
the regression model residuals heteroscedasticity degree
(Vasconcellos e Portella, 2001).
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Figure 3. Residuals against.
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Figure 4. Residuals against .

Through Figs. 5 - 6 it is possible to verify how
satisfactorily the theoretic curve fits the experimental data
and finally in Fig. 7 is presented the response surface of the
separative power dU against F and 6 that allows to
visualize the &U behavior in the ultracentrifugation
process and to find the optimum values of the operational
controlled variables.
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Figure 7. 31/ against F and 8.

CONCLUSIONS

The least-squares method with covariance matrix
was successfully applied in the determination of the
ultracentrifuge separative power 8U fitting curve against
experimentally controlled variables. The normalized chi-
square was obtained and showed a very reasonable
agreement between the 8U/ experimental data dispersion
and the uncertainties estimated through their covariance
matrix. The fitted model was able to explain the
experimental data due to the determination coefficient (R'=
0,9931). In Figs. 3 - 4, it is possible to verify that there is no
visible patterns between the residuals and the control
variables and finally through the response curve graphs,
Figs. 5 - 6, the theoretical model is showed to be reasonably
fitted to the experimental data.
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