Materials Science Forum Vols. 498-499 (2005) pp 357-362 Online available since 2005/Nov/15 at www.scientific.net © (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/MSF.498-499.357

#### Sintering Behavior of Si<sub>3</sub>N<sub>4</sub>-TaC based composites

A.C.S.Coutinho, J.C.Bressiani, A.H.A.Bressiani IPEN – Instituto de Pesquisas Energéticas e Nucleares Av. Prof. Lineu Prestes, 2242, CEP. 05508-000 São Paulo SP, Brazil <u>accoutin@ipen.br</u>

Keywords: silicon nitride, composites, carbides, sintering

Abstract: Silicon nitride was the first nitride developed for engineering applications. The excellent combination of thermomechanical properties makes silicon nitride a good candidate for applications where high hardness and mechanical properties are fundamental. However, the low fracture toughness of this material limits its use as structural material. The improve of mechanical properties of silicon nitride comes from many factors, like refined microstructure by restraining grain growth, localized stress, crack tip bridging, etc. Within these factors, microstructure formation of the silicon nitride is critically important for the final properties. The design of silicon nitride based composite materials is of particular interest because of their improved high temperature strength and fracture toughness. In this work, Si<sub>3</sub>N<sub>4</sub>-TaC particulate composite was investigated. For this study was prepared a basis composition (CB) with 90%wt  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>, 6%wt and 4%wt Y<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>, respectively. TaC (20%vol) was added into CB and after mixture, in high-energy milling, the powder was compacted into pellets. The kinetics of sintering was studied by means of dilatometry. The shrinkage rate versus time and temperature curves exhibit two well-defined peaks. The first peak refers to the particle rearrangement process and the second, more pronounced, to solutionreprecipitation process. It is quite clear that the presence of TaC particles has small influence on sintering kinetics of silicon nitride. It was observed the complete  $\alpha \rightarrow \beta$ -Si<sub>3</sub>N<sub>4</sub> phase transformation. The microstructure shows good homogeneity both in regard of grain size and secondary phase distribution.

#### Introduction

In the last 20 years has been given increasing importance to ceramic materials for engineering applications, despite their inherent brittleness. Because of their high strength, hardness and thermal stability, silicon nitride ceramics are among the most important materials for structural applications. The need for further improvement in the mechanical reability of silicon nitride has recently led to the development of high-strength and high toughness ceramics, such as fiber-, whisker- or particulate-reinforced silicon nitride ceramics [1].

Silicon Carbide was used as an addition to silicon nitride more than 20 years ago. Although silicon nitride monolithic ceramics exhibit very attractive properties, the design of silicon nitride based composite materials is of particular interest because of their improved high temperature strength and fracture toughness[2, [3, [4, [5, [6].

The improve of mechanical properties of silicon nitride based composites comes from many factors, like refined microstructure by restraining grain growth, localized stress, crack tip bridging, etc. Within these factors, microstructure formation of the silicon nitride matrix is critically important for the final properties [7].

There are three stages for the microstructure formation in silicon nitride ceramics:  $\beta$ -Si<sub>3</sub>N<sub>4</sub> nucleation,  $\alpha \rightarrow \beta$ -Si<sub>3</sub>N<sub>4</sub> phase transformation and rod like  $\beta$ -Si<sub>3</sub>N<sub>4</sub> grain growth (Ostwald

G click for feedback

358

Ripening)[8]. The addition of a second phase, both the  $\alpha \rightarrow \beta$ -Si<sub>3</sub>N<sub>4</sub> phase transformation and grain growth are generally restrained [8, [9, [10].

The effect of grain boundary "*pinning*" by small inclusions is described by Zener [15], and the relationship between grain size and inclusions can be given as following:

$$\overline{D} \propto \frac{r}{V_1}$$

where  $\overline{D}$  is the average matrix grain diameter,  $\underline{r}$  and  $V_1$  are the radius and volume fraction of spherical inclusions. Zener's model is applied to a system that contains monosized, spherical, insoluble, immobile particles and considers the retarding force exerted by these particles on rigidly moving boundauries. This retarding force is derived from a reduction in grain boundary area and, thus, grain boundary energy, which results from the presence of a particle on a boundary [15].

The purpose of this work is study the sintering behavior of Si<sub>3</sub>N<sub>4</sub>/TaC based composites.

#### **Experimetal Procedure**

Mixtures were prepared from high-purity powders of  $\alpha$ -Si<sub>3</sub>N<sub>4</sub> (H.C.Starck – M11 with 92,7% of  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>), TaC (H.C.Starck – HGS), Al<sub>2</sub>O<sub>3</sub> (A16/SG Alcoa) and Y<sub>2</sub>O<sub>3</sub> (99,98% purity, Aldrich Chemical Company).

For this study was prepared a composition containing 90wt% of  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>, 6wt% of Y<sub>2</sub>O<sub>3</sub> and 4wt% of Al<sub>2</sub>O<sub>3</sub> as sintering additives. This composition was named CB. The CB was mixed in an attrition mill with Si<sub>3</sub>N<sub>4</sub> milling media, in isopropanol alcohol for 4 hours at 300rpm. The slurry obtained was separated from the milling media by passing through a ASTM 325 sieve and subsequently dried in a rotary evaporator.10 and 20 vol% of TaC powder was added into CB and the composition was prepared using the same conditions described before. The powder was passed through a ASTM 100 sieve to crush soft agglomerate. The powder was compacted by uniaxial pressing (50MPa) and cold isostatic pressing (200MPa) into cylindrical specimens with 7 and 14 mm in diameter.

Dilatometric experiments were accomplished in a high temperature dilatometer (DIL 402 E/7, Netzsch, Germany) with a graphite resistance furnace in a flowing nitrogen atmosphere. The heating rate, pattern and cooling rate were 20°C/min, 1750°C/1h and 30°C/min, respectively. Sintering of the samples with 14mm was accomplished in a gas pressure furnace (Thermal Technologies, Santa Barbara, USA) with a graphite heating element, at 1750°C and 1800°C for 1 hour, in nitrogen atmosphere under 1,5 MPa pressure.

Sintered samples were characterized for weight loss, density (Archimedes method), phase composition, by X-ray diffraction (XRD) and microstructure (SEM – Phillips XL30). Samples for microstrucure investigation were prepared by standard ceramographic procedure of multistep diamond polishing with subsequent plasma etching ( $CF_4$ ).

#### **Results and Discussion**

The nominal formulation of the prepared mixtures, together with some of their granulometric characteristics are presented in Table 1.

The results of dilatometric investigations, linear shrinkage and shrinkage rate as function of temperature, of the sample with 20vol% TaC and CB are presented in Fig. 1. The behavior observed for the CB+20vol% TaC is quite similar of that observed for the CB. The begging of shrinkage and the maximum shrinkage rate are similar for both samples (Table 2).

The shrinkage rate *vs.* temperature, of the CB, exhibit two peaks of maximum shrinkage rate. The first peak observed, in lower temperature, refers to the liquid formation and rearrangement of the particles. The second peak, observed in higher temperature, refers to the solution-reprecipitation process. When 20vol%TaC is added into CB, it was observed that the peak of liquid

consult omment contact formation and solution-reprecipitation occurs in lower temperature. So, the evolution of the composite is the similar as observed in CB, but the shrinkage occurs faster in composite than in the CB. The lower temperature, of liquid formation and solution-reprecipitation, observed in the sample with 20vol%TaC (Table 2) was expected due to the lower total amount of additives. What should be specifically emphasized is that the presence of a second phase do not interfer on solution-reprecipitation process of silicon nitride.

| Material      | CB<br>(g) | TaC<br>(g) - | Grain size distribution<br>(µm) |                 |                 | Specific<br>Surface Area |
|---------------|-----------|--------------|---------------------------------|-----------------|-----------------|--------------------------|
|               |           |              | d <sub>10</sub>                 | d <sub>50</sub> | d <sub>90</sub> | $(m^2/g)$                |
| CB            | 100       | 0            | 0.12                            | 0.44            | 1.03            | 15.5                     |
| TaC           | 0         | 100          | 0.54                            | 2.11            | 11.6            | 1.0                      |
| CB+10vol% TaC | 68.10     | 31.90        | 0.10                            | 0.43            | 1.11            | 10.6                     |
| CB+20vol%TaC  | 48.69     | 51.31        | 0.09                            | 0.42            | 1.22            | 9.7                      |

| Tabla 1 | Characteristics | of the start | ing and | mixtura  | nowdorg |
|---------|-----------------|--------------|---------|----------|---------|
|         | Characteristics | of the start | ing anu | mixtures | powders |



(a)

Fig. 1 – Results of dilatometric experiments: (a) linear shrinkage *vs* temperature and (b) shrinkage rate *vs*. temperature

(b)

Based on the results of dilatometric investigations, the time-temperature schedule for furnace sintering was determined. The sintering temperature was  $1750^{\circ}$ C and  $1800^{\circ}$ C due to the fact that the shrinkage still occurs at  $1750^{\circ}$ C (dilatometer result).

|              | Begging of retraction | Maximum Retraction Temperature |                         |  |
|--------------|-----------------------|--------------------------------|-------------------------|--|
| Sample       |                       | Peak 1                         | Solution-Repreciptation |  |
|              | (°C)                  | (°C)                           | (°C)                    |  |
| СВ           | 1170                  | 1300                           | 1650                    |  |
| CB+20wt% TaC | 1170                  | 1220                           | 1590                    |  |

| Table 2 – Maximum retraction | temperature of the | CB and composite |
|------------------------------|--------------------|------------------|
|------------------------------|--------------------|------------------|

The density and relationship between TaC content and relative density, of the samples sintered in graphite resistance furnace, are shown on Fig. 2 and Table 3. When the composite was sintered at  $1750^{\circ}$ C, the relative density decrease with the increase of TaC content. However, the relative density of the composites, sintered at 1800 °C is the same. For the monolithic Si<sub>3</sub>N<sub>4</sub>, the relative density is higher than those observed for the composites. This observation suggests that a large amount of TaC particles inhibit the densification of the material. Many authors show that the densification is substantially retarded by the addition of a second phase <sup>[11, [12, [13]]</sup>. In the case of

click for feedback

 $Si_3N_4/SiC$  composites, some theories about the effect of SiC second phase particles were demonstrated. Yang et al<sup>[14]</sup> observed that the SiC particles decreases the sinterability of composite, which causes the lowering density and limit the  $Si_3N_4$  grain growth by "*pinning*" and slowing down the grain boundary movement.

Thus, the final density of the composite, residual porosity and microstructure are closely related with the amount and size of second phase particles.



| Table 3 – Ap | parent | density | of the | materials |
|--------------|--------|---------|--------|-----------|
|--------------|--------|---------|--------|-----------|

Fig. 2 – Effect of sintering temperature on density (a) and weight loss (b) of the studied composites

X-ray diffraction patterns of sintered composites and CB are shown in Fig. 3. Major phases in the composites were  $\beta$ -Si<sub>3</sub>N<sub>4</sub> and TaC. There was not identified any secondary phase resulting from crystallization of the additives and reaction of TaC with the additives or N<sub>2</sub> atmosphere.



Fig. 3 – X-ray diffractograms of sintered samples: (a) CB+10vol%TaC and (b) CB+20vol%TaC



Click for feedback

The microstructures of the monolithic  $Si_3N_4$  and of the composites before and after plasma etching are presented in Fig. 4. The microstructure of the monolithic  $Si_3N_4$  is a typical one of a liquid phase sintered silicon nitride, consisting of elongated  $\beta$ -Si<sub>3</sub>N<sub>4</sub> grains of prismatic shape embedded into a secondary phase formed by the oxide sintering aids. The composites have elongated grains, similar to the monolithic  $Si_3N_4$ . The TaC particles are uniformly distributed in the materials, among the grains. Some grains of  $\beta$ -Si<sub>3</sub>N<sub>4</sub> exhibit an internal structure indicated by arrows, with a core in the middle visible after plasma etching. This kind of microstructure occurs due to the  $\beta$ -Si<sub>3</sub>N<sub>4</sub> grains, in the starting powder, act as nucleation sites for new  $\beta$ -Si<sub>3</sub>N<sub>4</sub> grains. During densification of silicon nitride based ceramics, can be distinguished two differents mechanisms of nucleation: homogeneous or heterogeneous nucleation. In both cases, nucleation occurs from the supersaturated oxinitride glass, but in case of heterogeneous nucleation the  $\beta$ -Si<sub>3</sub>N<sub>4</sub> grains preexistant grains in starting powder.



(c)

(d)

Fig. 4 – Microstructure of (a) CB before plasma etching; (b) CB+20vol%TaC before plasma etching; (c) CB after plasma etching and (d) CB+20vol%TaC after plasma etching, sintered at  $1750^{\circ}$ C/1h

#### Conclusions

The influence on sintering behavior of TaC in a  $Si_3N_4$  matrix was investigated by dilatometric experiments and pressureless sintering.

The addition of TaC into  $Si_3N_4$  don't have a prononceous effect on the sintering behavior. Only the temperature of solution-repreciptation of  $Si_3N_4$  was affected with the addition of TaC, but densification was similar for monolithic  $Si_3N_4$  and composite.

Apparent density of the composites is quite similar to the ones observed in monolithic  $Si_3N_4$ , after sintering at 1800°C/1h.



362

It was observed the complete  $\alpha \rightarrow \beta$ -Si<sub>3</sub>N<sub>4</sub> phase transformation and the TaC particles remained as a inert phase.

The microstructure exhibit good homogeneity and phase distribution. It was observed intergranular second phase, TaC, and amorphous phase formed from the reaction of sintering additives and  $SiO_2$  presented on the surface of silicon nitride starting powder.

### Acknowledgements

The authors would like thank Fapesp, CNPq and Pronex for financial support.

### References

- [1] Y.G.Gogotsi, J.Mater.Sci. 29 (1994) p.2541
- [2] M.Poorteman, P.Descamps, F.Cambiere, M.Plisnier, V.Canonne, J.C.Descamps, J.Euro.Ceram.Soc. 23 (2003) p.2351
- [3] J.F.Yang, T.Ohji, K.Niihara, J.Ceram.Soc.Japan 109 (2001) p.920
- [4] X.Pan, J.Mayer, M.Rühle, K.Niihara, J.Am.Ceram.Soc. 79 (1996) p.585
- [5] L.Zou, Y.Huang, R.Chen, C.A.Wang, D.S.Park, J.Euro.Ceram.Soc. 23 (2003) p.1987
- [6] V.A. Izhevskyi, L.A.Gênova, J.C.Bressiani, Mater.Res. 2 (1999) p.271
- [7] J.F.Yang, T.Ohji, K.Niihara, J.Ceram.Soc.Japan 109 (2001) p.920
- [8] M.Kitayama, K.Hirao, M.Toriyama, S.Kansaki, Acta Mater. 46 (1998) p.6541
- [9] T.Hirano, K.Niihara, Mater.Lett. 22 (1995) p.249
- [10] D.S.Cheong, K.T. Hwang, C.S.Kim, J.Am.Ceram.Soc. 82 (1999) p.981
- [11] J.F.Yang, Y.H.Choa, J.P.Singh, K.Niihara, J.Ceram.Soc.Japan 106 (1998) p.951
- [12]Y.J.Song, D.O'Sullivan, R.Flynn, S.Hampshire, Key Eng.Mater. 86-87 (1993) p.263
- [13]V.Günay, S.Hampshire, J.Matr.Proc.Tech. 54 (1995) p.348
- [14]J.F.Yang Y.H. Choa, J.P.Singh, K.Niihara, J.Ceram.Soc.Japan 106 (1998) p.951
- [15]L.C. Stearns, M.P.Harmer, J.Am. Ceram. Soc. 79 (1996) p.3020



# Advanced Powder Technology IV

doi:10.4028/www.scientific.net/MSF.498-499

## Sintering Behavior of Si<sub>3</sub>N<sub>4</sub>-TaC Based Composites

doi:10.4028/www.scientific.net/MSF.498-499.357

