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ABSTRACT

In this report is evaluated the response of the apatite powder ESR dosimeter irradiated with
Co photons in the 0.2-100 Gy range. The specific material was developed in a previous systematic
study, which established the correlation between synthesis process, structural and dosimetric
properties of the A-type synthetic apatite. An excellent linear fit was obtained to the dose response in
the therapy level. Sources of the uncertainty intrinsic to the dosimeter and to the ESR technique was
evaluated showing the excellent precision level achievable with the apatite powder dosimeter.
Improvements can be performed to increase dosimeter accuracy.
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I. INTRODUCTION

The ESR dosimetry with biological apatites has been
applied worldwide in the last two decades to accidents, food
irradiation and archaeological dating [1-5]. The method is
based on the measurement of radiation-induced radicals in
hydroxyapatite of calcified tissues. These radicals are
produced from carbonate impurity substituting for
phosphate (synthetic B-type apatite) and hydroxyl (synthetic
A-type apatite) ion in the crystalline lattice. Several studies
have been reported on the analysis of the ESR spectrum of
biological and synthetic apatites. However few efforts have
been made to investigate the dosimetric properties of these
synthetic materials. Special features are observed in
biological apatites such as lifetime of the dose marker (10’
years), threshold dose (100-200 mGy), sensitivity to
different types of ionizing radiation (alpha and beta
particles, X and y-rays, heavy ions), linear dose response in
wide range. On the other hand, the increasing application of
ESR dosimetry requires alternative materials to alanine
dosimeter. Thus, observing the ESR spectra of synthetic
apatites, a previous systematic study was developed to
establish the correlation between synthesis process,
structural and dosimetric properties of the A-type synthetic
apatite [6,7]. A controlled synthesis process yielded a
promising dosimetric material with special properties to
ESR dosimetry particularly in the therapy dose level.

For this purpose, the dosimetric system should
present some basic requirements, such as linear dose

response, energy independence, lower limit of detection,
high reproducibility, small size and high level of accuracy.
In radiation therapy the deviation of the absorbed dose

delivered to the target volume from the prescribed value
plays an important role. An accuracy of better than 5% in
the delivered dose is required for a clinical control factor
(ICRU, 1976; ICRP, 1985)[8,9]. Absorbed dose
measurements at the reference point in a phantom should be
performed with an uncertainty of about 3% [10]. Therefore,
a detailed investigation on the sources of uncertainty in the
dose evaluation with apatite/ESR dosimetry is needed in the

therapy dose range.

This study presents the dose response of the apatite
powder dosimeter in the therapy level and uncertainty
sources in the evaluation of the ESR signal amplitude to the

dose assessment with the apatite/ESR system.

II. EXPERIMENTAL PROCEDURE

Samples preparation Synthetic apatite was prepared by
mixing 0.5 M solution of Ca(NO3;)24H,0 and 0.3 M
solution of (NH4)HPO, at 80°C. The hydroxyapatite
precipitate was dried at 100°C for 24 hours. A-type
carbonated  apatite,  Cajo(PO4)s(CO3)(OH)y(1x),  Was
produced by heating hydroxyapatite in ultra-dry CO, flux at
900°C, as described by Bonel, 1972 [11]. The synthesis

process was established with extensive characterization of
the samples. X-ray diffraction pointed out the production of
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an A-type carbonated apatite through structural unit cell
refinements (a=b=9.4854; c= 6.8748), which confirmed the
expansion of the parameter a and contraction of the
parameter ¢ with respect to hydroxyapatite structure,
Caj(PO4)s(OH),. Infrared absorptions at 1534 cm’ and
1465 cm™ indicated that CO, groups occupied OH™ sites.
The carbonate ion concentration in material was determined
using a Multiphase Carbon Analyzer with a RC-412 Leco
infrared detector [6]. The sample stoichiometry was
obtained by Induced Couple Plasma. Thermal dessorption
spectroscopy showed that the CO; decomposition is started
above 800°C and reaches the maximum at about 930°C,
suggesting the stability of carbonate ions in this structure.

Irradiationn The samples were irradiated in electron
equilibrium conditions at room temperature (~ 21°C) with
%Co Picker - VAM/60 source in the Laboratory for
Metrology of Ionizing Radiation/IRD/CNEN, Brazil. The
calibration of the source was performed using a secondary
standard ion chamber. The uncertainty in the evaluation of
air kerma was * 0.84% at 95% confidence level. The
absorbed dose rate to the material was 0.4370 Gy/min.

ESR measurement ESR spectra were recorded at room
temperature in a Bruker EMX spectrometer equipped with
standard rectangular cavity operating in the X-band
microwave range and modulation frequency of 100 kHz.

- The spectrometer setting were: microwave power 50 mW,

sweep width 5 mT, time constant 41 ms to all spectra. The
modulation amplitude, gain and number of spectral scans
were changed according to the absorbed dose in the samples
(0.2-100 Gy). Values of modulation amplitude from 0.15 to
0.27 mT with number of scans between 10 and 120,
respectively, were used to optimize the signal-to-noise ratio.
The results were normalized for modulation amplitude and
gain. The mean of summed scans number was taken without
applying mathematical signal treatment.

Measurements were carried out with 50 mg of
powdered samples in quartz tubes of 2.8 mm outer
diameter. The tubes were marked to ensure reproducible
positioning inside the cavity and placed such that the
centers of cavity and dosimeters were correspondent. A
secondary standard was used in order to reduce the error
due to small differences in measuring conditions during the
experiments.

The irradiated samples were annealed at 100°C for
24 hours. After the thermal treatment the dosimeters were
maintained at ambient temperature until the ESR
measurements.

III. RESULTS AND DISCUSSION

The X-band ESR spectrum (50 scans) of A-type
carbonated apatite irradiated to an absorbed dose of 2 Gy
and annealing at 100°C is shown in Figure 1a. The lines at
g=g,=2.0028 and g=g,=1.9973 are associated to CO,"
species with axial symmetry. After the annealing the signal
amplitude did not present temperature dependence up to
100 °C [12]. This apatite powder samples did not show any
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ESR signal before irradiation (Figure 1b).
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Figure 1. (a) A-type apatite ESR spectrum irradiated to an
absorbed dose of 2 Gy and (b) unirradiated.

The absorbed dose evaluation was based on the
peak-to-peak amplitude (h) of the line at g=g, from the
radiation induced apatite signal. Spectrometer parameter
setting that affect the signal height was investigated in order
to optimized the signal-to-noise ratio and the detection
threshold. Hence, the microwave power was selected below
the saturation (above 65 mW) and the modulation amplitude
(Fig. 2) smaller than the line width (0.3 mT) for obtaining a
linear ESR response of the apatite over a wide dose range.
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Figure 2. Variation of ESR signal amplitude with the field
magnetic modulation amplitude.

In previous studies the saturation of the dose
indicator signal was observed above 3 kGy [13]. Therefore,
a detailed investigation was needed to evaluate the growth
of the signal amplitude in the therapy dose range. In Figure
3 is shown the dose response of the apatite dosimeter from
0.2 Gy to 100 Gy. A linear fit with correlation-coefficient of
0.99951 was obtained for the dose response of the apatite
dosimeter up to 100 Gy, although it can still be used up to
500 Gy in very good approximation.
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Figure 3. ESR signal normalized amplitude of apatite
samples as a function of the absorbed dose.

The least squares fit to the data yielded an “initial
dose” to the dosimeter in maximum of 0.7 Gy. However the
unexposed material did not present ESR signal. This false
“pre-dose” can be attributed to the background signal
measured with the empty ESR cavity in the same parameters
setting used to the dosimeter. This background signal was
observed in three cavities of the same model (rectangular
standard cavity). The background was the lowest at
measurements performed with a new cavity and the same
was observed to the “pre-dose” values. The dose response
was investigated in the therapy dose level with six sample
batches.

The Figure 4 presents the apatite spectrum irradiated
to 0.2 Gy. A lower limit of the detection can be obtained
using the available high sensitivity ESR devices, to which
the signal-to-noise ratio was increased. The numerical
signal treatment can still be applied filtering simultancously
background and noise in the frequency domain of ESR
spectra.

A preliminary evaluation of the precision level
achievable with the apatite powder dosimeter was obtained
by quadratic combination of uncertainty sources intrinsic to
the dosimeter and to the ESR technique. The reproducibility
of the dosimeter production process was investigated with
eight batches. The samples were irradiated to an absorbed
dose of 2 Gy and the mean of 30 scans was taken for the
dose response of each batch. The results are showed in
Figure 5. The signal amplitude was reproduced within + 1%
at a 95% confidence level for the several batches of apatite
dosimeter.
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Figure 4. A-type apatite ESR spectrum irradiated to an

absorbed dose of 0.2 Gy.
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Figure 5. Reproducibility of the dosimeter production
process to an absorbed dose of 2 Gy.

The repeatability test of the measurement for the
apatite dosimeter of a batch was also performed at an
absorbed dose of 2 Gy and 30 scans for each spectrum. In
the first procedure the sample was inserted into the cavity
and maintained in a fixed position. ESR signal was recorded
ten times and for each one the spectrometer parameters
were reset. In this conditions the dose response was
reproduced within + 0.84% at a 95% confidence level. In
the second procedure, the ESR spectrum of dosimeter was
measured; the sample was removed and replaced at the
same height in the cavity. The spectrometer parameters
were reset for each time and the spectrum was obtained for
ten times. The ESR amplitude was reproduced within &
0.88%.

The results revealed that an accuracy of at least +
1.8% at a 95% confidence level has been achieved with
apatite/ESR dosimetry system on a therapy level reference
dose (2 Gy).
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IV. CONCLUSION

Due to the high accuracy required to clinical
dosimetry, a close investigation on the each source of
system uncertainty in the evaluation of dose in the therapy
range is need. A first evaluation on overall uncertainty of
the system showed that the apatite dosimetry is already
suitable for applications in the radiation therapy level.
However an improvement in the signal manipulation
procedures can increase the accuracy of signal amplitude
measurement to doses < 2 Gy. The production quality of
apatite samples plays an important role for improving the
precision in the dose evaluation and it can also be obtained.
The numerical signal treatment filtering simultaneously
background and noise will yield better precision in the
calibration curve for dose response of apatite samples.

For in vivo dosimetry measurements, the apatite ESR
dosimetry can be used in integrative mode by using the
same apatite sample positioned at the same place for each
step in the fractionated treatment. In this case the higher
doses increase the precision of ESR amplitude. The system
can be also used to relative dose measurements in phantom,
which require a precision < 2%, or to quality control of
therapy beam. The apatite ESR dosimeter still offers a long-
term dosimetric signal stability with a low cost material.
The dose information can be readout repeatedly at different
times and places, since the readout process does not affect
the signal.

In conclusion, the results of the present study
showed that the apatite dosimeter can be applied in the
radiation therapy dose range and improvements can be
performed to further increase of accuracy.
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