

Journal of Environmental Radioactivity 62 (2002) 115-119

www.elsevier.com/locate/jenvrad

Evaluation of ²¹⁰Pb and ²¹⁰Po in cigarette tobacco produced in Brazil

A.C. Peres, G. Hiromoto *

Instituto de Pesquisas Energéticas e Nucleares, Travessa R, 400 Cidade Universitária 05508-900 São Paulo, SP, Brazil

Received 22 February 2001; received in revised form 10 August 2001; accepted 29 August 2001

Abstract

Cigarette smoking is one of the pathways that might contribute significantly to the increase in the radiation dose reaching man, due to the relatively large concentrations of ²¹⁰Pb and ²¹⁰Po found in tobacco leaves. In the present study, the concentrations of these two radionuclides were determined in eight of the most frequently sold cigarette brands produced in Brazil. ²¹⁰Pb was determined by counting the beta activity of ²¹⁰Bi with a gas flow proportional detector after radiochemical separation and precipitation of PbCrO₄. ²¹⁰Po was determined by alpha spectrometry using a surface barrier detector after radiochemical separation and spontaneous deposition of Po on a copper disk. The results showed concentrations ranging from 11.9 to 30.2 mBq per gram of dry tobacco for ²¹⁰Pb and from 10.9 to 27.4 mBq per gram of dry tobacco for ²¹⁰Po. The collective committed effective dose resulting from the use of cigarettes produced in Brazil per year is estimated to be 1.5×10^4 man-Sv. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Tobacco; Natural radioactivity; Radiochemistry; Collective dose

1. Introduction

It is well known that natural radioactivity is a major source of worldwide human exposure to ionizing radiation, a fraction of which results from anthrophogenic activities not subject to regulatory radiological safety standards. Due to the presence of

* Corresponding author. Fax: +55-11-3816-9240.

E-mail address: hiromoto@net.ipen.br (G. Hiromoto).

natural radionuclides of the uranium and thorium series in fresh tobacco leaves, in an amount exceeding that normally found in general foods for human usage, cigarette smoking is one of these practices of radiological concern (Kilthau, 1996).

Among the several poisonous chemicals found in cigarettes, ²¹⁰Po is the major radioactive element of interest because it can be inhaled with cigarette smoke, due to its low volatilization temperature. ²¹⁰Pb is another element of interest since it is ²¹⁰Po precursor in the radioactive decay chain and because of the characteristics of the processes of cigarette production.

A review of the radioactivity levels in cigarettes consumed worldwide reported by Watson (1983) showed that ²¹⁰Po concentration ranged from 6.7 to 31.1 mBq per gram of dry sample. A later study showed a relatively low concentration of ²¹⁰Po in cigarettes from Syria, ranging from 0.74 to 2.96 mBq per gram of dry sample (Batarekh & Teherani, 1987).

The present investigation is part of a study that seeks to add information to the database related to natural radioactivity in Brazil, and to motivate the discussion on the legislative aspects of the commercial use of consumer products containing amounts of natural radionuclides artificially enhanced by man. In this note the activity concentrations of ²¹⁰Pb and ²¹⁰Po found in major brands of the cigarettes produced in Brazil are presented.

2. Materials and methods

Eight of the most frequently sold Brazilian brands of cigarettes, representing >75% of the total national market (Souza Cruz, 2001) were analyzed in the present study. Although each brand has several types of cigarettes, only the most popular one was chosen for analysis. For each brand of cigarette two samples were acquired randomly on the market, at different places and time (with the exception of brand D, for which four samples were acquired). For each sample, the content of three packages was homogenized together and 15 g of the mixture used for ²¹⁰Pb determination and another 15 g for ²¹⁰Po analyses. The analysis were carried out in triplicate.

For ²¹⁰Pb determination, 5 g of tobacco were leached with nitric acid, followed by successive precipitation of Ba(Ra,Pb)SO₄, PbS and PbCrO₄ basically according to the procedures described by Nevissi (1991) and Colangelo, Huguet, Palacios, and Oliveira (1992) and Moreira (1993). ²¹⁰Pb was determined by beta counting of ²¹⁰Bi grown in the final precipitate using a low background gas flow proportional counter (Berthold LB770-2). The counting efficiency was determined using a standard solution of ²¹⁰Pb prepared and measured according to the same methodology as adopted for the tobacco sample. The value obtained was about 35% for each detector. The chemical yield of the process was 61–98% and the minimum detectable concentration (95% confidence level) of this method was 4.5 mBq g⁻¹ with a counting time of 400 min.

For ²¹⁰Po determination, ²⁰⁸Po tracer was added to 5 g of tobacco. The sample was leached with nitric acid, followed by tributylphosphate (TBP) extraction and spontaneous deposition of polonium on a copper disc (Raya, 1995; Nieri Neto, 1996;

Saito, 1996). The alpha spectrum was obtained by counting with a surface barrier detector (EG&G ORTEC 576A). The counting efficiency was determined using an electrodeposited source of ²⁴¹Am and the value obtained was 0.125±0.001. The chemical yield of the process was 23–67% and the minimum detectable concentration of this method (95% confidence level) was 5×10^{-5} mBq g⁻¹ with a counting time of 1000 min.

A measurement of the reproducibility of the method presented a coefficient of variation of 9.4 and 10.4% for ²¹⁰Pb and ²¹⁰Po, respectively. The accuracy was checked with a standard ²¹⁰Pb solid matrix from IAEA and the measured values for ²¹⁰Pb and ²¹⁰Po lay within the certified value range, at a 95% confidence level (Peres, 1999).

3. Results and discussion

²¹⁰Pb concentrations ranged from 11.9 to 30.2 mBq per gram of dry tobacco, with an arithmetic mean of 21.3 mBq g^{-1} and standard deviation of 4.1 mBq g^{-1} , while ²¹⁰Po concentrations ranged from 10.9 to 27.4 mBq g^{-1} , with an arithmetic mean of 21.2 mBq g^{-1} and standard deviation of 3.7 mBq g^{-1} (Table 1). The activity concen-

Table 1

Brand	Activity concentration (mBq per g dry wt) ^b		
	²¹⁰ Pb	²¹⁰ Po	
A	22.6±3.7	20.9±3.3	
	23.6±2.9	19.3±0.8	
В	27.8±0.2	25.2±3.1	
	30.2±2.2	27.4±3.9	
С	20.0±1.9	22.9±1.9	
	23.3±3.9	22.0±2.7	
D	11.9±2.1	10.9±2.2	
	23.8±1.6	20.7±0.1	
	с	23.5±0.4	
	22.8±6.0	19.9±3.4	
E	20.1±4.6	23.3±0.3	
	15.8±1.2	c	
F	20.7±3.6	19.2±3.4	
	19.6±3.0	26.2±2.2	
G	18.7±2.2	20.5±0.8	
	20.4±3.6	19.6±2.8	
Н	20.4±2.6	18.8±5.3	
	20.2±3.7	21.6±0.6	

Activity concentration ²¹⁰Pb and ²¹⁰Po in Brazilian cigarette tobacco^a

^a The mean mass of the cigarettes analyzed was (0.73±0.03) g per cigarette.

ь ±SD.

° Not determined.

tration of ²¹⁰Pb and ²¹⁰Po that we found in Brazilian cigarettes are within the range reported in the literature. Lopes dos Santos, Weinberg, and Penna-Franca (1970) and Azeredo (1988) reported ²¹⁰Po concentration of about 17 mBq per gram of tobacco and Godoy, Gouvea, Mello, and Azeredo (1992) reported a concentration ranging from 10.6 to 26.8 mBq g⁻¹. Considering the measurement precision of each analysis, radioactive equilibrium was observed between the two radionuclides, an expected result since the time elapsed between the harvest of tobacco leaves and the placement of cigarettes on the market is sufficient for ²¹⁰Po to increase until it reaches radioactive equilibrium with ²¹⁰Pb.

Assuming that the mean concentrations obtained in the present study are representative of the cigarettes produced in Brazil in general, we can estimate the collective and mean individual committed effective doses. Assuming that an individual smokes 20 cigarettes per day, and that 10% of the Pb and 20% of the Po are inhaled by primary smokers (UNSCEAR, 1982) and by applying the dose coefficients for adults of 5.6×10^{-6} Sv Bq⁻¹ for ²¹⁰Pb and 4.3×10^{-6} Sv Bq⁻¹ for ²¹⁰Po (ICRP72, 1995) the committed effective dose is estimated to be 0.16 mSv per year of cigarette smoking. Considering an annual production of 5×10^8 kg of cigarettes in Brazil (AFUBRA, 1999), the collective committed effective dose resulting from the use of cigarettes corresponding to one year of production is estimated to be 1.5×10^4 man-Sv. Although this is a rough estimate of the collective dose, it indicates that cigarette smoking could be a considerable portion of the global dose resulting from avoidable exposure to natural radioactivity.

References

AFUBRA (1999). http://www.afubra.com.br.

- Azeredo, A. M. G. F. (1988). Estudo sobre excreção de ²¹⁰Po em urina. Dissertação de Mestrado. Rio de Janeiro: Universidade do Estado do Rio de Janeiro.
- Batarekh, K., & Teherani, D. K. (1987). Determination of polonium-210 in cigarettes from Syria. Journal of Radioanalytic Nuclear Chemistry, 117, 75–80.
- Colangelo, C. H., Huguet, M. R., Palacios, M. A., & Oliveira, A. A. (1992). Levels of ²¹⁰Po in some beverages and in tobacco. *Journal of Radioanalytic Nuclear Chemistry*, 166(3), 195–202.
- Godoy, J. M., Gouvea, V. A., Mello, D. R., & Azeredo, A. M. G. (1992). ²²⁶Ra/²¹⁰Pb/²¹⁰Po equilibrium in tobacco leaves. *Radiation Protection Dosimetry*, 45, 299–300.
- International Commission on Radiological Protection, ICRP 72 (1995). Age-dependent doses to members of the public from intake of radionuclides: Part 5. Compilation of ingestion and inhalation dose coefficients. Oxford: Elsevier Science.
- Kilthau, G. F. (1996). Cancer risk in relation to radioactivity in tobacco. *Radiologic Technology*, 67(3), 217–222.
- Lopes dos Santos, P., Weinberg, E. M., & Penna-Franca, E. (1970). Determinação de ²¹⁰Po em cigarros e tabaco. *Revista de Biologia y Medicina Nuclear*, 2, 73–77.
- Moreira, S. R. D. (1993). Determinação de ²¹⁰Pb em águas minerais da região de Águas da Prata. Dissertação de Mestrado. São Paulo: Instituto de Pesquisas Energéticas e Nucleares.
- Nevissi, A. E. (1991). Measurement of ²¹⁰Pb ²¹⁰Bi and ²¹⁰Po in environmental samples. *Journal of Radioanalytic Nuclear Chemistry*, 148(2), 121–131.
- Nieri Neto, A. (1996). Determinação de ²¹⁰Pb e ²¹⁰Po em águas minerais radioativas. Dissertação de Mestrado. São Paulo: Instituto de Pesquisas Energéticas e Nucleares.

- Peres, A. C. (1999). Determinação de ²¹⁰Pb e ²¹⁰Po em tabaco de cigarros nacionais. Dissertação de Mestrado. São Paulo: Instituto de Pesquisas Energéticas e Nucleares.
- Raya, J. P. B. (1995). Aplicaciones de la espectrometria gamma y alfa al estudo del impacto radiactivo producido por industrias no nucleares. Tesis de Doctorado. Sevilla: Universidad de Sevilla.
- Saito, R. T. (1996). Determinação de ²¹⁰Pb e ²¹⁰Po em amostras marinhas e aerossóis. Dissertação de Mestrado. São Paulo: Instituto de Pesquisas Energéticas e Nucleares.

Souza Cruz (2001). http://www.souzacruz.com.br.

- United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR (1982). *Ionizing radiation: sources and biological effects.* New York: United Nations.
- Watson, A. P. (1983). Polonium-210 and lead-210 in food and tobacco products: a review of parameters and an estimate of potential exposure and dose. ORNL/TM-8831. Oak Ridge, TN: Oak Ridge National Laboratory.