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Abstract

'Ž Ž ..A new phenomenological compacting equation has been proposed. The equation is ln 1r 1yD sA P qB where P is the applied
pressure, D is the relative density of the compact, A is a parameter related to densification of the compact by plastic deformation, and B
is a parameter related to powder density at the start of compaction. Linear regression analysis has been used to compare the new equation
with the four compacting equations often used and proposed by Balshin, Heckel, Kawakita and Ge. The results show that the new
equation gives linear correlation coefficients very close to unity. This equation, together with parameters A and B, permits improved
evaluation of the compacting characteristics, compared to that performed by other equations. q 2001 Elsevier Science S.A. All rights
reserved.
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1. Introduction

The powder compaction process plays an important role
in the manufacture of a variety of products that include

w xceramics, metallic parts, fertilizers and pharmaceuticals 1 .
In the case of ceramics and metallic parts, the microstruc-
ture of sintered powder compacts depend strongly on the
quality of the green compact, which in turn depends on the
behavior of the powder during compaction, that is, by the

w xdensity–pressure relationship of the powder 2 .
w xAccording to Bockstiegel 3 , the interest originally in

density–pressure relationships stemmed from the practical
problem of being able to predict the pressures required for
achieving a certain density, later on, the interest seemed to
shift more towards the analytical problem of finding an
adequate but simple mathematical description for experi-
mentally obtained density–pressure curves. Considerable
effort has been made to characterize powders and their

w xcompaction behavior using a compacting equation 2,4–10 .
In this paper the four often used compaction equations

are compared, in a manner similar to that carried out by Ge

) Corresponding author. Fax: q55-11-816-9370.
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w x8 in 1995. A new phenomenological compacting equation
w xhas also been included in this paper 9 .

2. Compacting equations

Balshin attempted to correlate the relative density of
compact powders with externally applied pressures and
proposed the following equation:

ED D2

sk 1Ž .
EP P

A1
ln Psy qB 2Ž .1D

where P is the applied pressure, D is the relative density
of the compact and A , B are constants. Balshin called1 1

A the pressing modulus and considered it to be analogous1
w xto the Young’s modulus 2 .

Balshin’s equation can be rewritten as:

1
sA ln PqB 3Ž .2 2D

w xHeckel, in 1961 5 , considered the compaction of
powders to be analogous to a first-order chemical reaction.
The pores are the reactant and the densification of the bulk
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is the product. The AkineticsB of the process may be
described as a proportionality between the change in den-
sity with pressure and the pore fraction by:

ED
sK 1yD 4Ž . Ž .

EP

Ž .where 1yD is the pore fraction and K is a constant.
The final form of Heckel’s equation can be written as
follows:

1
ln sA PqB 5Ž .3 3ž /1yD

where A and B are constants. Heckel postulated that the3 3

constant A gave a measure of the ability of the compact3

to densify by plastic deformation and constant B repre-3

sented the degree of packing achieved at low pressures as
a result of rearrangement before appreciable amounts of
inter-particle bonding occurred.

w xKawakita and Ludde 6 derived a compaction equation¨
from the observed relationship between applied pressure
and volume or relative density. Kawakita obtained the
following equation:

D A4
s qB 6Ž .4DyD P0

where A and B are constants and D the relative4 4 0

powder apparent density without application of pressure.
Attention must be paid to the experimental determina-

tion of D , and deviations from Kawakita’s equations are0

sometimes due to fluctuations in the measured value of
D , which is usually inaccurate.0

w xGe 1 proposed a new differential equation for the
pressing of powders:

ED 1yD DnŽ .
sK 7Ž .mEP P

where n and m are constants.
Ž .From Eq. 7 , Ge obtained the following equation:

1yDŽ .0
log ln sA log PqB 8Ž .5 51yDŽ .

w xGe, in a second paper published in 1995 8 , proposed a
Ž .further simplified form of Eq. 8 . He observed that his

equation was subject to the same level of imprecision as
Kawakita’s equation, due to fluctuations in the measured
value of D . Ge considered that D approached zero when0 0

total pressure reached zero, and his equation could be
rewritten as:

1
log ln sA log PqB 9Ž .6 61yDŽ .

where A and B are constants.6 6

This simplification done by Ge in his equation is not
theoretically solved.

w xIn 1998, Panelli and Ambrozio Filho 9 , based upon
observations of typical compaction curves, proposed the
following differential equation to represent such curves:

Eq Kq
s 10Ž .mEP P

where q is relative porosity, P the applied pressure and
K , m are constants.

Ž . Ž .By integrating Eq. 10 from q porosity at P to q0
Ž .porosity at Ps0 at applied pressures from 0 to P, a
general equation is obtained:

q Pymq1
0

ln sA qB . 11Ž .7 7q ymq1

This equation has an integration constant B , which must7

be zero to satisfy the condition q sq when Ps0.0

Fitting experimental data to it by regression analysis
Ž .tested Eq. 11 . Linear correlation coefficients, R, give

values better than 0.99 when ms0.5. So the value 0.5
Ž .was adopted for m in Eq. 10 and rewritten as:

q0 'ln sA P 12Ž .gq

Ž . Ž .where q s 1yD , qs 1yD and D and D are the0 0 0

relative densities of the powder at zero pressure and of the
compact at pressure P.

Ž .Upon substitution, Eq. 12 becomes:

1yDŽ .0 'ln sA P . 13Ž .g1yDŽ .

Ž .Eq. 13 has limited applicability owing to the necessity to
determine the parameter D . It is therefore important to0

Table 1
The compacting equations that have been compared. P sapplied pres-
sure, Ds relative density of the compact, D s relative apparent density0

of powder in absence of applied pressure, and A and B are constantn n

parameters; ns 2, 3, 4, 6 and 10

Author Equation Equation Reference
number

Ž . w xBalshin 1rDs A ln P q B 3 42 2
Ž Ž .. Ž . w xHeckel ln 1r 1y D 5 5

s A P q B3 3
Ž . Ž . w xKawakita Dr Dy D 6 60
Ž .s A rP q B4 4
w Ž Ž .x Ž . w xGe log ln 1r 1y D 9 8

s A log P q B6 6
Ž Ž .. Ž . w xPanelli and ln 1r 1y D 15 9

'Ambrozio s A P q B10 10

Filho
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Table 2
Ž .Experimental data on the compaction of various powders. P sapplied pressure MPa and Ds relative density of compact

Powder Material Reference Experimental data on compaction of powders
no.

w x1 Silver bromide, 8–10 mesh, 958C 4 P 21 31 47 61 78 94 110
D 0.800 0.841 0.908 0.949 0.971 0.985 0.988

w x2 Ammonium nitrate 11 P 1.0 1.9 3.0 4.7 7.2 11.6 19.6
D 58.8 0.625 0.667 0.714 0.769 0.833 0.909

w x3 Silver bromide, 10–14 mesh, 258C 4 P 21 31 47 61 78 94 110 126 142
D 0.740 0.789 0.861 0.909 0.934 0.954 0.967 0.977 0.985

w x4 Silver bromide, 8–10 mesh, 258C 4 P 21 31 47 61 78 94 110 126 142
D 0.743 0.791 0.858 0.905 0.934 0.954 0.969 0.977 0.980

w x5 Silver bromide, 14–20 mesh, 258C 4 P 21 31 47 61 78 94 110 126 142
D 0.743 0.781 0.852 0.900 0.927 0.954 0.965 0.976 0.980

w x6 Atomized tin 1 P 0 14.7 19.6 29.4 49.0 68.6 98.0 117.6 147.0 196.0 245.0 294.0
D 0.501 0.739 0.799 0.853 0.920 0.951 0.975 0.984 0.990 0.993 0.996 0.997

Ž . w x7 Lead metallic 11 P 2.1 5.1 8.9 13.4 20.5 32.5
D 0.625 0.667 0.714 0.769 0.833 0.909

w x8 Atomized lead 1 P 0 32.34 64.68 96.04 130.3 160.7 196.0
D 0.439 0.937 0.974 0.986 0.991 0.993 0.995

w x9 Ammonium Chloride 11 P 0.7 0.9 1.6 2.2 2.9 4.0 5.5 8.0 12.1 18.7 32.0 63.7
D 0.455 0.476 0.500 0.526 0.556 0.588 0.625 0.667 0.714 0.769 0.833 0.909

w x10 Potassium chloride 11 P 1.2 1.9 2.6 3.6 4.9 6.6 8.9 11.7 15.9 21.3 29.1 42.1 76.9
D 0.435 0.455 0.476 0.500 0.526 0.556 0.588 0.625 0.667 0.714 0.769 0.833 0.909

w x11 Potassium nitrate 11 P 0.6 2.1 4.4 7.4 11.6 17.8 26.8 41.2 76.4
D 0.526 0.556 0.588 0.625 0.667 0.714 0.769 0.833 0.909

w x12 Sodium chloride 11 P 4.3 7.0 10.2 14.8 21.4 31.2 45.0 65.9 101.9
D 0.526 0.556 0.588 0.625 0.667 0.714 0.769 0.833 0.909

w x13 Barium nitrate 11 P 0.7 1.5 2.7 4.7 9.2 22.3 68.6
D 0.556 0.588 0.625 0.667 0.714 0.769 0.833

w x14 Electrolytic copper 1 P 0 59.0 108 114 187 294 372 1000
D 0.300 0.607 0.664 0.674 0.753 0.839 0.874 0.964

w x15 Stainless steel 1 P 0 154.8 308.7 463.5 617.4 772.2 926.1
D 0.374 0.648 0.740 0.800 0.831 0.870 0.890

w x16 AISI M2 9 P 260.4 365.6 474.3 567.3 655.7
D 0.620 0.677 0.716 0.755 0.778

w x17 Calcium carbonate 11 P 1.9 3.1 4.8 7.4 12.3 21.9 41.2 86.0 178.2
D 0.435 0.455 0.476 0.500 0.526 0.556 0.588 0.625 0.667

w x18 Spray-dried alumina 12 P 14 28 49 69 96 140 206 278 343 441 447 481 503
D 0.511 0.557 0.580 0.609 0.625 0.650 0.673 0.694 0.695 0.713 0.714 0.716 0.722

w x19 M2q10 vol% NbC, mechanical alloyed 5h 10 P 260 365 474 567 655
D 0.603 0.631 0.650 0.673 0.690

w x20 Tungsten carbide 1 P 0 49.0 68.6 98.0 147 196 245 294 392 490 588
D 0.201 0.471 0.489 0.512 0.538 0.559 0.576 0.586 0.609 0.627 0.641

w x21 Titanium carbide 1 P 0 18.0 36.0 72.0 144 288 576 864
D 0.370 0.518 0.547 0.587 0.614 0.650 0.699 0.719

w x22 Alumina 9 P 365.6 474.3 567.3 655.7
D 0.502 0.513 0.521 0.528
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Table 3
Linear regression analysis of the five-compaction equations. Rs linear regression coefficient. A and B are the equations coefficients, where ns 2, 3, 4, 6 and 10n n

Ž . Ž . Ž . Ž . Ž .Powder Eq. 3 Eq. 5 Eq. 6 Eq. 9 Eq. 15
y2no. Ž .A B R A =10 B R A B R A B R A B R2 2 3 3 4 4 6 6 10 10

1 y0.1520 1.7017 y0.983 0.0338 0.8635 0.995 0.6520 y0.6855 0.992 0.5102 y0.9275 0.992
2 y0.2080 1.7179 y0.998 0.0802 0.8484 0.998 0.3317 y0.0947 0.978 0.4381 0.3591 0.991
3 y0.1780 1.8672 y0.990 0.0233 0.8810 0.999 0.6015 y0.6923 0.996 0.3864 y0.5871 0.994
4 y0.1751 1.8556 y0.982 0.0222 0.9383 0.996 0.5858 y0.6670 0.996 0.3698 y0.4758 0.996
5 y0.1787 1.8752 y0.985 0.0221 0.9017 0.997 0.5866 y0.6760 0.994 0.3674 y0.4985 0.994
6 y0.1077 1.5589 y0.924 1.6113 1.6838 0.963 16.398 1.9063 0.991 0.4998 y0.4424 0.997 0.3474 0.1267 0.995
7 y0.1868 1.7751 y0.988 0.0467 0.8549 0.999 0.3186 y0.1601 0.952 0.3321 0.3584 0.975
8 y0.0339 1.1765 y0.950 1.4920 2.5854 0.971 3.6059 1.7681 0.996 0.3612 y0.0962 0.997 0.3027 1.1676 0.993
9 y02546 2.0759 y0.993 0.0283 0.7560 0.971 0.3018 y0.2114 0.989 0.2500 0.3886 0.999

10 y0.3098 2.3783 y0.997 0.0246 0.6438 0.988 0.3448 y0.3393 0.979 0.2373 0.2256 0.994
11 y0.1766 1.9003 y0.983 0.0218 0.8148 0.993 0.2386 y0.1615 0.940 0.2086 0.4586 0.988
12 y0.2637 2.3100 y0.999 0.0164 0.7265 0.999 0.3921 y0.4570 0.983 0.1984 0.2361 0.986
13 y0.1350 1.7343 y0.992 0.0130 0.9799 0.916 0.1778 y0.0758 0.998 0.1305 0.7753 0.982
14 y0.2302 2.5584 y0.977 0.2521 0.9122 0.985 34.031 1.4547 0.974 0.4700 y0.8999 0.993 0.1032 0.0516 0.998
15 y0.2350 2.7125 y0.995 0.1493 0.8641 0.995 117.86 1.6157 0.997 0.4179 y0.9041 0.997 0.0647 0.2189 0.998
16 y0.3550 3.5815 y0.998 0.1360 0.6208 0.998 0.4779 y1.1771 0.998 0.0568 0.0431 0.998
17 y0.1769 2.3772 y0.994 0.0027 0.6730 0.906 0.1447 y0.2858 0.999 0.0435 0.5638 0.977
18 y0.1510 2.3096 y0.992 0.0959 0.8404 0.942 0.1599 y0.3251 0.998 0.0276 0.6816 0.984
19 y0.2216 2.8919 y0.996 0.0616 0.7667 0.998 0.2509 y0.6426 0.992 0.0256 0.0506 0.995
20 y0.2278 3.0013 y0.999 0.0699 0.6512 0.974 12.259 1.4645 0.970 0.1924 y0.5260 0.999 0.0224 0.4934 0.997
21 y0.1393 2.3225 y0.998 0.0598 0.8818 0.950 25.406 2.2157 0.959 0.1434 y0.3225 0.997 0.0212 0.6768 0.991
22 y0.1673 2.9797 y0.999 0.0184 0.6308 0.998 0.1262 y0.4805 0.999 0.0083 0.5378 1.000
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Ž .simplify Eq. 13 by eliminating D . This can be done as0

follows:

1 1'ln sA P q ln 14Ž .9ž / ž /1yD 1yD0

1 'ln sA P qB 15Ž .10 10ž /1yD

where A and B are constants characteristics of the10 10
w xpowder 9 . Constants A and B can be used as parame-10 10

ters to characterize the powder behavior during pressing. It
Žcan be stated that parameter A inclination of the com-10

.pressibility curve provides the plastic deformation capac-
ity of the powder in compaction. Thus, as A increases,10

the powder undergoes increasing plastic deformation dur-
ing compaction. It is also postulated that parameter B10
Ž Ž .interception of the curve resulting from Eq. 15 at zero

.pressure expresses the density in the absence of pressure.
Table 1 presents the compacting equations that have

been compared.

3. Linear regression analysis

Ž .The compaction equations proposed by Balshin, Eq. 3 ,
Ž . Ž . Ž .by Heckel, Eq. 5 , by Kawakita, Eq. 6 , by Ge, Eq. 9 ,

Ž .and by Panelli and Ambrozio Filho, Eq. 15 , can be
rewritten in a general form as:

f D sA f P qB 16Ž . Ž . Ž .1 n 2 n

Ž . Ž .where f D , f P , A and B are dependent on the1 2 n n
Ž . Ž .equations, so that f D s1rD, f P s ln P, A and B1 2 2 2

Ž . w Ž .x Ž .for Balshin’s equation, f D s ln 1r 1yD , f P sP,1 2
Ž . Ž .A and B for Heckel’s equation, f D sDr DyD ,3 3 1 0

Ž . Ž .f P s1rP, A and B for Kawakita’s equation, f D2 4 4 1
w Ž .x Ž .s log ln 1r 1yD , f P s log P, A and B for Ge’s2 6 6'Ž . w Ž .x Ž .equation, f D s ln 1r 1yD , f P s P , A and1 2 10

B for Panelli and Ambrozio Filho’s equation.10
Ž .If the values of f D are plotted against the values of1

Ž .f P , a straight-line relationship will be attained for each2

of the compaction equations. Thus, a quantitative compari-
son between the equations can be made by linear regres-
sion analysis. Different sets of experimental data on com-

Ž . Ž . Ž . Ž .paction are shown in Table 2. Eqs. 3 , 5 , 6 , 9 and
Ž .15 tested each set of data and the results are shown in
Table 3. Both tables are constructed ordering A values10

Ž .of Eq. 15 in a decreasing way from top to bottom of the
tables .

4. Discussion

Due to the non-availability of D only a fraction of the0
Ž .data sets presented in Table 2 could be tested with Eq. 6

Ž .as shown in Table 3. The application of Eq. 6 is quite
limited, because the equation can be used only when D ,0

the relative density of the loose powder at zero pressure, is
known. The other four equations need only the parameters
D, relative density of the compact and P, the applied
pressure.

Ž .The correlation coefficients, R, as shown in Table 3
for the five equations analyzed have a mean value and

Ž .range of variation as follow: Eq. 3 mean: 0.986, range:
Ž .0.924 to 0.999; Eq. 5 mean: 0.979, range: 0.906 to 0.999;

Ž . Ž .Eq. 6 mean: 0.981, range: 0.970 to 0.997; Eq. 9 mean:
Ž .0.989, range: 0.940 to 0.999; and Eq. 15 mean: 0.993,

range: 0.975 to 0.999. From these values it can be con-
Ž .cluded that Eq. 15 shows the highest mean correlation

coefficient, R, and narrowest range of variation. Further-
Ž .more, the lowest value of R found by Eq. 15 is 0.975,

which is higher than the lowest values of R when using
Ž Ž . Ž . Ž . Ž .Eqs. 3 , 5 , 6 and 9 . Nevertheless, all the equations
provide reasonable fits and could be used.

The equations can be evaluated taking into considera-
tion that two processes are usually involved in the com-
paction: particle rearrangement followed by plastic defor-
mation andror fragmentation. Plastic deformation is the
main mechanism in pressing of ductile powders and frag-
mentation is the main mechanism in pressing of brittle
powders. Generally, rearrangement occurs at pressures less
than 1 MPa and densification due to rearrangement is
dependent on powder characteristics, but corresponding to
the first 5% to 10% decrease in porosity. At higher pres-
sures, plastic deformation or fragmentation is the major
form of densification for powders.

Ž . Ž . Ž .A plot of f D versus f P from the general Eq. 161 2

for the five compacting equations would give two straight
lines, one for smaller pressures corresponding to particle
rearrangement and the other for higher pressures corre-
sponding to plastic deformation or fragmentation of the
particles. Fig. 1a shows a qualitative compression curve by
plotting the relative density D of the powder against
compacting pressure P and Fig. 1b shows the two straight

Ž . Ž .lines by plotting f D against f P .1 2

As more than one mechanism can operate in the com-
paction, no single equation can perfectly represent the
phenomenon over the complete range of pressures. On the
other hand the rearrangement represents a small amount of
the total densification, causing only a small error in the fit
of the equation.

The significance of the two constants that appear in all
the equations can also be considered.

As shown in the introduction, parameter A from Eq.10
Ž .15 represents the powder’s ability to densify by plastic
deformation. Plastic materials, especially soft metals, with
the highest A values are at the top of Table 2, and the

Ž .brittle materials ceramics with the lowest A values are10

at the bottom of the table. This aspect can also be seen in
' Ž Ž ..Fig. 2, where some plots of P versus ln 1r 1yD

Ž .using Eq. 15 are presented.
Ž . Ž .Eq. 5 has a format similar to that of Eq. 15 , showing

that the parameter A of that equation would also show the3
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Ž . Ž . Ž .Fig. 1. a Qualitative compression curve of the relative density D of the powder against compacting pressure P and b schematic representation of f D1
Ž .against f P , when plastic deformation or fragmentation follows particle rearrangement.2

powder’s ability to densify by plastic deformation. How-
ever, there is no similar order in the A parameter, as3

Ž .shown by A in Eq. 15 . The other equations also do not10

present a parameter that can be used to characterize the
Ž .powder in the same way as A from Eq. 15 .10

Ž Ž . Ž .Parameter B has no significance in Eqs. 3 , 6 and
Ž .9 , because the equations are not defined at zero pressure.

Ž . Ž .In Eqs. 5 and 15 , parameters B and B can be3 10

used to calculate the relative density of the powder at zero
pressure D . Nevertheless, as pointed out earlier, at the0

beginning of compaction rearrangement must be consid-
Ž .ered Fig. 1b . Therefore, D calculated by using B and0 3

B , would be different from the relative density of loose10
Ž .powder D , determined by ASTM B212 or similar.ap

w xIn Heckel’s equation 5 , as he obtained B always3
Ž Ž ..somewhat higher than ln 1r 1yD , it was consideredap

that D would represent the degree of packing achieved at0

low pressures due to the rearrangement processes.
Ž .In the case of B of Eq. 15 , their values are higher or10

Ž Ž ..lower than ln 1r 1yD giving D values higher orap 0

lower than D , or even negative D . The obtained valuesap 0

depend on the rearrangement and on inaccuracies in the
regression analysis due to the use of high pressures in the

Ždetermination of the curves as discussed in a previous
w x.publication 9 . Considering that rearrangement represents

only a small fraction of total densification in compaction
w x Ž .2 , D values calculated from Eq. 15 could be used as0

Ž .an approximation of the loose powder density D . Actu-ap

ally, for the real determination of D it would be neces-ap

sary to obtain the rearrangement equation.
The possibility to characterize the powders during com-

Ž .paction with the constants of Eq. 15 together with its

Fig. 2. Some compressibility curves.
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good fit with experimental results are the main reasons to
use this equation in modeling the compaction process.

5. Conclusions

A new phenomenological compaction equation is com-
pared with the four often used compaction equations. From

Ž .this comparison it is possible to conclude that: Eq. 15 ,
'Ž Ž ..i.e., ln 1r 1yD sA P qB , is the one which best10 10

represents the density–pressure relationship for powders.
Its linear correlation coefficient is almost close to the
unity.

Ž .Only Eq. 15 has constants representing powder char-
acteristics during compaction: parameter A represents10

the ability of the powder to densify by plastic deformation
and parameter B represents the density of the powder in10

the beginning of the compaction. However, due to the
rearrangement mechanism at the beginning of compaction,
B determined by the equation can be inaccurate.

6. List of symbols

A Constants for n varying from 1 to 10n

B Constants for n varying from 1 to 10n

D Relative density of compact at pressure P
D Relative powder density in absence of applied0

pressure

D Relative apparent densityap

K , k Constants
m Constant

w xP Applied pressure MPa
q Relative porosity of compact at pressure P
q Relative porosity of compact in absence of0

applied pressure
R Coefficient of linear regression
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