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Abstract

The source-function integration (SFI) technique for postprocessing Py solutions for radiation trans-
port problems in plane geometry is investigated. New postprocessed formulas that display in a clear way
the improvement introduced into the standard Py angular fluxes by the SFI technique are derived. In
particluar these formulas can be used to show that in the case where the angular dependence of the
internal source can be represented exactly by a polynomial of order up to N and approximate boundary
conditions of the Mark type are used the standard and the postprocessed Py angular fluxes coincide
at the N+ 1 values of the angular variable u € [—1, 1] that correspond to the zeros of the Legendre
polynomial Py.i(u). A consequence of this property that is of interest for implementing iterative Py
solutions to multilayer problems is discussed. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Concerning Py solutions to radiation transport problems in plane geometry, it is well known (Kourganoff,
1952; Dave and Armstrong, 1974; Karp, 1981; Siewert, 1993a) that if one tries to use the expression provided
by the Py approximation (with N odd)

N
1
=5 (2n+1)¢Yu(z)Palp),
T(z, 1) 2;( n + 1)thn () Pn(p1) 1)
after determining the Legendre moments

wnle) = [ WP G0ds, n =01, N, @

for computing the angular flux W(z, 1) as a function of the spatial variable z and the angular variable u, one
usually obtains, for any z, poor results that oscillate around the true solution as p varies from —1 to 1.

A remedy for this difficulty was proposed by Chandrasekhar (1944) in the context of his analytical discrete
ordinates method, which is closely related to the Py method. Chandrasekhar’s idea has been adapted for the
Py method by Kourganoff (1952) and, since then, has been used by many authors (Guillemot, 1967; Devaux
et al. 1973; Dave, 1975; Benassi et al., 1984; Barichello et al., 1998). It has also been the subject of a few
specific studies (Dave and Armstrong, 1974; Karp, 1981; Siewert, 1993a). Kourganoft’s smoothing procedure
is based on integrating the transport equation in space, with the scattering term expressed in terms of the
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Legendre moments ¢, (z), n =0,1,..., N, as determined by the Py method. Since the scattering term in this
equation can be treated as a known source, the procedure has been called the source-function integration (SFI)
technique. Other postprocessing techniques for the Py method have also been studied (Dave and Armstrong,
1974; Karp, 1981) but the SFI technique is by far the best, although not the cheapest.

In this paper we develop the analysis needed to quantify the improvement introduced into the Py angular
fluxes when the SFI technique is used. The result is expressed in the form of two correction terms to the
standard Py approximation [Eq. (1)], one valid for € [0,1] and the other for p € [—1,0]. In addition, it
is shown that, under the assumptions that the internal source is representable by a polynomial of order up
to N in g and the Mark boundary conditions are used, these correction terms vanish at the N + 1 zeros of
the Legendre polynomial Pyy1(p). A consequence of this fact that is of relevance to approaches based on
single-layer Py solutions coupled by iterative sweep techniques for solving transport problems in multilayer
geometry is discussed.

2. The problem and its Py solution

We consider the problem defined by the transport equation, for z € (0,a) and p € [—1,1],

a c = ! ! ! ’
e Vo) + W) = § S AePd) [Pl YW + Qo) ©
=0 -
and the boundary conditions, for p € (0, 1],
(0, p) = F(ps) (4a)
and
\Il(a, _M) = G(P’)? (4b)

where the incident distributions F(u) and G(u) are considered known. In Eq. (3), z is the distance measured
in mean free paths, p is the cosine of the angle between the x axis and the direction of particle motion, ¢
is the mean number of secondary particles emitted per collision and Q(z, ) is a known internal source. In
addition, B, £ = 0,1,..., L, are coefficients in a Legendre polynomial expansion of the scattering law, and
must obey the restrictions 8y = 1 and |3 < 2¢+ 1, ¢ = 1,2,...,L. In this work we limit our analysis to
c € (0,1), i.e. the case of a nonmultiplying and nonconservative host medium.

We now summarize the main features of the Py solution to the problem defined by Eqgs. (3) and (4). Details
can be found, for example, in the works by Benassi et al. (1984), Garcia et al. (1994), and Barichello et al.
(1998). First, the general Py solution expressed by Eq. (1) is rewritten as a combination of homogeneous and
particular Py solutions, viz.

(z, 1) = Oz, 1) + VP (x, 1) (5)
Here
1 &
Wiz, ) = 5> (20 + DY) Palw) (62)
n=0
and
1y
Wz, ) = 5 3 (20 + DUl (@) Palp), (6b)
n=0
where ¥ (z),n = 0,1,..., N, are the solutions to the first N + 1 Legendre moment equations associated with

the homogeneous version of Eq. (3) and ¢?(z), n = 0,1,..., N, are particular solutions to the first N + 1
Legendre moment equations associated with Eq. (3). Of course, in this formulation, the Legendre moments
defined by Eq. (2) are simply

Yn() = Un(2) + ¥4 (). (7



R.D.M. Garcia | Annals of Nuclear Energy 27 (2000) 1217-1226 1219

Solving the moment equations, we find that the “homogeneous” Legendre moments {¢!(z)} are given
explicitly by (Benassi et al., 1984; Garcia et al., 1994; Barichello et al., 1998)

J
YhE) =D [Aje™9 + (~1)"Bje” /g, (), (8)
j=1

and the “particular” Legendre moments {1£(z)} by (Siewert and Thomas, 1990; McCormick and Siewert,
1991; Barichello et al., 1998)
J

() = 3" LA ) + (~1)B, ()] (€y)- (9)

j=1 >

In these expressions, J = (N + 1)/2, g,(&) is the Chandrasekhar polynomial of order n, defined for any n by
the initial value go(¢) = 1 and the three-term recurrence formula

ha€gn(€) = (n + 1)gn+1(8) + ngn-1(£), (10)

where h, = 2n+1— 3, for n < L and h, =2n+1 for n > L, and the Py eigenvalue ¢; is the j’th positive
zero of gn41(€). In addition, {A;} and {B;} are coefficients to be determined from the boundary conditions,
the constants {C;} are given by

N -1
CF%ZM%O» (11)

and the calligraphic coefficients {A4;(z)} and {B;(z)} are given by

N

Ay(z) = % S @0+ 1)galéy) /0 * Qu(@)e G dy (12)
and N i
Bj(z) = %Z(*l)"(2n+ 1)gn(&5) / Qu(a)e =D 5dy, (12b)

where Q,(z) is the n’th Legendre moment of the internal source Q(z, i), i.e.

=1pmmmww. (13)

Once some kind of approximate Py boundary conditions (e.g., Mark or Marshak) are used and the resulting
system of linear algebraic equations for the coefficients {A4;} and {B;} is solved, we have at hand all quantities
needed to evaluate the Py solution. However, as discussed in the Introduction, Eq. (1) usually does not give
good results (especially at the boundaries) and thus we resort to the SFI technique for postprocessing the Py
solution of our problem.

3. Postprocessed Py angular fluxes

To describe the SFI technique, we rewrite Eq. (3) as
8
D w2 + (e, ) = E:mnimww )+ QU 0, (14)
where now p € [0,1]. Considering first the plus sign in Eq. (14), using Egs. (7), (8) and (9) to express the

Legendre moments {t¢(z')} on the right side of this equation (under the assumption that N > L), integrating
over z’ from 0 to x, and using Eq. (4a), we obtain, for 4 € [0, 1],

-~ 1 [* ,
W) = Fe ™ + 5 [ Q'+ Yo ) + o), (15)
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where we have introduced the hat notation to distinguish between postprocessed (\Tl) and standard (V) Py
angular fluxes. In Eq. (15) we have used the definitions

L J
o, u) = gZﬁZPZ Z [A;C(z : 1, &) + (1) Bje @5 S(x : 1, &)] ge(€)), (16)
=0 j=1
where
—z/p _ A/
Clos ) = ST (172)
and R
1—e ®/He™™®
S(x:p, &)= T, (17b)
and
c L J
Ble, ) = 5 D BePel) 3 G [Xsa, m) + (1) Y, 0)] 9e(&5), (18)
£=0 j=1
where
1 @
Xy, ) = 5 (2 + Done) /0 Q@) — 2 : i, &)d’ (19a)
n=0
and
1< @ .
Yz, ) = B;(2)S(2: 1, &) + 5 do(=yren+ 1)gn(5j)/0 Qn(a)e EV1S(a! - p, &) da’. (19b)
n=0

Similarly, considering the minus sign in Eq. (14), using Egs. (7), (8) and (9) to express the Legendre moments
{tbe(z')} on the right side of this equation, integrating over =’ from z to a, and using Eq. (4b), we obtain, for
e 0,1],

B, ) = G+ [ Q! e ida’ + T(a, ) + S, ), (20)
where
oL J
Y(z,—p) = 3 Z[J’ng Z DfA;e™5S(a— 21 p, &) + BiCla— 1 1, &5)] gel€)) (21)
=0 =1
and
e J
B, —) = 5 > BePe) Y C; (=D X, =) + Yi(w, —1)] 9e(&y), (22)
=0 j=1
with

X;(z,—p) = Aj(x)S(a —z : 1, &) + % Z(2n +1)gn () /a Qu(z)e = =2/eg(q — o w,&)da’ (23a)
and "
I o
Yi(z,—p) =3 > (=)@ + 1)9n(§j)/ Qn(2)C (@ —z: p,&)da’. (23b)

Equations (15) and (20) are expressed in a form which is standard for reporting postprocessed Py results
(Siewert, 1993a; Barichello et al., 1998). However, it will be shown in the next section that these equations
can be written in a simplified form which is more convenient for analyzing the impact of the postprocessing
step in the quality of the Py results.
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4. Alternative postprocessed formulas

The desired alternatives to Eqs. (15) and (20) can be derived by making use of some identities involving
the Chandrasekhar polynomials. Specifically, if we use the formula (Inénii, 1970)

(n— f)Z 20+ 1) Po(n)ge(€ +C§ZﬂzPe(N)gz(§) (N +1) [Pusi(m)gn(€) — Pu(w)gn1(€)]  (24)

along with Egs. (6a) and (8) and the conditions gy11(§;) = 0 for j = 1,2,...,J, we can rewrite Eqgs. (16)
and (21) respectively as

T(w, 1) = Uz, u) — U0, p)e™/*

J
N+1
+ (T) Pyyi(p Z A ;C(z : p, &) + Bje™ (a= I>/§’S($ & ]gN(§] (25a)
j=1
and
T, ) = Wz, —10) = W (o, —p)e
N+1 J

+ <T> Pya(w) D [Ase /55 (a — 22 1,€) + BiCla— 2 1,€)] gn (). (25b)

Continuing, we can use again the identity expressed by Eq. (24) along with Eqs. (6b) and (9) and the
conditions gn11(§;) = 0 for j =1,2,...,J to rewrite Egs. (18) and (22) respectively as

E(w, 1) = UP(x, 1) — WP(0, p)e™/* + Z(x, 1)

J
j=1
and

S(, —) = Wz, —p1) — V(0 —p)e ¥ — Z(a, —p)

( )PNHMZ X,(r, 1) + Y@, ~m)lgn(&),  (26b)
where we have used the definitions
N T
Z(z,p) = 2(22+ 1)Py(p) > (20 + 1), / Qn(z')e~ @) gy (27a)
e 0
and ’
1 al o ,
2w, =) = 1 SV QA+ DR Y 2n+ Dl [ Qula)e e, (21b)
£=0 n=0 T
with

J
H")e_[ 1+( 1n+£ Z

m|Q

5] g@(fj (28)

In order to simplify Eqgs. (27a) and (27b), we find it convenient, for reasons that will become clear soon,
to split the inner summation in these equations into two summations (one from n = 0 up to n = ¢ and the
other from n = £+ 1 up to n = N), invert the order of the summations, and use the result (see proof in the
Appendix)

2(0+1)7'P,(0)P5(0), n even, £ odd and > n, (29)

2(n+ 1)7'P;1(0)P(0), n odd, ¢ even and < n,
Hn £ =
0, otherwise,
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and the fact that Il,, = I, , to write these equations as

N-1 N

1 @ . 2(2
=3 2 e[ e no Y 2 Do pm
n=0 o t=n+1 +
n even £ odd
N n—1
L1 2(2n +1)
‘1 Z 22D [ [ auerete iz | B4 0) Qe DROPG) ()
n, d Zeven
and
] N N 2e+1
2w =1 X @ty [ Q@) dex] .0 3 22 Db o)p
n=0 l=n+1
n even £ odd
1L 22n+1) _ =
-1 2 e Qe =m0 B 0) - @+ DRORG. (60
n=1 £=0
n odd ¢ even

Now, to evaluate the first summation over £ in Egs. (30a) and (30b), we can use the recurrence formula
(20 + 1) pPy(p) = (€ + 1) Pesa (i) + £Por (1) (31)

twice to show that

22041) ., _2[Pa(p)  Pea(p)
7+1 P13+1(0)P€(N) = ; [Pul(o) - Pi—l(o):| : (32)
Hence
o 202+1) _2 5 [Pea(®) _ Pa)] _ 2 [Pyn(n)  Pap)
e=;+1 41 PZ“(O)PE(H) B ﬂgzin_:” {PZH(O) B P/.’—l(o)] a l_‘ [PNH(O) - Pn(o)] . @)

For the second summation over ¢ in Egs. (30a) and (30b), the Christoffel-Darboux formula for the Legendre
polynomials (Stegun, 1964) yields (note that n in the upper limit of the summation is odd)

> e+ )RR = (2) PGPa(0) = - (") P Pusso) (34

Thus, substituting Eqs. (33) and (34) into Eqs. (30a) and (30b), we find, after regrouping two terms in each
of these equations,

7——2(2n+1 / Qn(a)e~ @y

[PN+1 } Z(Qn-i—l / Qn(a’)e™ @ gy (35a)

Prn41(0

n even

and

N
1 @ ,
2, w) = =5 (-1 @+ D) [ Qule)e s
n=0 z

1 [Pyya(p) —(z' =) /1 gt
+2Jp§i+i<o>] Z(Q THAO) / Qnle Yadl. (35b)

n even
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Finally, considering Eqs. (35a) and (35b) and substituting Eqs. (25) and (26) into Eqgs. (15) and (20), we
find the desired formulas that relate the postprocessed and the standard Py angular fluxes. We can write
these formulas compactly, for u € [0,1], as

Uz, £p) = U(x, +p) + (2, £p), (36)

where

Y&, ) = [F(p) — ¥(0, )] e™*/*

N
ool |:Q(z W - ;;(%H)Qn(z P | e (F2) P
J C;
{Z{A Ol : p,&)) + Byo @/ 5 (x;H,gj)+_f[Xj(z,u)+Yj(:c,u)]}gzv(ij)]
j=1
o [l] 5 ene 00 [0 ar
and
y(@, —) = [Gln) — W(a, —p)] @/

N
+ —/ { x',—p) — %go "(2n+ 1)Qn(z) P, (u):l e @ =D/rgg + (%) Pyia(p)

= |~

{Z Ae /85 (a—x:u,@-)ch(a—z:u,aj>+%[sz,—u)+Yj(z,—m1}gN(ej)}

+ i [%E—E)} Z (2n + 1)P,(0) / Qu(z)e~ @) gy’ (37b)
can be viewed as correction terms to the standard Py angular fluxes.

We are now ready to discuss the conditions for which the standard and postprocessed Py angular fluxes
coincide. Clearly, a necessary condition for having y(z,+x) = 0 is that the internal source Q(z, 1) must be
represented exactly for p € [—1, 1] by a polynomial of order up to N in p, as this will cause the second terms
on the right sides of Egs. (37a) and (37b) to vanish. Moreover, if x in Eqgs. (37a) and (37b) is restricted to
the set g, k=1,2,...,J = (N + 1)/2, of positive zeros of Py.1(p), the third and fourth terms on the right
sides of these equations will also vanish. If in addition, among all possible choices of Py boundary conditions
(Garcia et al., 1994; Garcia and Siewert, 1996), the Mark boundary conditions (Davison, 1957; Gelbard, 1968)

(0, px) = F(px) (38a)
and

U(a, —px) = G(u), (38b)

for k =1,2,...,J, are chosen to approximate Eqs. (4a) and (4b) in the process of determining the required
{4;} and {B;}, it is clear that the first terms on the right sides of Eqs. (37a) and (37b ) will be zero for
=, k=12,...,J.

Finally, we note that the fact that the correction terms ~y(z,+u) =0 for p = g, k = 1,2,... ,J, when the
internal source is a polynomial of order < N and the Mark boundary conditions are used has implications
for the implementation of iterative Py solutions for multilayer transport problems. While these problems can
be solved without iteration if all the layers are considered at once and the boundary and interface conditions
are used to deduce a linear system having as unknowns the coefficients {A;} and {B;} for all layers, such a
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global approach may become impractical if the number of layers is too large. Under these circunstances, it
may be more efficient to solve the problem for each material layer separately and iterate the solutions along
the layers using spatial sweeps until convergence is attained. In this procedure, for a given iteration, the
incident fluxes on the surfaces of a layer are either known [as the flux impinging the left (right) surface of
the leftmost (rightmost) layer in the multilayer system| or taken to be equal to the most recent estimates for
the fluxes emerging from the boundaries of adjacent layers. Since in this last case one could, in principle,
hope that the use of the postprocessed formulas could provide an improved representation for the incident
fluxes, when compared with the standard formula expressed by Eq. (1), our work has made it clear that the
postprocessed and the standard formulas both give the same results, when the Mark boundary conditions are
used to approximate the boundary and interface conditions of the problem.

5. Concluding remarks

In summary, we have derived in this work new postprocessed formulas for the Py angular fluxes that display
in a clear way the improvement introduced into the standard angular fluxes when the SFI technique is used.
We showed that the postprocessed angular flux can be expressed as the standard angular flux plus a correction
term that vanishes at the zeros of Py.1(p) when the internal source can be represented as a polynomial of
order < N in p and the Mark boundary conditions are used. The role played by this property in the solution
of multilayer problems by iteration has been discussed.

Extensions of the analysis reported in this paper for more complex problems are thought to be possible. In
fact, it has been verified numerically (Dias, 1999) that the property of N + 1 points of coincidence between
the standard and the postprocessed Py angular fluxes also holds for multigroup versions of the method
(Siewert, 1993b; Caldeira et al., 1998) that have been used to solve neutron transport problems. In the field
of radiative transfer, we believe that our analysis can be successfully extended for problems that include
azimuthal dependence, reflecting boundaries and polarization effects.
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Appendix
The Constants I1,, ¢

In this appendix, we report our proof that the constants
J
I, = [ 1)"”] Zé—] 9n(&5)9e(&5) (A1)

can be expressed as in Eq. (29) of Sec. 4. Since II, , = 0 and
Hn,l = Hé,n: (AZ)

we begin by considering £ < n in our derivation. Once we have the result for this case, we can obtain the result for
¢ > n using the symmetry relation expressed by Eq. (A.2).

First of all, we note that II,, = 0 if both n and ¢ are even or odd. Using the recurrence relation for the
Chandrasekhar polynomials [Eq. (10)], we can write

J
(04 Dy gy + O py = —[1+ (1) he Y Cign(€)90(65) = —20n,¢, (A.3)
=1
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where the last equality follows from an identity proved by Siewert and McCormick (1997). For fixed n, Eq. (A.3)
constitutes a heterogeneous two-term recurrence relation for I, in £ that can be solved using, for example, the
summing-factor method described by Bender and Orszag (1978). We find, for £ < n,

11, 0P(0), m odd, £ even
H — T, K i} ]
™t { 0, n even, £ odd. (A4)
In order to determine the constant
I
Moo= [-1+(=1)" Y 29.(&) (A.5)

1]

Il

J
required in Eq. (A.4) for n odd, we can use Eq. (A.2) in Eq. (A.3) with n = 0 and interchange the roles of n and £ in
the resulting equation to obtain

(TL + l)nn+1,0 + nnn71’0 = —257110. (A6)

Solving this equation, we obtain

2 -
Mo = <_n - 1) 11(0), nodd, (A7)
which we substitute into Eq. (A.4) to find the explicit result, for £ < n,

n+1

2(n 4+ 1)"1P7L (0)P(0), n odd, £ even

o, = ) )
e { 0, n even, £ odd. (A8)
For £ > n, we use Eq. (A.2) in Eq. (A.8) and interchange the roles of n and ¢ in the resulting equation to find the

expression

M, = { 2(6+1)71 P, (0)P;;4(0), m even, £ odd, 49)

0, n odd, ¢ even.

Finally, combining Egs. (A.8) and (A.9) we arrive at the result expressed by Eq. (29) of Sec. 4.
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