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1. INTRODUCTION 

The analytical theory of orthogonal polynomials has been deeply investigated since the middle of 
the last century (Chebyshev, 1859; Christoffel, 1858; 1877; Darboux, 1878; Stieltjes, 1884), and can 
now be considered a well-established theory (Shohat, 1934; Szegij, 1939; Erd6lyi et al., 1953; Freud, 
1971; Chihara, 1978). 

Along the years, classical orthogonal polynomials have been applied in several disciplines: mathe- 
matics, physics, chemistry, statistics, electrical engineering, and many others. Nonclassical orthogonal 
polynomials, on the other hand, have not been widely used, mainly because their supporting theory 
does not share the close relationship with the theory of the fundamental differential equations of math- 
ematical physics that is typical of the theory of classical polynomials and also because they are not so 
easy to generate, numerically speaking. However, the latter difficulty is much less severe today than it 
was 30 years ago: recent advances in the constructive theory of orthogonal polynomials have resulted 
in the development of accurate and efficient algorithms for generating nonclassical orthogonal polyno- 
mials. Consequently, the range of applications of these polynomials has expanded and they are now 
being applied in new fields of study, including particle transport theory. 

The outline of this paper is as follows. In Section 2, the current status of the constructive theory 
of orthogonal polynomials is summarized. General applications of the theory are briefly discussed in 
Section 3 and various transport-theory applications of nonclassical orthogonal polynomials that have 
been reported in the literature are presented and discussed in Section 4. Finally, Section 5 consists of 
our concluding remarks. 
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2. THE CONSTRUCTIVE THEORY OF ORTHOGONAL POLYNOMIALS 

2.1. The Fundamental Problem 

The fundamental problem in the constructive theory of general orthogonal polynomials can be 
formulated in the following way (Gautschi, 1985). We are given a nonnegative measure dr(<) on the 
real line R and the first 2n moments 

k=O,l,... ,2n-1, (1) 

which are assumed to be finite. We are required to find the unique set of manic orthogonal polynomials 

ink(t), k = (),I,. . . ,n} (i.e. the set of orthogonal polynomials normalized so that the coefficient of 
the highest power in each of its elements is unity) that satisfy the orthogonality property 

and a three-term recurrence relation of the form 

nk+l(t) = (t - ak)nk(t) - Pknk-l(t), k=O,l,... ,12-l, (3) 

with initial values II-i(c) = 0 and II,(<) = 1, for the indicated values of k and 1. It is clear that 
the task of constructing the first n + 1 polynomials {l&(t)} can be considered accomplished once the 
coefficients ok and /_?k in Eq. (3) are known for k = 0, 1, . . . , n - 1. Strictly speaking, the coefficient PO 
is not required in Eq. (3), and thus it can be chosen arbitrarily; however, as pointed out by Gautschi 
(1982a, 1985), it is convenient to choose 

One of the advantages of this choice of ,Bo is that the normalization constant in Eq. (2) can be expressed 
by the simple formula (Gautschi, 1982a) 

Nk = popi . . . pk. (5) 

At this point, we note that there are other ways of constructing orthogonal polynomials, the most 
traditional of which is based on the determination of the coefficients of their representations in terms 
of powers (Stroud and Secrest, 1966). However, as discussed in detail by Gautschi (1982a), there are 
several reasons why the approach based on the recurrence coefficients {(Yk} and {pk} should be favored 
over the others. 

If we now introduce (Gautschi, 1985) the vector of moments 

cr = [PO, Pl, * *. , h-l]* 

and the vector of recurrence coefficients 

(6) 

P=[Qo,%... ,%-l,PD,&,... A-f, (7) 

we can see that the fundamental problem requires us to implement the map 

M . R2n + Rzn n . cc + P* (8) 
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This map can be easily implemented by means of a procedure known as the Chebyshev algorithm 
(Gautschi, 1982a), but its use in practice is limited to small values of n, because the condition number 
of the map grows exponentially with n (Gautschi, 1968a; 1978), and the procedure becomes numerically 
unstable as n increases. An alternative is to depart not from the ordinary moments pk defined by Eq. (1) 
but from the modified moments 

k=O,l,... ,2n-1, 

where {P,(t)} is a system of manic polynomials that satisfies the three-term recurrence relation 

pk+l(‘t) = (t - ak)pk(<) - bkpk-l(t), Ic = 0, 1, . ) 2n - 2, (IO) 

with known coefficients {ak} and {bk} and initial values P-i(<) = 0 and PO([) = 1. A judicious choice 
of the P-polynomials-usually a set of orthogonal polynomials-can greatly improve the numerical 
condition of the problem. However, before elaborating on this point, we illustrate our presentation by 
giving some examples of systems of orthogonal polynomials. 

2.2. Examples of Systems of Orthogonal Polynomials 

We begin with a few examples of classical orthogonal polynomials (ErdClyi et al., 1953; Hochstrasser, 
1964). The simplest case is perhaps that of the uniform measure on [-1, 11, 

which is associated with the Legendre polynomials {pk([)}. As these polynomials satisfy 
relation 

(11) 

the recurrence 

(12) 

with initial value PO(t) = 1, and the coefficients of their highest powers are given by (2k - l)!!/k! for 
k 2 0, it is clear that the corresponding set of manic orthogonal polynomials has elements 

nk(t) = (Sk “! lypk(t)r k > 0. (13) 

In addition, using Eqs. (12) and (13), we can readily show that the recurrence coefficients in Eq. (3) 
are given in this case by ok = 0 and pk = 2&k + k2/(4k2 - l), w h ere the term with the Kronecker delta 
has been introduced in order to satisfy the choice of /3s expressed by Eq. (4). 

Still with support on the segment [-1, l] of the real line but with a different functional form, we 
have the family of measures 

(14) 

which is associated with the Chebyshev polynomials of the first kind {Tk(t)} when the exponent in 
Eq. (14) is negative, and with the Chebyshev polynomials of the second kind {uk(c)} when that exponent 
is positive. The corresponding sets of manic orthogonal polynomials can be expressed respectively as 

I&(<) = 2-ma”(k-“o)Tk(~), k L 0, (15) 
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for which case the recurrence coefficients are ok = 0 and pk = &s,k + (1 - &$)(I + &&)/4, and 

nk(t) = 2-kvk(t), k > 0, (16) 

for which case the recurrence COeffiCientS are ok = 0 and pk = (r/2)6,&k -t (1 - 6e,k)/4. 
For our last example of classical orthogonal polynomials, we consider the measure 

(17) 

which is associated with the Laguerre polynomials {&(e)}. Th e corresponding set of manic orthogonal 
polynomials is given by 

nk(t) = (-l)kk!b(t), k L 0, (18) 
and the recurrence coefficients by ok = 2k + 1 and pk = 6&k + k2. 

Finally, we conclude this series of examples with a system of nonclassical orthogonal polynomials 
that has applications in theoretical chemistry (Wheeler, 1984; Gautschi, 1985). The measure of interest 
in this case has the peculiarity of having a support that consists of two disjoint intervals, i.e. 

Wt) = n-l I< - 31 [r(l- r)(; - t)($ - t)]-1’2dt, t E [O, +] U [f, 11, 
o , otherwise. (19) 

It turns out that the modified Chebyshev algorithm described next can be used to construct the system 
of orthogonal polynomials associated with this measure in an accurate way (Wheeler, 1984). In addition, 
it has been shown (Gautschi, 1984) that the corresponding recurrence coefficients {ok} and {pk} can 
be expressed in closed form, something unusual for nonclassical orthogonal polynomials. 

2.3. The Modified Chebyshev Algorithm 

Given the system of polynomials {pk(c)} an d assuming that the integral in Eq. (9) is computable 
for k = O,l,. . . , 2n - 1, we define the vector of modified moments 

m = [m0, ml,. . . , m2,-11T (20) 

and note that the modified Chebyshev algorithm is essentially a procedure for implementing the map 
(Gautschi, 1985) 

K . 812” +?Jl*” n . m + P, (21) 

where p is the vector of recurrence coefficients defined by Eq. (7). We also note that if we take 
ek = bk = 0 in Eq. (lo), the map K,, reduces to the map M,, based on ordinary moments, which 
becomes exponentially ill-conditioned as n increases, as discussed in Subsection 2.1. 

The idea of using modified moments of orthogonal polynomials to avoid the numerical instability of 
the classical Chebyshev algorithm was introduced by Sack and Donovan (1972). A particularly simple 
form of the algorithm is due to Wheeler (1974) and has been extensively studied by Gautschi (1978, 
1982a, 1985,199O). The equations that define the modified Chebyshev algorithm in the form proposed 
by Wheeler are summarized below; for a derivation of these equations see Gautschi (1978, 1990). We 
first note that the algorithm is baaed on the mized moments 

(22) 
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where {II,([)} are the polynomials that we wish to generate and {‘Pi(<)} are the polynomials introduced 

in Subsection 2.1, usually referred to as auziliay polynomials. By orthogonality, we have ok,1 = 0 for 
k > 1. The initialization phase of the algorithm is given by 

(J-1.1 = 0, 1=1,2 ,..., 2n-2, 

uo.1 = ml, l=O,l,..., 2n-1, 

(~0 = a0 + 3 
m0 

and 

PO = m0, 

and the calculation is completed by using the following formulas cyclically, for k = 1,2, 

OkC = ok-l,I+l - (ak-1 - albk-l,l - Pk-lok-ZJ -t bk-lJ-1, 

1 = k, k + 1, . . . ,2n - k - 1, 

ak = ak + 
ok k+l ok-1 k L-I 

uk,k (Jk-l,k-1 

and 
pk=-zi?L-. 

ok-l,k-1 

(234 

Wb) 

(23c) 

(23d) 

,n-1: 

(24a) 

(24b) 

(24~) 

Gautschi (1982a, 1985, 1990) has performed a sensitivity analysis of the map K,,. His main conclu- 
sion was that the sensitivity of this map depends on the magnitude of a polynomial [expressed in terms 
of the elementary Hermite interpolation polynomials associated with the Gauss nodes generated by 
dr(<)] on the support of ds(e), the measure associated with the set of auxiliary orthogonal polynomials. 
The study of some typical examples (Gautschi, 1982a; 1985; 1990) has led to the general recommenda- 
tion that the auxiliary orthogonal polynomials should be chosen so that the support of their measure 
ds(<) coincides with the support of the measure dr(<) associated with the polynomials that are being 
generated. 

Finally, we should mention that the main difficulty with the modified Chebyshev algorithm is 
usually the accurate computation of the modified moments defined by Eq. (9), which are needed in the 
initialization phase of the algorithm. Sometimes, these moments can be expressed in closed form; in 
the event that a closed form expression for the moments cannot be found, one should try developing 
recurrence formulas or using discretization procedures (Gautschi, 1982a; 1985). 

2.4. The Discretized Stieltjes Procedure 

The so-called Stieltjes procedure is based on the observation that it is possible to obtain explicit 
formulas for the recurrence coefficients (Yk and @k in Eq. (3) if we multiply that equation by IIl(Qdr([) 
and integrate the resulting equations for 1= k and 1= k - 1 over the real line (Gautschi, 1982a; 1985; 
1990). Defining the inner product 

(x, Y) = J, X WWW), (25) 
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(Ink, nk) 

ffk = (n,,&) ’ 
k = 0, 1, . . . , 72 - 1, (264 

and 
(nk, nk) 

pk = @k-l, nk-1) ’ 
k=1,2 ,... ,n-1. (26b) 

Given a way of computing these inner products accurately, we could, in principle, use Eqs. (26) in 
alternation with Eq. (3) to find the required recurrence coefficients. The procedure would be the 
following. First of all, eye could be computed from Eq. (26a) with k = 0, while PO = mu = (IIc, II,) by 
convention. We could then use Eq. (3) with k = 0 to generate l-Ii([). Having generated III(<), we could 
use Eqs. (26) with k = 1 to compute o1 and pi, which could in turn be used in Eq. (3) with k = 1 to 
generate II,(t). P roceeding further for increasing values of k, we would be able to compute all of the 
required ok and pk. 

At first glance, one could have the impression that analytical integration, easily applicable if the 
II-polynomials are expressed in terms of powers of <, would be a good way of evaluating the inner 
products in Eqs. (26). Unfortunately, this idea is useless because it is equivalent to implementing 
the map M,., based on the ordinary moments, which is, as discussed in Subsection 2.1, extremely ill- 
conditioned for large n. In addition, the obvious choice of using the Gaussian quadrature associated with 
dr({) to approximate the integrals that define the inner products is simply not available, because the 
coefficients {ok} and {/&} would have to be known in advance in order to generate such a quadrature. 
Nevertheless, the approximation of inner products by discrete sums is the central idea of the discretited 
Stieltjes procedure proposed by Gautschi (1968a) and discussed next. 

The case of a discrete measure, i.e. a measure that is zero everywhere except for a set of discrete 
points on the real line, is straightforward, since the integrals that define the inner products in Eqs. (26) 
reduce to sums. The case of a measure of the form dr([) = Q(<)d{, where V!(e) 2 0 for < E [a,b] and 
Q(e) = 0, otherwise, can be handled as follows (Gautschi, 1968a; 1982a). First we note that the interval 
[-1, l] can be mapped onto [a, b] by means of the linear transformation < = $(b - a)~ + i(b + o). A 
quadrature rule of the type 

(27) 

where {vi} and {wi} denote respectively the nodes and weights and N > n the order of the quadrature, 
is then mapped onto [a,b] and used to evaluate the integrals in Eqs. (26). Denoting the transformed 
nodes as 6 = i(b - o)qi + i(b + a), we can express PO as 

and Eqs. (26) as 

ok = 

N 

C wiQ(&)&n’,(&) 

i=l 

24Q(C)n:(ti) 

, k=O,l,... ,n-1, 

i=l 

(294 
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and 

C wiQ(Ei)~Ll(<i) 
i=l 

@‘b) 

As a quadrature rule recommended for general applications, Gautschi (1968a, 1982a, 1985, 1990) 
suggests the use of FejCr’s rule (FejCr, 1933; Davis and Habinowitz, 1984). This is the interpolatory rule 
associated with the Chebyshev nodes vi = cos[(2i - 1)7r/(2N)], i = 1,2.. . , N, and has the advantage, 
since the corresponding weights wi are also expressible in closed form, of requiring less computer time 
to be generated than, for example, a Gauss-Legendre quadrature of the same order. On the other hand, 
Fejer’s rule of order N integrates exactly polynomials of order up to N - 1, while the Gauss-Legendre 
rule of order N does the same up to order 2N - 1. 

The cases of semi-infinite and infinite intervals of support can be handled in a similar way by 
mapping the interval [-1, l] onto [0, 00) and (-co, co) by means of the transformations 6 = (l+n)/(l-n) 

and < = v/(1- q2), n E [-I, 11, respectively (Gautschi, 1968a). In addition, other cases can be devised 
(for example, a measure with support defined by a number of disjoint intervals) where a composite rule 
is required (Gautschi, 1982a; 1990). There are also some special cases (Gautschi 1982a; 1985) for which 
quadrature rules other than FejCr’s are known to perform better. 

2.5. The Linear-Factor Modification Algorithm 

Frequently, the following problem is encountered in the constructive theory of orthogonal polyno- 
mials: given a nonnegative measure dr(t), supported on [a, b] and expressed as a polynomial pj(<) of 
degree j times another nonnegative measure ds([) supported on the same interval, construct the set 
of modified orthogonal polynomials {I&(<)} associated with dr(<), assuming that the set of original 
orthogonal polynomials {pk([)} associated with ds(<) is available. 

An explicit solution to this problem is given by the classical formula of Christoffel (Christoffel, 1858; 
Szego, 1939). However, being expressed in determinantal form, Christoffel’s formula is not convenient 
for computational purposes. A more efficient procedure is to compute the recurrence coefficients {ok} 
and {pk} for the modified polynomials directly from those for the original polynomials by using an 
algorithmic implementation of Christoffel’s formula known as the linear-factor modification algorithm 
(Galant, 1971; Gautschi, 1982b; 1990). 

Since a polynomial can always be factored as a product of linear factors, we note that it is sufficient 
to consider the case where the polynomial pj(<) that multiplies the measure ds(<) is of degree j = 1. 
The most general case can then be treated as a sequence of linear cases. For j = 1, we can write 
Christoffel’s formula as 

nk(J)pl(‘) = ck lpk(r) p,+,(r), 
Pk(O pk+lq 

(30) 

or, more explicitly, as 

nk(<)(cf - “) = Ck[pk@pk+l(T) -pk+l(<)pk(T)]~ (31) 

where r < a denotes the root of the polynomial PI(~) (the modification needed to handle the case T 2 b 
will be presented at the end of this subsection) and ck = -l/P k T is a normalization constant, chosen ( ) 
so that the coefficient of the highest power in Hk(t) be unity. In addition, the original polynomials 
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{73(t)} satisfy a three-term recurrence relation of the form of Eq. (10) with known coefficients {ok} 

and (4J. 
A detailed derivation of the linear-factor modification algorithm was presented by Gautschi (1982b), 

following the arguments of Stiefel (1958). Recently, an alternative derivation of the algorithm has also 
been made available (Chalhoub and Garcia, 1998). The final result is that the desired recurrence 
coefficients are computed in terms of those for the original polynomials by performing the following 
calculations, for k = 0, 1, . . . , n - 1: 

and 

ak = qk + ek -k T, (32a) 

pk = 
k=O 

;:-,, k > 0' , (32b) 

where qk = ok - e&l - T and ek = bk+l/qk, with e-r = 0. Note that these formulas require the 
knowledge of the coefficients {ok} for k = 0, 1, . . . , n - 1, while the coefficients {bk} are required for 
k = O,l,... ,n. For the case where the root of the polynomial pr([) is located to the right of the 
support interval [a, b], i.e. pl(<) = T - t, with T 1 b, it can be shown that the above formulas are still 
valid, except that lqol replaces go in Eq. (32b). So far, the experience accumulated with the use of the 
linear-factor modification algorithm suggests that it is numerically stable (Gautschi, 1990). 

2.6. The Linear-Divisor Modification Algorithm 

The linear-divisor modification algorithm is a procedure that can be used to compute the recurrence 
coefficients {ok} and {pk} for the orthogonal polynomials associated with the nonnegative measure 

d%) = ds(<)/(< - r), pi ven the recurrence coefficients {ok} and {bk} for the orthogonal polynomials 
associated with the nonnegative measure ds(<) supported on the finite interval [a, b]. The equations 
that define the algorithm can be readily obtained by considering the generalized Christoffel theorem 
(Uvarov, 1959; 1969) or by inverting the linear-factor modification algorithm discussed in Subsection 2.5 
(Gautschi, 1982b; 1990). Defining 

(33) 

we can write the resulting equations as 

1 
oo=~(r)+r (34a) 

and 

and,fork=1,2 ,... ,n-1, 

PO = boH(T), W) 

ek-l = uk_l - qk_l - 7, (354 

qk=--&> (35b) 

ak = qk + e&l + T (35c) 
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pk = qk-lek-1, (354 

with go = l/H(r). A slight variant of this algorithm can be employed to handle the case where e - r is 
changed to I[ - r] in the definition of the measure dT(<): the above formulas are still valid, except that 
H(r) must be replaced by JH(r)] in Eq. (34b). 

Concerning the stability of the linear-divisor modification algorithm, Gautschi (1982b, 1990) pointed 
out that it becomes progressively worse as r moves away from the vicinity of the support interval [a, b]. 
Thus, the most important application of this algorithm is undoubtedly in the generation of Gaussian 
quadrature rules for integration of functions with poles located near the interval of integration (Gautschi, 
1990). 

2.7. Other Algorithms 

In addition to the algorithms discussed in previous subsections, there are a few other algorithms 
for constructing orthogonal polynomials that have been reported in the literature. Among these, there 
is an important generalization due to Gautschi (1982b), who showed that the modification of a measure 
by a rational function ul({)/vm(t), where ur(<) and urn([) are, respectively, polynomials of degree 1 and 
m, can be achieved in the real domain by a sequence of modifications by linear or quadratic factors 
and divisors. Explicit forms of the algorithms of modification by quadratic factors and divisors were 
developed (Gautschi, 1982b; 1990) by using the corresponding linear algorithms twice in sequence. Both 
of these algorithms share the stability characteristics of their linear counterparts. 

3. GENERAL APPLICATIONS 

Having discussed their underlying constructive theory and related algorithms, we now turn our 
attention to general applications of orthogonal polynomials. Generation of Gaussian quadrature rules 
is the application that appears most frequently in the literature (and that is also the most relevant 
here), therefore we discuss this topic first. Other types of applications are discussed subsequently. In 
our presentation, we assume that the recurrence coefficients {ok} and {,&} for the set of orthogonal 
polynomials {l& (<)} associated with the measure dr(t) have been computed by any of the methods 
discussed in the preceding section. 

3.1. Generation of Gaussian Quadrature Rules 

A particularly efficient and accurate method for computing the nodes {ti} and weights {Vi} of the 
Gaussian quadrature rule of order n associated with dr(t) was introduced by Golub and Welsch (1969). 

In short, since the Gaussian nodes &, i = 1,2,. . . ,n, are the zeros of the polynomial {II,(<)} 
associated with the measure dr(t), it can be concluded (Golub and Welsch, 1969; Gautschi, 1985) that 
they are also the eigenvalues of the Jacobi matrix 

J= (36) 
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Moreover, as a consequence of the Christoffel-Darboux identity (Golub and Welsch, 1969), the weights 
{vi} are given by 

vi = mOu&, i=1,2 )...) 71, (37) 

where mo is the first moment of dr(<), as given by Eq. (9) with k = 0, and ui,i is the first component 
of ui, the normalized eigenvector that satisfies 

JUT = &iUi, UT& = 1. (38) 

Golub and Welsch (1969) proposed the use of the QR algorithm (Francis, 1961; 1962), modified so that 
only the first components of the eigenvectors are computed, for solving the relevant symmetric tridiag- 
onal eigensystem. The main advantage of using the QR algorithm for computing the eigenvalues and 
eigenvectors of a band symmetric matrix is that the bandwidth is preserved during the transformation 
process. 

A procedure based on a similar modification of the implicit QL algorithm (Dubrulle et al., 1968), 
as implemented, for example, in the Zmtql2 routine of the EISPACK package (Smith et al., 1976), was 
suggested by Gautschi (1979). The advantage of using the implicit QL algorithm to find the eigenvalues 
and eigenvectors of a symmetric tridiagonal matrix is that it has improved convergence characteristics 
when compared to the QR algorithm. 

3.2. Computation of Functions of the Second Kind 

It is well known that the set of orthogonal polynomials {I&([)} can be accurately computed for 
any desired value of the argument 6 by using Eq. (3) in the forward direction for k = 0, 1, . . . . Similarly, 
any derivative of IIk (<) can be accurately computed by differentiating Eq. (3) as many times as required 
and using the resulting recurrence relation in the forward direction (note that the recurrence relation 
for a derivative of order m involves also the derivative of order m - 1). 

However, in regard to the functions of the second kind 

Pkb) = IR nkK)%, I 
defined for k 1 0 and for any complex z not in the support of dr(<), the situation is a little different. 
It can be shown that these functions satisfy the same recurrence relation as the polynomials {I&(<)}, 
that is 

pk+l(t) = (t - akbk(t) - PkPk-l(e), k = O,l,. . . , (40) 

but with initial values pa(z) = /,dr(<)/(z-<) and p-i(z) = 1, if &-, is defined as in Eq. (4). In addition, 
the functions {&(z)} constitute a minimal solution (Gautschi, 1967; 1981) of the recurrence relation, 
in the sense that 

provided that the measure dr(J) gives rise to a determined moment problem (Gautschi, 1981; 1990). 
Under this condition, the functions {Z&(z)} can be computed accurately by using Eq. (40) in the 
backward direction, as long as the two required starting values (or at least their ratio) are available 
(Gautschi, 1967). 
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3.3. Evaluation of Orthogonal Expansions 

When a function j(t) is expanded in a set of orthogonal polynomials {Ilk([)} and the resulting 
expansion is truncated after the first n + 1 terms, one is in fact approximating f(t) by the partial sum 

40 = 2 CknkK). 
k=O 

By orthogonality, it is clear that the expansion coefficients 
k=O,l,... ,nas 

(42) 

{ck} in Eq. (42) can be expressed for 

1 
ck = - 

Nk R f(@h(t)d’d~)1 
s 

where Nk is the normalization constant given by Eq. (5). An efficient way of computing partial sums 
of the form of Eq. (42) is Clenshaw’s algorithm (Clenshaw, 1955; Gautschi, 1990): 

(444 

l/n(J) = cn, (44b) 

and 

Yk(t) = (5 - ~khk+l(t) - pk+lyk+&) + ck, 

k=n-l,n-2 ,... ,O, 

sn(<) = Ye(E). 

(44c) 

(44d) 

We note that there are situations for which an alternative form of Clenshaw’s algorithm based on 
forward recurrence should be employed in order to avoid loss of accuracy in the calculation (Press et 
al., 1986). 

3.4. Pad6 Approximation 

Pad6 formulas are widely used to approximate functions with poles (Baker, 1975). The Pad6 
approximant f[m, n](z) to f( z is a rational function with a polynomial of degree m in the numerator ) 
and a polynomial of degree n in the denominator, constructed so that its power series expansion agrees 
to as many terms as possible with the power series expansion of f(z), viz. 

j(z) = /Jo + PiZ + /.Lzzz + . . . . (45) 

In particular, it is the case for which the coefficients ,_& in Eq. (45) correspond to the ordinary 
moments of a measure dr(J) [ see Eq. (l)], that is of interest to us here. In this situation, the theory 
of Pad6 approximation becomes closely related to the theory of orthogonal polynomials and Gaussian 
integration (Gautschi, 1990). For example, when m = n - 1 the Pad6 approximant is in this case 
(Gautschi, 1990) 

f[n - 1,4(Z) = $ *T (46) 
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where {{;} and {vi} are respectively the nodes and weights of the Gaussian quadrature of order n 
associated with the measure dT(t). 

3.5. Other General Applications 

For brevity, we conclude this section by just enumerating other general-purpose applications of 
orthogonal polynomials that have been described in the literature. Thus, our list of additional appli- 
cations consists of: iterative methods in linear algebra (Stiefel, 1958); approximation by step functions 
and splines, summation of series and computation of Cauchy principal value integrals (Gautschi, 1985); 
and constrained least-squares approximation (Gautschi, 1990). 

4. NONCLASSICAL APPLICATIONS IN PARTICLE TRANSPORT THEORY 

The phenomenon of particle transport can be modeled mathematically by an integro-differential 
equation, known in general as the transport (or Bolt.zmann) equation (Case and Zweifel, 1967). One of 
the most widely used methods for solving this equation is the discrete-ordinates method (Wick, 1943; 
Chandrasekhar, 1950; Bell and Glasstone, 1970), which is based on approximating the integral in the 
transport equation by a quadrature. Therefore, it is not surprising that the majority of the transport- 
theory applications of nonclassical orthogonal polynomials discussed in this section are concerned with 
the generation of special quadrature rules for use in the discrete-ordinates method. 

In addition, it should be noted here that there is a set of orthogonal polynomials known as the Chan- 
drasekhar polynomials which plays a fundamental role in transport theory, specially when anisotropic 
scattering is involved (see, for example, inijnii, 1970). These polynomials are shown to be the coeffi- 
cients in a Legendre polynomial expansion of the eigenfunctions used in the (formally) exact singular- 
eigenfunction expansion method, also known as Case’s method (Case, 1960; Mika, 1961; Case and 
Zweifel, 1967; McCormick and KuBEer, 1973). They also appear in the context of approximate methods 
for solving transport problems, e.g. the spherical-harmonics method (Davison, 1950) and the Wick- 
Chandrasekhar discrete-ordinates method (Wick, 1943; Chandrasekhar, 1950). Strictly speaking, the 
Chandrasekhar polynomials cannot be considered nonclassical polynomials, since their basic properties 
can all be derived from the classical Chebyshev theory (Shohat, 1934), as discussed by in&ii (1970). 
Therefore, these polynomials are not discussed in this work; however, the interested reader can find their 
recurrence relation, normalization integral, associated measure, quadrature rule and other properties 
in the work of inijnii (1970) for the azimuthally symmetric case. These properties (with the exception 
of the quadrature rule) have been generalized for the azimuthally dependent case by McCormick and 
Veeder (1978). Quite recently, some new identities for the Chandrasekhar polynomials as used in the 
spherical-harmonics method have been derived by Siewert and McCormick (1997). 

In the following subsections, various applications of nonclassical orthogonal polynomials that have 
been reported in the literature are presented and discussed. 

4.1. Evaluation of Mean Intensities and Fluxes in Radiative Transfer 

To our knowledge, this is the first application of nonclassical orthogonal polynomials in the field of 
transport theory. The problem here is to evaluate the integrals (Chandrasekhar, 1950) 

J(T) = ; Jm3(t)E,(It - Tl)dt (47a) 
0 
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and 

F(r) = 2 
s 

cm ~(t)Ez(t - r)dt - 2 
T / 

&E& - W, (47b) 
0 

where 3(t) is a given function and E,.,,(x) denotes the mth exponential integral, defined as 

E,(x) = I me-zt$ m>l 
1 

Since E,(z) and the derivative of Ed have logarithmic singularities at x = 0, evaluating the integrals 
in Eqs. (47) with special quadrature rules generated by measures that include these functions in their 
definitions is clearly better than evaluating these integrals with standard quadrature rules. 

Chandrasekhar (1950) used a change of variables to rewrite Eqs. (47) in the forms 

and 

T- + J)G (OK + ; I 7 3(r - tP1K)dt (494 
0 

F(r) = 2 Jrn 3(r + t)Ez(E)dt - 2 1%~ - S)Ez(E)dJ, (49b) 
0 0 

and applied a method based on the solution of a linear system and the determination of the roots of 
a polynomial to compute and tabulate the nodes and weights of some low-order (n 2 3) Gaussian 
quadratures associated with the measures E,,.,(c)d& m = 1 and 2, on the support intervals [O,oo) and 
[0, r], for several values of the optical variable r. However, Chandrasekhar’s method of generating the 
required Gaussian quadrature rules is of limited use, because it is based on the ordinary moments of the 
associated measures, and, as discussed in Section 2, such methods display an ill-conditioned behavior 
that grows exponentially with n. This difficulty was overcome by Gautschi (1968a) who proposed 
the use of the discretized Stieltjes procedure (see Subsection 2.4) to generate the required Gaussian 
quadrature rules. A 20-point rule for the measure Er(E)dt on [0, oo) was reported in a subsequent 
publication (Gautschi, 1968b). 

4.2. Chemical Kinetics 

The first application of nonclassical orthogonal polynomials in the solution of chemical kinetics 
problems is due to Shizgal (1981a). A typical problem in this area is that of solving the Boltzmann 
equation for the reactive system (Shizgal and Karplus, 1971) 

A + B + products, (50) 

where species B is assumed to be present in large excess and at equilibrium. Then, b(x), the perturbation 
of the distribution function for species A from the usual equilibrium Maxwellian energy distribution 
M(x) = 2(x/7r)‘/2e-Z, where x = mc2/(2kT) denotes the reduced translational energy, is described by 
the integral equation 

Jrn K(x!, x)M(x’)4(x’)dx’ - Z(x)M(x)d(x) = -M(x) [R(x) - /a M(x’)R(i)dxj , (51) 
0 0 

where K(x’,x) is the Wigner-Wilkins kernel, Z(x) is the elastic collision frequency and R(x) is the 
reactive collision frequency (Shizgal, 1981a). Moreover, the quantity of interest in this problem. 

.j,” WxM(x)Nx)dx 
’ = J,“M(x)R(x)dx ’ (52) 
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characterizes the departure from equilibrium of species A in an integral sense, and can be readily 
computed once Eq. (51) is solved for 4(x). 

In order to solve Eq. (51) subject to the auxiliary condition 

J O” M(x)d(x)dx = 0, 
0 

(53) 

Shizgal (1981a) implemented the discrete-ordinates method. In the course of the implementation, 
integrals of the form so” e+‘xrf(x)dx! p = 0, 1 and 2, were approximated by the Gaussian quadrature 
rules associated with the nonclassical measures epza xrdx, p = 0, 1 and 2, supported on [O,oo). An 
ad hoc algorithm based on Christoffel-Darboux formulas was developed and used by Shizgal (1981a) 
to compute the recurrence coefficients for the associated orthogonal polynomials. Unfortunately, the 
algorithm was found to be numerically unstable, and so the calculation had to be implemented in 
multiple-precision arithmetic to avoid excessive loss of accuracy. Later on, Gautschi (1990) used, for 
the case p = 0, the discretized Stieltjes procedure discussed in Subsection 2.4 to obtain nodes and 
weights accurate to 12 significant figures for a quadrature of order n = 40, using a 81-point Fejer rule 
in each of the following four subintervals: [0,3], [3,6], [6,9] and [9,oo). 

A comparison of discrete-ordinates results obtained for n using the specially developed Gauss 
formulas to solve the problem with similar results obtained with the use of the Gauss-Laguerre formula 
(the obvious classical choice for this problem) showed a faster convergence rate for the former, as the 
order of the quadrature was increased (Shizgal, 1981a). 

To close this subsection, we note that the nonstandard quadrature rule generated by Shizgal(1981a) 
for p = 2 was also applyed in discrete-ordinates solutions of the Boltzmann equations relevant to 
time-dependent studies of hot atom systems (Shizgal, 1981b) and in (discrete-ordinates) eigenvalue 
calculations of the Boltzmann collision operator (Shizgal et al., 1981; Shizgal and Blackmore, 1983). In 
addition, it has been used to solve eigenvalue problems associated with Lorentz-Fokker-Planck equations 
relevant to the study of electron transport phenomena in gases (Shizgal, 1983; Shizgal and McMahon, 
1984; 1985; McMahon and Shizgal, 1985). 

4.3. Solution of Fokker-Planck Equations with Nonlinear Coefficients 

As discussed by Blackmore and Shizgal (1985)) Fokker-Planck equations with nonlinear coefficients 
are used to model nonequilibrium processes in chemically reactive systems, laser systems and many 
other applications. These authors considered a Fokker-Planck equation of the form 

(54) 

where P(x, t) is the probability density function and gives the probability that a macroscopic property 
of the system being studied will take on a specific value x at time t, and A(z) and B(x) are respectively 
the (known) drift and diffusion coefficients. This equation can be written more compactly as 

&x, t) = LP(x, t), 

where L denotes the Fokker-Planck operator. Using the eigenfunction expansion method and considering 
the boundary conditions P(foo, t) = 0, Blackmore and Shizgal (1985) wrote the solution to Eq. (55) 
as 

P(x, t) = 2 a,e-xmtPm(x), (56) 
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where the eigenvalues {Am} and the eigenfunctions {P,,,(x)} satisfy, for m = 0, 1, . , 

LP,(x) = -kPvl(x), (57) 

and the coefficients {a,} are expressed in terms of the initial probability density function P(x, 0) as 

J 00 

a m= P,-‘(,)P&)P(z,O)dz. 
--oo 

Here, the eigenfunction PO(~) is the stationary solution of Eq. (55) and is given by 

PO(x) = Nexp - [J = A(x’) 
-dx’ - In B(x) , 

o B(x’) I 

(58) 

(59) 

where N represents a normalization constant chosen so that s_“, Po(z)dx = 1. Clearly, the correspond- 
ing eigenvalue X0 is zero. 

The discrete-ordinate method (Shizgal and Blackmore, 1984), also termed, perhaps more appro- 
priately, quadrature diacretization method (Shizgal, 1992), was implemented by Blackmore and Shizgal 
(1985) to find the eigenvalues and eigenfunctions of the Fokker-Planck operator for the case 

and 

A(x) = gx3 - ax (604 

B(x) = E, (6Ob) 

where g, a and E are parameters. The underlying idea of the quadrature discretization method is to 
represent derivative operators in a discrete space defined by the nodes of a Gaussian quadrature rule. 
In the present case, a Gaussian rule that was judged to be a good choice for fast convergence of Eq. (56) 
is the rule associated with a nonstandard measure supported on the entire real line and proportional to 
e -~Z4/2+a2*dx, where y and CY are related to the parameters in Eqs. (60). Since this measure is symmetric 
with respect to x = 0, the recurrence coefficients {ok} for the corresponding orthogonal polynomials all 
vanish. The recurrence coefficients {pk} were computed with a method based on a Christoffel-Darboux 
formula (Blackmore and Shizgal, 1985). As before (Shizgal, 1981a), the resulting algorithm was found 
to be unstable in high-order, and consequently a multiple-precision package was required to generate 
these coefficients accurately. 

4.4. Azimuthally Dependent Problems 

A class of transport problems that has received increasing attention in recent years is that of 
azimuthally dependent problems. Besides the more traditional applications in astrophysics (Chan- 
drasekhar, 1950) and nuclear-reactor shielding (Goldstein, 1959; Selph, 1973), such problems have 
also found important applications in atmospheric radiative transfer (Liou, 1980) and hydrologic optics 
(Mobley, 1994). 

The azimuthally dependent transport equation for a homogeneous plane-parallel medium can be 
written, in the absence of internal sources, as (Chalhoub and Garcia, 1997) 

a 1 JJ 2a 
P--11(? I4 cp) + we P, ‘PI = 0s ax ~(~0s @MG P’, cp’)dv’+‘, 

-1 0 
(61) 

where $(x, /.J, cp) is the particle angular flux, x E (0, a) is the space variable measured in unit length, 

/J E [-I,11 and cp E [O, 2 VT are, respectively, the cosine of the polar angle and the azimuthal angle that I 



264 R. D. M. Garcia 

specify the direction of particle motion, and ot and us are the total and scattering macroscopic cross 
sections, respectively. In addition, p(cos e) denotes the scattering law, which is usually expressed as a 
truncated Legendre polynomial expansion in terms of the cosine of the scattering angle 8, i.e. 

p(cos 0) = & 2 p[fi(COS e), 
l=O 

where the coefficients {p } 1 must obey the restrictions /30 = 1 and ]pl] < 21+ 1, 1 = 1,2,. . . , L. Along 
with Eq. (61), we consider the boundary conditions, for p E (0, l] and cp E [0,27r], 

$(O, CL, cp) = zb(P - PlM(P - cpo) (63a) 
and 

@(a, -/Jr ‘p) = 0. (63b) 

Here, Eq. (63a) represents a particle beam of intensity n striking uniformly the surface z = 0 of the 
medium with a direction specified by ~0 E (0, l] and cpo E [0,2n], while Eq. (63b) defines the surface 
z = a as a free boundary. 

We now summarize an improved way of implementing AhISN (Engle, 1973), a widely used one- 
dimensional code for numerically solving the discrete-ordinates version of the problem posed by Eqs. (61- 
63). The details of this implementation can be found elsewhere (Chalhoub and Garcia, 1997). Following 
Chandrasekhar (1950), we begin by decomposing the original problem into uncollided and collided 
components. We write 

$(z, P, ‘p) = $o(z, P, cp) + 1(1.(z, P, cp), (64) 

where the uncollided angular flux &(z, p, ‘p) satisfies a version of Eq. (61) with zero right-hand side 
and boundary conditions similar to Eqs. (63), and is given, for z E [0, a], p E [0, I] and cp E [0,27r], by 

and 

$o(z, CL, ‘~1 = ~GJ - PO)~((P - vO)e-eLf'p (654 

tio(z, -P, ‘p) = 0. (65b) 

On the other hand, the collided angular flux $).(z, p, ‘p) must satisfy 

P-$*(Z, CL, $4 + G$.(Z, /4 9) = 0, 

1 

lJ 

2n 

~(~0s e)+.b, P’, cp’kb’dd + Q(z, P, PO), 
-1 0 

where the first-collision source Q(z, p, cp) is given by 

Qb, /A cp) = 08 J: 1” ~(~0s eMo(z, ~‘9 cp’)Wdd, 

and the boundary conditions, for p E (0, I] and ‘p E [0,27r], 

ti. (0, P, P) = +.(a, -P, 9) = 0. 

(66) 

(67) 

(68) 

The azimuthal dependence of the collided problem formulated by Eqs. (66-68) can be handled by 
considering the finite Fourier decomposition (Chandrasekhar, 1950) 

ti*(z, P, ‘p) = f k(2 - ~o,m)zl?(z, P) cos[m(cp - cpo)] (69) 
m=O 
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and using the addition theorem for the Legendre polynomials (Erdelyi et al., 1953) to express the 
scattering law as 

where P,“‘(p) denotes a normalized associated Legendre function, defined for 1 2 m as 

‘;“(‘) = (1-t m)! i I (1 - m)! “’ (1 _ k2)m/2 dm 
-&gh). 

(70) 

(71) 

We find that the Fourier component $p(z,p) of the collided angular flux must satisfy the transport 
equation 

with 

(73) 

and the boundary conditions, for p E (0, 11, 

KYO, cl) = +?(a, -cl) = 0. (74) 

Thus, once Eqs. (72-74) are solved for the Fourier components $J~(z, /.J), m = 0, 1, . . . , L, Eq. (69) can 
be used to calculate the collided angular flux for any desired values of z, /I and cp. 

The improved way of implementing the ANISN code for computing the desired Fourier components 

r+X%, P), m = 0, I,. . . , L, is based on the use of the transformation (Chalhoub and Garcia, 1997) 

$J%P) = (I - P2P2Frn(& CL) (75) 

and the associated Legendre polynomials 

(76) 

which are normalized so that D,“(p) = 1, to reformulate the problem given by Eqs. (72-74) as 

where 

(78) 

(79) 
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and the boundary conditions, for ~1 E (0, 11, 

Fyo, p) = Frn(u, -p) = 0. (80) 

Now, provided a Gaussian quadrature rule based on the measure (1 - $)*dp is used to implement 
the discrete-ordinates method of solution, the first term in the summation on the right-hand side of 
Eq. (77) can be readily expressed in the form required by ANISN, i.e. a constant times Cw&(z,pi), 
where Q(z, CL) denotes the particle distribution being computed. This is not the case of a previous 
ANISN implementation (Hill et al., 1974), where artificial terms for 1 = 0, 1, . . . , m - 1 had to be 
included in the summation, in order to satisfy this basic ANISN requirement. 

It is well known (Bell and Glasstone, 1970) that a composite quadrature rule designed to approx- 
imate the integrals in Eq. (77) independently in each of the semi-intervals [-I, 0] and [0, l] allows for 
a better representation of the angular-flux discontinuities at the boundaries of the medium for ]p] + 0 
than a single quadrature rule generated for the interval [-1, 11. For this reason, a composite quadra- 
ture rule was used in the improved ANISN implementation of Chalhoub and Garcia (1997). As the 
half-range rules that make up the composite rule are symmetric, it is clearly sufficient to generate the 
Gaussian quadrature rule for [0, l] and obtain the rule for [-1, 0] from symmetry considerations. 

The modified Chebyshev and linear-factor modification algorithms discussed in Section 2 were used 
recursively in m (Chalhoub and Garcia, 1998) to generate the recurrence coefficients for the family of 
orthogonal polynomials associated with the measure (1 - p2)mdp on the support interval [O,l]. As 
expected, both algorithms showed a stable behavior and yielded excellent results, but the latter is 
considered more adequate for this application because it required N 20% less computer time than the 
former (Chalhoub and Garcia, 1998). 

In conclusion, as discussed in detail by Chalhoub and Garcia (1997), this new ANISN implementa- 
tion is more accurate and efficient than the implementation of Hill et al. (1974). Just to give an idea of 
the kind of improvement in accuracy that can be obtained, the maximum deviation in the angular flux 
observed using the ANISN implementation of Hill et. al. (1974) to solve the H20 problem proposed by 
Chalhoub and Garcia (1997) was N 25%, while with the new implementation the maximum deviation 
in the angular flux was only N 5%. 

4.5. Evaluation of Some Integrals for the FN Method in Atmospheric Radiative Transfer 

Recently, an improved version (Garcia and Siewert, 1998) of the FN method (Siewert and Benoist, 
1979; Garcia, 1985; Garcia et al, 1994) has been developed and used to solve a class of azimuthally 
dependent problems with strong scattering anisotropy. In that work, the integrals 

were required for a set of values of < that consists of the positive discrete spectrum { I$‘}, where UT 2 1, 
p = 0, 1,. . . ,Nm - 1, are the Nm positive zeros of the dispersion function (Garcia and Siewert, 1982; 
1989) 

A”‘(e) = 1 - $ I’(1 - J)“/2G”(+$, 
1 

and a subset of points contained in [0, I], the nonnegative part of the continuum spectrum. In Eq. (81), 
the integer cr runs from 0 to N, the order of the FN approximation used to solve the problem, and the 
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Fourier index m from 0 to L, the order of the scattering anisotropy. Furthermore, in Eqs. (81) and (82), 
a E (0, l] is the albedo for single scattering and 

(83) 

where g;1(() denotes a normalized Chandrasekhar polynomial (Garcia and Siewert, 1990). 
Considering the definition of the associated Legendre function q*(p) expressed by Eq. (71), we 

can see that the integrand in Eq. (81) is given by a polynomial of degree L + 2a + 1 in ,u times the 
factor l/(r + ,u). Th us, if we take dp/(< + p) as the measure, it is clear that we can integrate Eq. (81) 
for (Y = 0, 1, . . , iV exactly (except for computer round-off errors) if we use the related Gaussian 
quadrature of order [L/2] + N + 1, where [z] denotes the integer part of z. The fact that the integrals 
can be computed exactly is an advantage of this rule when compared to the standard Gaussian rule (in 
this case, the Gauss-Legendre rule shifted to [O,l]). On the other hand, the nonstandard rule is specific 
for <, and thus a different rule must be generated for each required value of 5 in Eq. (81). 

In the work of Garcia and Siewert (1998), a modified version of the linear-divisor modification 
algorithm discussed in Subsection 2.6 was used to compute the recurrence coefficients for the set of 
orthogonal polynomials associated with the measure dp/(<+p), for all required values oft in a problem 
with scattering anisotropy of order L = 299 and for which high-order FN approximations, say N = 699, 
had to be employed in order to obtain accurate results. The modification introduced in the linear-divisor 
algorithm consists in combining Eqs. (35a) and (35b) into a single recurrence formula for the quantities 
{ek} and using the resulting formula in the backward direction. With this modification, it became 
possible to overcome the characteristic unstable behavior of the original linear-divisor modification 
algorithm in this problem. 

4.6. Neutral Particle Transport in Ducts 

Some years ago, Larsen et cd. (1986) developed an approximate model for treating neutral particle 
transport in ducts of arbitrary cross-sectional geometry. Since their model makes use of two basis 
functions to represent the transverse (z, y) and azimuthal (cp) dependences of the particle angular flux, 
they called it “the N = 2 model”. This model can be considered (Larsen, 1984) a natural extension 
of the statistical (N = 1) model proposed earlier by Prinja and Pomraning (1984), and is described by 
the matrix transport equation 

+(z, p) + (1 - ,u~)~‘~A!I!(z, /J) = ;(l - P’)~‘~B 
I 

’ (I - /1’2)1/2’Z!(z, $)d$, (84) 
-1 

for z E (0,Z) and p E [-1, 11, and the boundary conditions 

*(O, p) = F(cL) 
and 

*(z, -/J) = G(p), 

(85a) 

(85b) 

for p > 0. Here *(z, /J) is a column vector of two components, the unknown coefficients Qj(z, cl) for 
j = 1 and 2 in the approximate representation of the angular flux 

%, Y, 2, c1, ‘p) = Qi(Z, &i(Z, Yt ‘p) + Q2k, dQ2b, Y, cp), (86) 

where the basis functions CX~(X, y, cp), j = 1 and 2, are specified in the work of Larsen et al. (1986). In 
addition, c is the scattering probability at the duct wall, A and B are 2 x 2 full matrices that depend 
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on the duct cross-sectional geometry and on the prescription of the basis and weight functions (Larsen 
et al., 1986), 2 is the duct lenght and the vectors F(p) and G(p) are assumed known. 

Larsen et al. (1986) used a numerical implementation of the discrete-ordinates method to solve the 
problem formulated by Eqs. (84) and (85) and tabulated, for circular ducts, numerical results for the 
reflection probability 

and the transmission probability 

as functions of the duct length Z and the wall scattering probability c. While the discrete-ordinates 
results of Larsen et al. (1986) compared well with Monte Carlo results, for some cases of long ducts with 
signjficant wall absorption a large number of discrete ordinates (as high as 640) had to be employed, in 
order to obtain accurate results for the reflection probabilities. 

Recently, Garcia and Ono (1999) developed an improved version of the numerical discrete-ordinates 
method that allowed a substantial reduction in the number of ordinates required to obtain good results 
for the problem, especially for the difficult cases of long ducts with significant wall absorption. Their 
formulation is based on a decomposition of the original problem into uncollided and collided problems. 
The solution to Eqs. (84) and (85) is expressed as 

*(z, P) = %(.z, P) + **(z,P), (88) 

where the uncollided component \kc(z, p) satisfies Eq. (84) with c = 0 and Eqs. (85), i.e. 

&o(z, P) + (I- P~)~‘~A~o(z, 4 = 0, 

for z E (0, Z) and P E [-l,l], and 

and 

*o(O, CL) = F(P) 

*o(Z, -P) = G(P), 

(9Oa) 

(9Ob) 

for ~1 > 0, and the collided component *,(z,~) satisfies 

&Jz, ,u) + (1 - /~~)~‘~A’k(z, /.A) = E(l - p2)li2B 1’ (1 - P’~)~‘~*,(z, I.&&’ + Q(z, P-I>, (91) 
-1 

for z E (0, Z) and p E [-l,l], and the boundary conditions 

\k*(O,/.J) = 0 

and 

**(Z, -P) = 0, 

(92a) 

(92b) 

for p > 0. The first-collision source Q(z,p) in Eq. (91) is given by 

Q(z,p) = ;(l - p)‘I’B[;(l - ~‘~)~‘~\ko(z,~‘)d~’ (93) 
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and becomes explicitly known once the uncollided problem is solved. 
In regard to the uncollided problem, a diagonalization procedure was used by Garcia and Ono 

(1999) to reduce this problem to a decoupled “twogroup” problem for which a solution can be readily 
found. The resulting uncollided solution can be written as (Garcia and Ono, 1999) 

*o(z,P) = 
-~l(l-Pvr/P + uzle- h(1-P2)“2dP F(p) 

1 
and 

*o(z, -P) = [Ul2e -~1(l-P2Y(z-z)/~ + u21e-xz(l-~~)'~~(z-z)/c1 G(p), 

1 

(944 

WI 

for z E [0, Z] and 1-1 > 0, where Ai and X2 are the (assumed distinct) eigenvalues of A and 

Uij = -i...- 

( 

Xi - a22 -(A - a22)(Aj - a22)/a21 

Xi - AJ 
(95) 

a21 -@j - a221 b 

with oij denoting the (i, j) element of A. We note that, to avoid the need of using complex arithmetic in 
the calculation, Eqs. (94) were reformulated in terms of real quantities for the case where the eigenvalues 
of A appear as a complex conjugate pair, and that the degenerate case Xi = X2 was also treated explicitly 
(Garcia and Ono, 1999). 

With the uncollided solution available, a numerical version of the discrete-ordinates method was 
implemented for solving the collided problem defined by Eqs. (91-93). Using the same Gaussian quadra- 
ture based on the Chebyshev polynomials of the second kind that was used by Larsen et al. (1986) to 
approximate the integral term of the transport equation, Garcia and Ono (1999) were able to generate 
accurate numerical results for the reflection (R) and transmission (T) probabilities with a reduced num- 
ber of ordinates (in some cases, a reduction of almost an order of magnitude). While such improvement 
is due to the uncollided/collided decomposition introduced, a further reduction (typically a factor of 
l/2) in the number of ordinates necessary to achieve a given level of accuracy in the results for R and 
T was attained (Garcia and Ono, 1999) by using a composite Gaussian quadrature consisting of two 
separate quadratures for the intervals [-1, 0] and [0, l]. As the composite quadrature rule is symmetric 
in this case, the rule for [-l,O] can be deduced from the rule for [0, 11, and thus it was necessary to 
generate only the (nonstandard) rule related to the measure (1 - p2)lj2dp with support on [0, 11. The 
modified Chebyshev algorithm discussed in Subsection 2.3 was successfully implemented by Garcia and 
Ono (1999) to compute the recurrence coefficients for the orthogonal polynomials associated with this 
measure. Once these coefficients were available, the method discussed in Subsection 3.1 was used to 
generate the required Gaussian rule accurately. 

5. CONCLUDING REMARKS 

The high diversity of subjects in the field of transport theory to which nonclassical orthogonal 
polynomials can be applied is apparent from Section 4 of this paper. Since in our opinion the spectrum 
of these subjects can still be widened, we hope that this review can be of value to researchers involved 
in the development and/or improvement of solution methods for transport problems. 

Based on our own experience on the subject, we would like to conclude this work with some 
comments concerning the selection of what could be called the “best” constructive algorithm for a given 
application. First of all, if the related measure differs only by a linear factor (divisor) or a sequence of 
such factors (divisors) from another measure for which the associated set of orthogonal polynomials has 
recurrence coefficients which are explicitly known (e.g. a classical measure) or can be easily computed, 
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then the linear-factor (linear-divisor) modification algorithm discussed in Subsection 2.5 (Subsection 
2.6) or the generalized modification algorithm mentioned in Subsection 2.7 should be considered. In 
case that the given measure cannot be related in such a simple way to a convenient measure, but a set of 
auxiliary polynomials that follows the general recommendation stated in Subsection 2.3 can be found, 
the modified Chebyshev algorithm is the natural choice. Finally, if the application is such that none 
of these algorithms seems appropriate, one should consider using the discretized Stieltjes procedure 
discussed in Subsection 2.4. 
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