Composition Effects on the Microstructure and Mechanical Properties of Sintered Boron Carbide

F.C.L. de Melo¹, C.R.M. da Silva¹, A.H.A. Bressiani² and J.C. Bressiani

¹ Centro Técnico Aeroespacial, IAE-AMR, 12228-904, S. José dos Campos, SP, Brazil

² Instituto de Pesquisas Energéticas e Nucleares,
C. P. 11049, 05422-970, S. Paulo, SP, Brazil

Keywords: Boron Carbide, Sintering Aids, Sintering

Abstract. Boron carbide is a remarkable material among those with high hardness. This work presents the results obtained after sintering a commercial B_4C powder with $C+B_2O_3+Al_2O_3$ and Ni, Ti, Ni+Ti, used as sintering aids. The effects of sintering aids on several parameters as sintering temperature, phase formation, microstructure, fracture toughness (K_{ic}) and microhardness (H_v) are also studied.

INTRODUCTION

Boron carbide (B₄C) is an interesting material with high melting point, very high hardness, low specific weight, good mechanical properties and high neutron absorption cross-section. The main applications are as abrasives, cutting tools, lightweight armors and neutron absorber. Moreover the use of B₄C components is limited by sintering difficulties due to the strong covalent bonding. The production of high density B₄C components by hot pressing requires pure and fine powders (<2 μm), high temperatures (2373-2473 K) and pressures in the range of 30-40 MPa within a pressing step from 15 to 45 min in a graphite die [1]. An alternative way is to use sintering aids that allow for a high degree of densification in the temperature range of 2023-2173 K [2, 3]. Small size and simple shape components may be obtained by hot pressing. More complicated shapes and larger sizes require different conformation techniques followed by sintering. The reliability of sintering B₄C is only possible with sintering aids such as Al, Mg, TiB₂, AlF₃, Ni, Fe, Cu and Be₂C [3-7]. Nevertheless the best results were obtained with carbon produced from "in situ" pyrolysis of phenolic resin (Novolaque type phenol-formaldehyde resin) [7-12]. In this case, 98% of the theoretical density was achieved at 2323 K under argon atmosphere.

The present work comprises a study regarding sintering of a commercial B₄C powder with C+B₂O₃ +Al₂O₃ and Ni, Ti, Ni+Ti used as sintering aids in the temperature range of 1973-2473 K.

MATERIALS AND METHODS

Six kinds of raw materials were used for the studied compositions (Table 1), as follows:

- Boron carbide powder F-1200, from HCST (Hermann C. Starck);
- Phenolic resin as carbon source;
- Alumina BACO (G450), from Union Carbide Co.;
- Boron oxide P.A., from Merck;

- Nickel powder P.A., from Fisher Scientific Company;
- Titanium powder obtained from TiCl₄ through the "Kroll process" at the Materials Division of IAE/CTA (Brazil).

The steps for the preparation of those compositions are given below:

- Uniaxial pressing in a metal die under 40 MPa;
- Mixture of raw materials;
- Cold isostatic pressing under 300 MPa;
- Cure of resin in an oven at 473 K (BCAl composition);
- Resin carbonization at 1273 K, under purified Argon;
- ♦ Sintering under purified argon in the temperature range of 1973 2473 K, depending on the selected composition.

Table 1-Selected Compositions.

COMPOSITION	RAW-MATERIALS					
	B_4C	C	B_2O_3	Al_2O_3	Ti	Ni
BCAl	82.64	4.33	4.36	8.67	-	-
BTiNi-O1	89.39	1.80	-	-	8.37	0.44
BTiNi-02	83.14	1.80	-	-	0.75	14.31
BTiNi-03	88.33	1.80	-	-	7.07	2.80
BTi	89.59	1.80	-	-	8.61	-
BNi	82.53	1.80	-	-	-	15.67

The relative density ρ was determined by the Archimedes method. A picnometer was used for real density determination according to the ASTM specification. Scanning Electron Microscopy (SEM) and EDS analyses were useful techniques for microstructural evaluation. Vickers microhardness (H_{ν}) and K_{ic} were measured by the indentation method, the specimens being polished up to $1\mu m$ diamond paste, a 19.6 N load was applied. K_{ic} was calculated from the following equation:

$$K_{ic} = 0.07626 \text{ P} / \text{C}^{3/2}$$
 (1)

RESULTS

i) BCAl composition

The influence of Al_2O_3 , B_2O_3 and carbon as sintering aids for B_4C was evaluated. Alumina reacts with B_2O_3 at low temperatures forming a liquid phase. Table 2 shows the variation of the density and microhardness values with sintering conditions. In this case we have the following results:

- A small densification occurs at 1973 K followed by a fast densification close to the 2223 to 2273 K range. The relative density values vary from 76% to 91%, reaching 97% of the theoretical density at 2373 K. The material melts at 2473 K.
- High hardness (21.0 GPa) was determined at 2373 K. The K_{ic} values indicate the low fracture toughness of these materials.

Fig. 1 shows the fracture surface of a material sintered at 2373 K for 1 hour. An intercrystalline fracture can be seen, as well as grains recovered by a possibly liquid phase. X-ray diffraction analysis shows the presence of B_4C , graphite, Al_2O_3 and $Al_18B_4O_{33}$; in the material sintered at 2273 K only B_4C , graphite and Al_2O_3 could be determined. It is assumed that a liquid phase was formed, without recrystallyzation during the cooling step. In fact, that might explain the high densification when the temperature increased. Another possibility is that a small quantity of $Al_{18}B_4O_{33}$ is not detected by X-ray diffraction technique.

Table 2-Variation of density	, microhardness and Kie	with sintering conditions
------------------------------	-------------------------	---------------------------

Sintering conditions	Relative density [%]	H _v [GPa]	K_{ic} [MPa m $^{1/2}$]
1973 K/1h	60	-	-
2223 K/1h	76	-	-
2273 K/1h	91	16.0	4.1
2373 K/1h	97	21.0	3.5
2473 K/1h	melted	-	-

ii) The Use Of Ni and Ti as Sintering Aids.

Table 3 shows crystalline phases determined by X-ray diffraction:

- In Ti-rich compositions this element reacts with boron and carbon to form TiB₂ and TiC. The TiB₂ formation leads to a high densification degree for sintering temperatures in the 2423 to 2523 K range. It is possible to achieve up to 99% of the theoretical density when TiB₂ is used as sintering aid [4];
- In the material produced with Ti-rich compositions and also in the BNiTi-03, no Ni-phase was observed. Therefore Ni might be either in solution, in an amorphous state, or as a low content crystalline phase. In Ni-rich materials this element reacts with B₄C to form Ni₄B₃. Unreacted Ni was not detected in BiTiNi-02 composition;
- Free carbon under graphite form was detected in all compositions;
- Nickel carbide was not detected, therefore the resulting carbon from the reaction between Ni and B₄C might be either in solution or in a graphite state;

Table 4 shows relative density values and mechanical property parameters for different compositions and temperatures. The results showed that:

- Nickel is more effective sintering aid than titanium;
- A proportionality was observed between both microhardness and relative density values. When the nickel content is high, higher density and K_{ic} values were observed;
- ullet A large dispersion was observed among K_{ic} values. Porous materials showed higher K_{ic} values. Nickel rich samples showed coherent K_{ic} values with these type of materials.

The material with BNi composition showed a compact microstructure (Fig. 2). Retained pores with 2-5 µm in diameter may be observed. On polished surfaces (Fig. 3A) agglomerates

formed during the processing stage can be seen. Different shrinkage rates between their agglomerates and the matrix create defects. A bright phase can also be seen. EDS analysis showed high Ni content within this phase (Fig. 3B). XRD studies show Ni_4B_3 in the phase and filling the pores (Fig. 4). The sintering step was accelerated by this liquid phase leading to the densification of that material.

Fig.1-Scanning micrograph. Fracture surface of a BCAl material sintered at 2373K.

Fig.2-Scanning micrograph. Fracture surface of a BNi material sintered at 2373K

Fig. 3- SEM/EDS analysis of BNi material. (A) Secondary electron image, (B) X-ray image, $Nik_{\alpha 1}$

Table 3- Crystalline phases determined after sintering at 2373K in B₄C with Ti and/or Ni sintering aids.

Composition	Detected Phases (by XRD)
BTiNi-01	B ₄ C - TiB ₂ - TiC - graphite
BTiNi-02	B ₄ C - TiB ₂ - graphite
BTiNi-03	B ₄ C - TiB ₂ - graphite
BTi	B ₄ C - TiB ₂ - TiC - graphite
BNi	B ₄ C - Ni ₄ B ₃ - graphite

Fig.4- Scanning micrograph. Polished and etched surface of BNi sintered at 2373K

Table 4- Variation of relative density and mechanical properties with both composition and temperature when Ni and/or Ti were added to the material.

Composition	Sintering temperature [K]	Relative density [%]	H _v [GPa]	K_{ic} [MPa.m ^{1/2}]
BTiNi-01	1273	64	-	-
BTiNi-01	2173	57	-	-
BTiNi-01	2323	71	-	-
BTiNi-01	2373	71	6.0	5.2
BTiNi-02	1273	58	-	-
BTiNi-02	2173	71	-	-
BTiNi-02	2323	78	-	-
BTiNi-02	2373	84	18.2	3.2
BTiNi-03	1273	61	-	-
BTiNi-03	2173	57	-	-
BTiNi-03	2223	69	-	-
BTiNi-03	2373	80	16.3	3.6
BTi	1273	60	-	-
BTi	2173	62	-	-
BTi	2373	75	12.6	4.1
BNi	1273	60	-	-
BNi	2173	67	-	-
BNi	2373	95	23.7	2.9

CONCLUSIONS

The use of $C+B_2O_3+Al_2O_3$ as sintering aids is effective for sintering of BCAl composition. The mechanism may be understood as the "in-situ" reaction among Al_2O_3 , B_2O_3 and C, with the formation of B_4C and $Al_{18}B_4O_{33}$. The densification was not improved by Ti adding, for sintering temperatures up to 2373 K.

Nickel is an effective sintering aid for B_4C . It is possible to reach a value of 95% of the theoretical density and a microhardness value of 23.7 GPa, when the material with BNi composition is sintered at 2373 K. BNi composition material showed a typical microstructure obtained from a liquid phase sintering process. Such liquid phase crystallizes as Ni_4B_3 and the maximum densification rate is in the temperature range of 2323 - 2373K.

ACKNOWLEDGEMENT

The authors are grateful to Mr. João Renato Martins S. Martins for his kind help to this work.

REFERENCES

- [1] F. Thévenot. Boron Carbide-A Comprehensive Review. J. Eur. Ceram. Soc. 6 (1990) p. 205-225.
- [2] R. Telle, G. Petzow, Mater. Sci. Monogr. 38A (1987) p. 961-73.
- [3] T. Vasilos, S. K. Dutta, Am. Ceram. Soc. Bull. 53 (1973) p. 453-454.
- [4] D. Stibbs, C. Brown, R. Thompson, U.S. Patent 3, 749, 571, 1973.
- [5] R. G. Lange, Z. A. Munir, Mater. Sci. Res., 13, Ed. by G.C. Kuczinski. Plenum Press, NY., 1980.
- [6] K. Schwetz, W. Grellner, J. Less-Common Met. 82 (1981) p. 37-47.
- [7] F. C. L. Melo, Doctorate Thesis, IPEN-USP, S. Paulo, Brazil, 1995 (In Portuguese).
- [8] S. L. Dole, S. Prochazska, Ceram. Eng. Sci. Proc.6(1985) p. 1151-60.
- [9] M. Bougoin, F. M Thévenot, J. Dubois, G. Fantozzi, J. Less-Common. Met. 114 (1985) p. 257-71.
- [10] S. Prochazska, S. L. Dole, C. I. Hejna, J. Am. Ceram. Soc. 68 (1985) p. C-235-6.
- [11] M. Bougoin, F. Thévenot. Pressureless, J. Mater. Sci. 22 (1987) p. 109-14.
- [12] R. J. Brook, E. Gilbert, D. Hind, J. Vieira. Mater. Sci. Monogr. 14 (1982) p. 585-590.

Advanced Powder Technology I

doi:10.4028/www.scientific.net/MSF.299-300

Composition Effects on the Microstructure and Mechanical Properties of Sintered Boron Carbide

doi:10.4028/www.scientific.net/MSF.299-300.13

