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Analytical description of z-scan on-axis intensity
based on the Huygens–Fresnel principle
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An analytical expression capable of calculating the on-axis far-field electric field of a Gaussian beam carrying
a phase with a Gaussian profile is obtained. This result is based on the Huygens–Fresnel principle and is not
limited to small Gaussian phases. The analytical results are particularized to the z-scan case, agreeing with
the Gaussian-decomposition results for small phases. For Gaussian phases with amplitude up to p, a small
deviation of the constant peak-to-valley distance is found, but a significant displacement of the axis crossing
point is predicted. The theoretical expression of the two-color z-scan is also obtained, and it agrees exactly
with the expression obtained by the Gaussian-decomposition method, to first-order approximation. Also we
apply our result to the case of a thick sample, verifying the range of coincidence between two different formal-
isms. © 1998 Optical Society of America [S0740-3224(98)00311-7]
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1. INTRODUCTION
It is well known that self-focusing (or self-defocusing)1 oc-
curs when a Gaussian laser beam2 impinges on a sample,
owing to its nonlinear refractive index.3 In this case a
Gaussian phase profile is added to the laser wave front.
The z-scan technique, introduced by Sheik-Bahae et al.,4

is based on the measurement of this nonlinear phase and
provides a simple (single beam) and sensitive method to
measure both the real and the imaginary parts of the
complex nonlinear refractive index of a sample. In the
basic technique a thin sample is moved along the axis of a
TEM00 laser beam, throughout its waist, which originates
a Gaussian modulation of the refractive index of the
sample. This refractive-index change acts on the laser
beam, producing an intensity change in an iris located in
the far field, providing a correlation between the intensity
and the nonlinear refractive index of the sample.

Many modifications of the method have been proposed
since its introduction. Such modifications include those
aimed at improving the single-beam method,5–9 those
that use a pump and a probe beam10,11 to measure diago-
nal terms12 of the third-order nonlinearity, and the use of
a method to investigate the excited-state properties of
some doped crystals.13,14 The analysis of the detected in-
tensity also was investigated by means of various theoret-
ical models based on the Huygens–Fresnel formalism,15

the Gaussian-decomposition,16 (GD) and the fast-
Fourier-transform17 (FFT) and complex ray-tracing18

methods. Also, analytical solutions were found, in the
first-order approximation, for the on-axis normalized
transmittance for the weak nonlinear regime, for thin and
thick media.19,20

The basic equations governing the intensity variation
and the accumulated nonlinear phase inside the sample
are given by

dI
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5 2aI, (1)
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where a is the sample linear absorption coefficient, z8 is
the coordinate inside the sample, k is the wave number of
the laser, and dn(I) is the refractive-index variation ow-
ing to the laser intensity, I. In the simplest case this
variation is proportional to the intensity, and we denote
dn(I) 5 n2I, where n2 is the nonlinear refractive index of
the sample. The solution of these equations when the
pumping beam has a TEM00 electric-field distribution2

gives the electric field in the exit plane of the sample, ES :
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In Eq. (3), E0 is the beam-waist electric-field ampli-
tude, w0 is the beam waist (at z 5 0), L is the sample
length, r is the radial distance from the axis of the beam,
and z is the position of the sample relative to the position
of the beam waist. The parameters w(z) and R(z) are
the waist and the curvature radius of the wave front for a
Gaussian laser beam.2 The first exponential represents
the beam attenuation owing to the sample absorption; the
second expresses the electric-field amplitude distribution
and the intrinsic phase of the laser wave front. The last
exponential is the term with the nonlinear phase, Df0 ,
whose distribution follows a Gaussian profile. The non-
linear phase amplitude is modulated by the beam size
and is given by

Df0 5
kn2Leff I0

~1 1 z2/z0
2!

5
DF0

~1 1 z2/z0
2!

, (4)

where Leff 5 @1 2 exp(2aL)#/a is the sample effective
length, I0 is the laser intensity at the beam waist, z0 is
1998 Optical Society of America
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the confocal parameter of the beam, and DF0 is the non-
linear phase at the beam-waist position.

The traditional z-scan analysis is based on the GD
method proposed by Weaire et al.16 This method allows
for the calculation of the electric field in the plane of the
iris as a sum over infinite Gaussian beams. If the iris ap-
erture and the nonlinear phase introduced are sufficiently
small (DF0 , p), we can disregard second-order and
higher terms in the sum and calculate the electric field in
r 5 0. Sheik-Bahae et al. calculated the normalized
transmittance through the aperture, T(z), defined by the
ratio between the intensities of the nonlinear phase car-
rier beam, and a reference beam, which is not affected by
the nonlinear phase. With these approximations the
normalized transmittance is given by

T~z ! 5 1 1
4DF0x

~x2 1 1 !~x2 1 9 !
(5)

with x 5 z/z0 . The curve described by Eq. (5) is shown
in Fig. 1. Under these approximations the transmittance
variation between peak and valley (DTpv) and the dis-
tance between peak and valley (Dz) are given by

DTpv 5 0.406uDF0u, (6)

Dz 5 1.72z0 . (7)

This theory is valid for peak–valley transmittance
variations of ;20%, corresponding to nonlinear phases
smaller than p.4 For greater phases, more terms are
needed in the sum, thus limiting the simplicity of the
method.

2. THEORY
We present here a model developed to deal with phases
with a Gaussian profile of arbitrary magnitude, carried by
a Gaussian laser beam, allowing the prediction of the
electric field in the optical axis. The theory is exact for
Gaussian phase profiles, and it comprehends all the sum-
mation series of Eq. (9) from Ref. 4, for the on-axis ap-
proximation.

To describe the model, we refer to Fig. 2. This model is
based on the propagation of a wave front by means of the
Fresnel diffraction integral and use of the Huygens–
Fresnel principle.21 Therefore each point in a wave front

Fig. 1. Parameters of a z-scan curve for a sample with a positive
nonlinearity.
may be considered as the center of a perturbation that
originates a spherical wave (Huygens principle), and all
these secondary spherical waves will interfere to define
the wave front in another position (Fresnel principle).

In the model the center of the thin sample (S) is the ori-
gin of the cylindrical coordinates (r, u). We considered a
nonlinear sample at the position z, with a Gaussian laser
beam impinging on it. This provides a nonlinear Gauss-
ian phase profile that is added to the original beam phase,
and we must take it into account to calculate the on-axis
electric field at the point C, after a propagation distance
d. The distance between the beam waist and the obser-
vation point, C, is D.

The electric field at the sample exit plane is given by
Eq. (3). To determine the electric field at point C, we
must calculate the contribution of each spherical-wave
source for this expression. This is done multiplying Eq.
(3) by the Huygens propagation term, W, over a distance
r:

W 5
ik
2p

exp~2ikr !

r
, (8)

where r 5 uru is the distance from the center of the
spherical wave to the point C. The electric field at point
C is then given by the sum, or integral, of all the spherical
waves originating at the sample exit plane:

EC~z ! 5
ik
2p E

0

2p

duE
0

`

drrES~z, r!
exp~2ikr !

r
. (9)

To calculate the integral, as d @ r, we can approxi-
mate the distance r by

r 5 Ad2 1 r2 > d 1
1

2

r2

d
. (10)

This is the standard paraxial approximation, in which
we keep Eq. (10) in the phase term, which is compared
with l, and we use r ' d for the amplitude term.
Changing the variables according to
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1
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,

we can write the integral to be solved as

Fig. 2. Scheme of the coordinates utilized in the calculation of
the Fresnel integral.
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EC 5 LE
0

`
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(12)

The difficulty in integrating Eq. (12) resides in its last
term, where there is an exponential of an exponential.
In order to solve it, we make the substitutions j 5 br2

and exp(2j) 5 z, obtaining an expression to be integrated
in the variable z. Substituting m(z) 5 (a/b) 2 1 and n
5 iDf0z, Eq. (12) is reduced to

EC 5
L

2b~iDf0!m11 E
0

iDf0

dnnm exp~2n!. (13)

Equation (13) is the integral representation of the in-
complete gamma function22:

G~m 1 1, a, b ! 5 E
a

b

dnnm exp~2n!. (14)

Now we can define the variable g (z) as

g~z ! 5 m~z ! 1 1 5
1
2 F i

z0
S z 1

z2 1 z0
2

d D 1 1G .
(15)

With this definition the electric field at point C is given,
in the paraxial approximation, by

EC~z, iDf0! 5 F i
p

2l
E0 exp~2aL/2 2 ikD !

w0
2

d G
3 @1 1 ~z/z0!2#1/2

G~g, 0, iDf0!

~iDf0!g .

(16)
For experimental purposes we must calculate the in-

tensity of the laser beam, given by IC 5 EC* EC , where EC*
is the conjugate of the electric field. To obtain the nor-
malized intensity, IC

N , we must calculate the ratio
IC(Df0)/IC(Df0 → 0). The limit of G(g, 0, iDf0)/
(iDf0)g at point C, when the nonlinear phase approaches
zero, is 1 /(ig), and consequently, the normalized inten-
sity at point C is

IC
N~z, iDf0! 5 Ug~z !

G~g, 0, iDf0!

~iDf0!g U2

. (17)

3. APPLICATION OF THE THEORY OF THE
INCOMPLETE GAMMA FUNCTION TO
THE Z-SCAN TECHNIQUE
To obtain the normalized transmittance for the z scan, we
must calculate Eqs. (17) and (15) with the adequate g and
DF0 for this method. In this case we only have to sub-
stitute the nonlinear phase and the distance to the iris
(point C), which varies in the z scan. The substitutions
are d 5 D 2 z and Df0 5 DF0 /@1 1 (z/z0)2#, and we
obtain

T~z, DF0! 5 Ug~z !

GFg~z !, 0, i
DF0

1 1 ~z/z0!2G
F i

DF0

1 1 ~z/z0!2Gg~z ! U 2

,

(18a)
g~z ! 5
1
2 F i

z0
S z 1

z2 1 z0
2

D 2 z D 1 1G . (18b)

With the expansion23 of the incomplete gamma func-
tion,

G~m, 0, x ! 5 E
0

x

dnnm21e2n 5 xm(
n50

`

~21 !n
xn

n!~m 1 n !
(19)

in Eq. (18a), to first order (n 5 1) the normalized trans-
mittance is given by

T ~1 !~z ! 5 U1 2
iDf0~z !

1 1 1 /g~z !
U. (20)

After some simplifications, and disregarding terms of sec-
ond order, we obtain

T ~1 !~z ! 5 1 1 4Df0

x@1 1 z/d~1 1 1/x2!#

9 1 x2@1 1 z/d~1 1 1 /x2!#
(21)

with x 5 z/z0 . In the condition d @ z, Eq. (21) con-
verges to Eq. (5), calculated by the GD theory for small
phases.

Another direct application of Eqs. (18a) and (18b) is to
calculate the normalized transmittance for the case of the
two-color z scan. In this case, two laser beams are uti-
lized: the probe beam with parameters w, z0 , and k, and
the pump beam, with parameters wp , zp0 , and kp ,
aligned collinearly, with their waist positions coinciding.
The sample is moved along the optical axis, and in this
case Eqs. (18a) and (18b) are modified to

T~z, DF0! 5 Ug~z !

GFg~z !, 0, i
DF0

1 1 ~z/zp0!2G
F i

DF0

1 1 ~z/zp0!2Gg~z ! U 2

,

g~z ! 5
1

2

wp
2

w2 F i

z0
S z 1

z2 1 z0
2

D 2 z
D 1 1G .

(22)

Calculating the normalized transmittance for small
phases, as done previously with the expansion of the
gamma function, the on-axis normalized transmittance
converges to Eq. (6) given by Ma et al.24:

T ~1 !~z ! 5 1 1
4a2bxDF0

~a 1 2b 1 ax2!2 1 4a2b2x2 , (23)

where x 5 z/zp0 , a 5 zp0 /z0 , and b 5 kp /k.

4. COMPARISON WITH CURRENT
THEORIES
The theory of the incomplete gamma function (TIGaF) is
general and exact. It enables the calculation of the in-
tensity in the optical axis on the far field, for any magni-
tude of the phase, as long as it keeps a Gaussian profile.
In order to perform this calculation we need only to iden-
tify the on-axis Gaussian phase, Df0 , and the param-
eters a and b (the amplitude and the phase distribution of
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the Gaussian beam plus the propagation term ik/2d, and
the width of the Gaussian phase profile) of Eqs. (11), in
the beam of interest, and substitute them in the expres-
sion the gamma function. An analytical solution for the
normalized transmittance, for the near and far fields, was
also obtained for any radial symmetry profile of the non-
linear phase by Hermann et al.20 This solution is valid
for weak nonlinearities, on first-order approximation. In
the range of validity of this theory, as long as the Gauss-
ian profile of the phase is maintained, it coincides with
the present theory, which corresponds to consideration of
thin samples. The main advantage of this theory20 is
that it comprises any radial profile, in the near and far
fields, but is limited to weak nonlinearities, and the
present theory is valid for any magnitude of the phase,
but is restricted to Gaussian phases. The range of coin-
cidence of the theories, in the weak nonlinear regime, is
for samples with thickness up to 40% of the confocal pa-
rameter of the laser beam, implying that, for samples
within this thickness, the nonlinear phase keeps the
Gaussian profile. In Appendix A the interplay of the
present theory and the analytical one developed by Her-
mann et al.20 is described.

5. ANALYTICAL SIMULATIONS
Figure 3 shows analytical curves resulting from GD
theory [Eq. (5), shown by the dashed curve] and TIGaF
[Eq. (18a), shown by the solid curve], for a small nonlin-
ear phase (p/100) caused by a positive nonlinearity. The
results are parameterized in terms of the confocal param-
eter (z0) of the laser beam without loss of generality.
The two curves overlap almost exactly in the whole inter-
val, showing a good agreement between the two theories,
and the TIGaF prevision is almost symmetric, crossing
the axis T(z) 5 1 at z > 0. Figure 4 shows the analyti-
cal results of GD (dashed curves) and TIGaF (solid
curves) for the nonlinear phases DF0 equal to p/4, p/2
and p. As the nonlinear phase increases, we note that
the TIGaF-predicted curve become asymmetric, and the
point where it crosses the axis T(z) 5 1 moves away from
the zero toward the positive portion of the axis. The po-
sition of the point T(z) 5 1 as a function of the nonlinear
phase is shown in Fig. 5. The displacement of the point

Fig. 3. Comparison between the previsions of GD theory
(dashed curve) and TIGaF (solid curve) for small nonlinear
phases. Shown are the curves for a nonlinear phase equal to p/
100.
T(z) 5 1 toward the positive portion of the axis can be
explained by the focusing lens effect. For a thin sample
at the waist position (z 5 0), for a small pumping inten-
sity, a weak nonlinear positive lens is induced, increasing
the normalized transmittance. This effect moves the
point of T(z) 5 1 to negative positions, as seen in the
graph of Fig. 5. As the pumping intensity increases, a
stronger lens effect is induced in the sample, originating a
strong focusing of the beam, with a smaller waist than the
original, very close to the sample. As a consequence,

Fig. 4. Comparison between the previsions of GD theory
(dashed curves) and TIGaF (continuous curves) for great nonlin-
ear phases. The graph depicts the results for DF0 equals p/4,
p/2 and p.

Fig. 5. Position of the point where the z-scan curve crosses the
axis T(z) 5 1 as a function of the nonlinear phase.

Fig. 6. Peak–valley distance as a function of the nonlinear
phase; for phases up to 1.15p the error in Dz 5 1.72z0 is smaller
than 1.5%.
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there is a decrease of the normalized transmittance, mov-
ing the crossing point to positive portions of the axis.

Figure 6 presents the distance between peak and valley
as a function of the nonlinear phase. For small phases
this distance is constant and has the value 1.72z0 , as
shown by Sheik-Bahae.4 As the pumping intensity in-
creases, the distance between peak and valley decreases,
reaching a minimum of approximately 1.69z0 (1.7% of

Fig. 7. (a) Comparison between the TIGaF (DTpv2G , solid
curve) and GD (DTpv2GD dashed curve) previsions for the trans-
mittance variation between peak and valley. (b) Percentage dif-
ference (DTpv2GD 2 DTpv2G)/DTpv2G .

Fig. 8. TIGaF prevision for z-scan curves with large (>p) non-
linear phases. The curves represent the results for nonlinear
phases equal to p, 2p, and 3p.
variation) for a nonlinear phase of ;0.65p. Above this
value, the peak–valley distance increases monotonically
with the nonlinear phase.

The important parameter to determine the nonlinear-
ity is the transmittance variation between peak and val-
ley. In Fig. 7 this variation is shown as a function of the
nonlinear phase. In (a) the dashed curve represents the
result from GD theory, Eq. (6), and the solid curve shows
the TIGaF prevision. In (b) is shown the percentage dif-
ference between TIGaF and GD previsions. In this
graphic we can see that the difference between the previ-
sions is under 2% for a nonlinear phase equal to p. The
results obtained are analogous when the sample has a
negative nonlinearity.

For nonlinear phases greater than p (in modulus) the
results cannot be described by the GD theory in the form
of Eq. (5), and the peak–valley transmittance difference
departs from Eq. (6). Figure 8 shows the previsions of
TIGaF for nonlinear phases equal to p, 2p, and 3p. For a
nonlinear phase equal to p there is already a noticeable
asymmetry around the origin in the curve, which becomes
more pronounced as the pumping intensity increases.
For nonlinear phases equal to or greater than 2p there
are oscillations in the curve, and the normalized trans-
mittance almost reaches a value equal to zero, showing an
almost total destructive interference in the optical axis.
The point of minimum of the z-scan curve is displaced to
negative positions as the nonlinear phase increases.
This happens because the destructive interference is
reached with the sample more distant from the beam
waist, as can be seen in the curve for DF0 5 3p. The
saturation of the peak–valley distance predicted by the
TIGaF, observed in Fig. 7(a), occurs because of this de-
structive interference occurring for large nonlinear
phases.

6. CONCLUSIONS
Using the Huygens–Fresnel principle, we found an ana-
lytical solution for the propagation of a Gaussian laser
beam electric field. The particular solution found is valid
whenever a Gaussian phase profile is added to the laser
intrinsic phase and is given in terms of the well-known in-
complete gamma function. This solution is capable of
calculating the electric field on the optical axis of the laser
beam, for any magnitude of the Gaussian phase profile.

The solution was particularized for the z-scan case,
where the phase is modulated by the laser beam and is
then propagated to an iris in the far field. We could show
that for small nonlinear phases our predictions agree
with the GD method. Our developments are valid for
nonlinear phases greater than p, showing several modifi-
cations on the z-scan curve. We also showed that the so-
lution found could be particularized for the two-color z
scan, where a laser originates the nonlinear phase and
another laser beam carries it. In this case we calculated
the solution when the waist positions of the two beams
are coincident.
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APPENDIX A: COMPARISON OF THE
PRESENT THEORY TO THE FIRST-ORDER
APPROXIMATION FOR THICK MEDIA
By defining, according to Hermann et al.,20 the following
parameters for the z-scan case,

g 5 ~1 1 z0
2!,

m 5 ~1 2 z0zm /g!2 1 ~zm /g!2,

z0 5 z/zr ,

zm 5 L/zr ,

u 5 @2 exp~2iy ! 2 1#21,

y 5 arctan~z0! 1 arctan~zm 2 z0!, (A1)

where r0 is the beam waist and zr is the Rayleigh length
of the laser beam, L is the sample thickness, and b is the
nonlinearity, we can express the parameters a, Df0 , and
b of our theory as

a 5
1

gmr0
2 @1 1 i~z0 2 zm!# 1 i

k

2d
,

Df0 5
b
8

Re@i ln~u21!#,

b 5
b

4Df0gmr0
2 Re@i~1 2 u !#. (A2)

These parameters should be used in Eqs. (15) and (17)
above to obtain the z-scan curve by varying the sample
position, z (or z0).
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