
TECHNICAL NOTE

High-efficiency,
argon-laser-pumped Nd:YLF laser system

E. P. Maldonado, I. M. Ranieri, N. D. Vieira, Jr., and S. P. Morato

An Ar-ion laser was used to pump a Nd:YLF laser, in both s and p polarizations, in a longitudinal
scheme. In spite of the small absorption coefficient at the pump 1,0.25 cm 212, a careful laser design can
circumvent this problem, and efficiencies as high as those attained with semiconductor pumping schemes
are reported. The laser fundamental parameters were experimentally determined. A double-pass net
gain as high as 103 wasmeasured, and an output power of 1 Wwas obtained with a pumping power of 6 W.
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1. Introduction

Recently, Nd-ion lasers have gained new interest as a
result of semiconductor laser pumping, mostly now
that there are strong pumping sources in the near-
infrared region. These compact systems are cur-
rently achieving high emission efficiencies. Among
the several hosts for Nd ions, LiYF4 1YLF2 is a very
attractive one because of a broad homogeneous spec-
tral emission band. Besides, Nd:YLF crystals show
two emission lines, at 1047 and 1053 nm, correspond-
ing to the p and s polarizations, respectively. The
latter coincideswith the laser emission line of Nd:glass
lasers, and it is commonly used as the master oscilla-
tor for high-power systems.1
The Nd ions in many crystalline hosts show several

absorption lines all over the visible and the near-
infrared spectrum; the strongest ones are located
around 800 nm, with typical absorption coefficients of
few inverse centimeters, usually one order of magni-
tude larger than the visible absorption lines. We
show, for the first time to our knowledge, that the
strongest Ar-ion laser line 1514.5 nm2 can be effi-
ciently used to pump a Nd:YLF crystal longitudinally,
with a laser performance comparable to semiconduc-
tor pumping. The Ar laser has been already used to
pump Nd ions in glasses, but in these cases the
absorption bands are broad and intense. However,
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in spite of the strong absorption of pump radiation,
reported optical efficiencies for these Nd:glass lasers
are of the order of only 1%.2,3
A characterization of the Ar-laser-pumped Nd:YLF

laser developed here was carried out, and the laser
parameters were determined. As anAr-ion laser is a
standard tool in many laboratories, its use as a
pumping source for a Nd:YLF system extends the
available laser lines to the near infrared.

2. Laser Design

The active-medium length l was determined to fulfill
the condition of maximum output power, following the
model presented in Ref. 2 but considering two con-
straints in the system design. First, the crystal
length must correspond to the pump-beam confocal
parameter. This leads to a nearly constant pump-
beam area inside the active medium. Second, the
emission TEM00 mode must also have the same
confocal parameter, corresponding to amode-matched
configuration. When numerical calculations were
performed, the optimum value of the length was
found to be l > 60 mm, which corresponds to a beam
waist of 70 µm for the pump beam and a beamwaist of
100 µm for the Nd:YLF resonator TEM00 mode, inside
the active medium. We used these values for the
pump and the emission beams, but the available
high-optical-quality sample length was l 5 33 mm.
As we show, even with this smaller length we could
obtain good results.
Awell-known expression for the round-trip unsatu-

rated logarithmic gain is4,5
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where PP is the pump power; wP and w0 are the
pumping and the emission beam waists at the active-
medium region; b is the thermal population distribu-
tion factor, at room temperature in this case, for the s
and the p metastable states; IS 5 1h.n2@1s.t2, is the
saturation intensity, where h.n is the emitted photon
energy, t is the upper-laser-level lifetime, and s is the
stimulated-emission cross section; s > 3 3 10219 cm2

and b 5 0.43 for the p polarization; and s > 2 3
10219 cm2 and b 5 0.57 for the s polarization. Other
parameters are h.n 5 1.9 3 10219 J and t > 530 µs.6
Considering that PP > 6 W, we note that the

calculated unsaturated gain for each polarization is
approximately exp1G02 5 exp16.72 > 800 for the p
polarization and exp1G02 5 exp15.22 > 150 for the s
polarization.
The active-medium samples were obtained from a

boule of Nd:YLF crystal, with a diameter of 2.5 cm
and a length of 7 cm, grown in our laboratories. The
Nd concentration in the samples is 0.6112 mol. %, as
determined by the use of the x-ray fluorescence
method. Two samples were cut in 3 mm 3 3 mm 3
33 mm rectangular prisms extracted along the growth
direction 3coincident with the 11, 1, 02 crystallographic
direction4. The optical faces 1polished to a flatness of
l@42 were at the Brewster angle, suitably oriented for
the p polarization in one sample and for the s
polarization in the other. The transmission of the
prepared samples at l 5 1.06 µm was 0.995152. At lP
5 514.5 nm, the absorption coefficient is aA 5 0.18122
cm21 for the s polarization and aA 5 0.30122 cm21 for
the p polarization.
A general scheme of the optical resonator can be

viewed in Fig. 1. We designed an optical resonator
with the required Rayleigh parameter for the laser
medium region that consisted of a three-mirror tele-
scopic resonator with astigmatic compensation. The
mirrors, M1, M2, and M3, have radii r1 5 5 cm, r2 5 `,
and r3 5 100 cm; M1 and M3 are highly reflective
1R1,3 $ 0.9952. The incidence angle on M3 must be
10° to compensate for the astigmatism.7 The dis-
tance between M1 and M3 is 52.4 cm, and the distance
between M2 and M3 is 97.6 cm.

3. Experimental Results

The laser output power as a function of the pump
power, for both polarizations, is shown in Fig. 2; the
output coupler reflectivity is R2 5 0.78.
The Nd:YLF laser was characterized following the

same technique used in Ref. 8, with an acousto-optic

Fig. 1. General scheme of the Nd:YLF resonator. The lenses, L1
and L2, are used to mode match the pumping beam. A-O,
acousto-optic.
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modulator, allowing us to determine the unsaturated
gain and internal losses. The acousto-optic modula-
tor permits the continuous variation of the output
reflectivity while we monitor the laser output power.
The output power behavior obtained is shown in Fig. 3
for a pumping power PP 5 5.5 W.
We obtained the round-trip unsaturated gain exp1G02

and the resonator transmission exp12L2 by fitting the
theoretical expression to the data8:

POUT 5 K 32ln1R243 G0

L 2 ln1R24
2 14 , 122

thus yielding G0 5 6.9152, L 5 0.040152, K 5 0.15122 W
for the p polarization and G0 5 3.6152, L 5 0.050152,
K 5 0.19122W for the s polarization. The L values do
not consider the insertion loss of the modulator, 2%
per pass. This loss is due to a residual reflectivity of
the modulator surfaces.

4. Conclusion

In this Note we have demonstrated that it is possible,
in a longitudinal pumping scheme, to obtain high
laser efficiencies even if the gain-medium absorption
coefficient at the pumping wavelength is small. In
particular, Nd:YLF crystals can be conveniently
pumped by Ar-ion lasers. It was shown that an
output power level of 1 W and a double-pass net gain
as high as exp16.92 > 1000 could be easily obtained
with approximately 6 W of pump power. We calcu-

Fig. 2. Nd:YLF laser output power as a function of the pump
power for both polarizations. The output coupler transmission is
22%.

Fig. 3. Nd:YLF laser output power as a function of the output
coupler reflectivity for both polarizations. The pump power is
PP 5 5.5 W. The continuous lines are theoretical curves fitted to
the data.



lated that if a Nd:YLF sample with length l > 60 mm
was used, a 30% higher output power level could be
attained for the same pump power.
The slope efficiency of the developed system is 18%.

Considering that only ,50% of the pumping light is
absorbed, we can estimate that slope efficiencies of
approximately 40% can be expected when the Nd:YLF
is pumped in the near-infrared absorbing lines
1,800 nm2.
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