Measurement of the Gamma-ray Probability per Decay of Si-31

MARINA F. KOSKINAS and MAURO S. DIAS

Instituto de Pesquisas Energéticas e Nucleares, IPEN, CNEN/SP, Caixa Postal 11049, Pinheiros, CEP 05422-970, São Paulo, Brazil

(Received 26 October 1992; in revised form 19 March 1993)

The gamma-ray emission probability per decay for the 1266-keV transition of ³¹Si has been measured. This radionuclide was obtained by means of the ³¹P(n,p)³¹Si reaction in a fast neutron flux at the IPEN 2 MW research reactor. The sample activity has been measured by the $4\pi\beta$ - γ coincidence method and the efficiency tracing technique was applied using ²⁴Na as the tracer. The gamma-ray counting has been performed in a calibrated HPGe spectrometer. The resulting emission probability per decay obtained for ³¹Si was 5.537 × 10⁻⁴ with an overall error of 1.21% (one standard deviation).

Introduction

The accurate knowledge of the gamma-ray emission probability per decay (P_{γ}) of radionuclides is important in several applications. In the case of ³¹Si, the importance lies mainly in cross section measurements by the activation method (Zijp and Baard, 1979) and in silicon rod monitoring after neutron transmutation doping (Parma and Hart, 1982).

The decay scheme of ³¹Si is shown in Fig. 1. This nuclide decays 99.94% by beta-transition to the ³¹P ground state. The remaining 0.06% feeds the first excited state, giving rise to a 1266 keV gamma-ray.

In the literature, the measurements of P_{γ} for the 1266 keV gamma-ray of ³¹Si are scarce and show large discrepancies. The main reported values for this parameter are 7×10^{-4} with no stated uncertainty (Lyon and Manning, 1954) and $(5.90 \pm 0.29) \times 10^{-4}$ (Parma and Hart, 1982). For this reason we have undertaken the measurement of this emission probability using $4\pi\beta$ - γ coincidence counting and HPGe spectrometric techniques. Because of the very low intensity of the 1266 keV gamma-ray, direct use of the $4\pi\beta$ - γ coincidence counting is not possible. Therefore, the efficiency tracing technique (Merritt and Gibson, 1978) should be used. This technique has been applied in the present work choosing ²⁴Na as

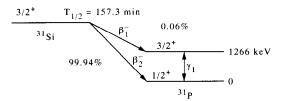


Fig. 1. Decay scheme of ³¹Si (Zijp and Baard, 1979).

tracer due to its very close beta energy as compared to ³¹Si. We have reported a preliminary result of $(5.87 \pm 0.14) \times 10^{-4}$ (Geraldo *et al.*, 1992). This measurement has been revised thoroughly and changed slightly. The new value is given in the present paper. The corresponding change in the reported cross section is briefly discussed.

Experimental

Source preparation

The ³¹Si was obtained by means of the ³¹P(n,p)³¹Si reaction in a fast neutron flux of 4×10^{12} cm⁻² s⁻¹ obtained near the core of the IPEN 2 MW research reactor. The sample was made of 150 mg NH₄PO₄ powder wrapped in aluminum sheet and sealed inside a polyethylene tube. A cadmium cover was used around the tube in order to avoid undesirable activation by thermal neutrons. The irradiation time was around 1 h. After irradiation, the NH₄PO₄ powder was measured in a HPGe spectrometer system. Immediately after this, the powder was dissolved into an accurately known mass of 1 M HCl solution.

The ³¹Si sources to be measured in the $4\pi\beta$ - γ system were prepared by dropping known aliquots of the solution on a $20 \,\mu g/cm^2$ thick COLLODION film. This film had been previously coated with a $10 \,\mu g/cm^2$ gold layer in order to turn the film conductive. A seeding agent (CYASTAT SM) was used to improve the deposit uniformity and the sources were dried in a warm (40°C) nitrogen jet (Wyllie *et al.*, 1970). The accurate source mass determination was performed using the picnometer technique (Campion, 1975). The tracer solution of ²⁴Na was prepared by dissolving NaCO₂ in a 1 M HCl solution after irradiation with thermal neutrons. The ²⁴Na sources were prepared in the same way as for ³¹Si. For the first irradiation, three sets of six sources each were prepared: one from the ³¹Si solution, one from the ²⁴Na solution and another one mixing drops from both solutions (mixed sources). For the remaining irradiations, only ³¹Si sources were prepared.

$4\pi\beta$ - γ Measurements

The system used for absolute standardization of the ³¹Si sources consists of a gas-flow proportional counter with 4π geometry (beta-channel) coupled to a pair of NaI(Tl) scintillation counters (gamma-channel) operating in coincidence (Moura, 1969). The proportional counter plateau was reached with a +2050 V bias. The lower discrimination level was set around 0.9 keV. The gamma-channel window was set to measure only the 1369-keV total absorption peak of ²⁴Na.

The presence of ³²P from (n,γ) reaction in ³¹Si and mixed sources has been taken into account by remeasuring these sources several days after irradiation. The amount of ³²P was then calculated and subtracted from the observed ³¹Si counting rate in the $4\pi\beta$ detector. The magnitude of the ³²P beta contribution at the time of measurement was around 6.5%. The contribution from ³²Si produced by (n,γ) reaction in ³¹Si has been estimated to be <0.01%.

The ${}^{31}Si$ specific activity (Bq/g) measured by a mixed source was deduced applying the equations given in (Merrit and Gibson, 1978) and resulted:

$$A_{31} = N_{\beta 31} / (\epsilon_{\beta} \cdot m_{31}) \tag{1}$$

where:

$$N_{\beta_{31}} = N_{\beta_{\text{TOT}}} - A_{24} \cdot \epsilon_{\beta} \cdot m_{24} - N_{\beta_{32}}$$
(2)

and $N_{\beta TOT}$ is the total counting rate observed in the 4π proportional counter, corrected for dead time and background, A_{24} is the ²⁴Na specific activity determined by the $4\pi\beta$ - γ coincidence method, corrected for decay, ϵ_{β} is the β efficiency calculated by the N_c/N_{γ} ratio for the given mixed source, where N_c/N_{γ} is the ratio of coincidence and gamma rates, calculated by the Cox–Isham (Cox and Isham, 1977) formalism, $N_{\beta_{32}}$ is the counting rate due to ³²P, corrected for dead time, background and decay, and m_{31} and m_{24} are the masses of the ³¹Si and ²⁴Na aliquots contained in the mixed source, respectively.

Figure 2 shows the behavior of the observed specific activity of ³¹Si for several mixed sources, as a function of the inefficiency parameter $(1 - N_c/N_{\gamma})/(N_c/N_{\gamma})$. It can be seen that N_c/N_{γ} is very close to unity for all sources. A statistical analysis showed that the calculated slope is zero within the measured errors. For this reason, for the remaining three irradiations only ³¹Si sources were measured. In this case the specific activity is given by:

$$A_{31} = (n_{\beta \text{TOT}} - N_{\beta 32}) / (\bar{\epsilon}_{\beta} \cdot m_{31})$$
(3)

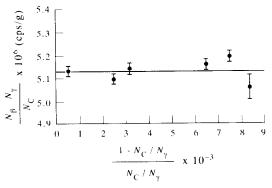


Fig. 2. Behavior of the observed specific activity of mixed sources as a function of the inefficiency parameter: $(1 - N_c/N_c)/(N_c/N_c).$

where: $\bar{\epsilon}_{\beta}$ is the average β efficiency determined by combining the N_c/N_{γ} ratios of all mixed sources. Its value is (0.995 \pm 0.003).

The activity of the irradiated sample was calculated by taking the specific activity multiplicated by the total mass of the ³¹Si solution (50 g), which was measured with an error of about 0.1%.

Gamma Spectrometry Measurements

The ³¹Si sources were measured in HPGe spectrometer. The detector volume was 99.7 cm³ and the intrinsic efficiency was 20%. This spectrometer has been calibrated in the energy range between 778.90 and 1408.02 keV by measuring IAEA standard sources of ⁶⁰Co and ¹⁵²Eu. The calibration was checked by measuring a ⁶⁰Co source standardized in the $4\pi\beta$ - γ coincidence system.

The source to detector distance was around 17.2 cm. At this distance the cascade-summing effects were estimated to be negligible. Dead time and pile-up corrections were applied by measuring a reference pulser peak near the upper end of the gamma spectrum simultaneously with the sources. The area of the peak was evaluated by summing all MCA counts in the interval $[C - 3\delta, C + 3\delta]$ where C is the peak centroid and δ is the FWHM (full width

Table 1. Estimated uncertainties envolved in the ³¹Si γ-ray emission probability measurement (in %)

	Irradiation			
Source of error	1	2	3	
Peak area statistics	0.84	0.99	0.85	
Source mass	0.15	0.15	0.15	
Attenuation factor	0.15	0.15	0.15	
Geometric factor	0.52	0.52	0.52	
N ₆₃₁	0.15	0.22	0.80	
Half-life	0.40	0.23	0.11	
N _{B32}	0.17	0.17	0.38	
Decay time	0.44	0.44	0.44	
β efficiency	0.30	0.30	0.30	
7 efficiency	0.54	0.54	0.54	
Total error	1.60	1.65	1.79	

Table 2.	Results	of the	gamma-ray	emission	prob-
		abilit	y of ³¹ Si		

Irradiation	$(\times 10^{-4})$	Error (%)
1	5.532	1.60
2	5.473	1.65
3	5.632	1.79
Average	5.537	1.21

at half maximum). The net counts were obtained by considering the background in a region of width δ at both sides of the gamma-ray peak. Corrections were applied to account for geometric differences between the ³¹Si and the standard sources as well as for gamma-ray self absorption.

Results and Discussion

Table 1 shows the estimated uncertainties involved in the measurement of P_{y} for the 1266-keV transition of ³¹Si. As it can be seen, the main sources of uncertainty are in the HPGe measurement, namely: statistics in the 1266 MeV y-ray peak area, detector efficiency and geometric corrections. The overall error for each irradiation was in the range of 1.6-1.8%. Table 2 shows the average value for P_{ν} of ³¹Si. This value was calculated by a least square fit procedure, applying the covariance methodology. The result was $(5.537 \pm 0.067) \times 10^{-4}$. The reduced chi-square was 1.82 indicating a satisfactory fit. The difference between this value and the preliminary value $(5.87 \pm 0.14) \times 10^{-4}$ reported previously (Geraldo et al., 1992) comes from a more rigorous account of the ³²P activity and improvements in the gamma-spectrometric measurements. The result of the present work is somewhat smaller than reported previously by Parma and Hart (1982) and Lyon and Manning (1954).

With this new value of P_{γ} , the reported cross section for the ³¹P(n,p)³¹Si reaction (Geraldo *et al.*, 1992) is changed to (36.0 + 1.4) mb. This value is in

better agreement with the results of Fabry *et al.* (1978) and Callammand (1974).

Acknowledgements—The authors would like to thank Dr Luiz P. Geraldo for the valuable discussions on covariance analysis, to Ms Katia A. Fonseca and Ms Nora L. Maidana for the participation in the measurements and to Ms Eliane Pocobi for the careful sample preparations.

References

- Callamand A. (1974) Cross sections for fission neutron induced reactions. In *Handbook on Nuclear Activation Cross Sections*, p. 273. Technical Report Series No. 156, IAEA, Vienna.
- Campion P. J. (1975) Procedures for accurately diluting and dispensing radioactive solutions, Monographie BIPM-1, Bureau International des Poids et Mesures, Sevres.
- Cox D. R. and Isham V. (1977) A bivariate point process connected with electronic counters. *Proc. Roy. Soc.* A356, 149.
- Fabry A., McElroy W. N., Kellog, L. S., Lippincott E. P., Grudl J. A., Gilliam D. M. and Hansen G. E. (1978) Review of Microscopic Integral Cross Section Data. In Fundamental Neutron Cross Sections for Reactor Dosimetry Vol. 1, p. 233. Review Papers, IAEA-208, Vienna.
- Geraldo L. P., Dias M. S. and Koskinas M. F. (1992) Average neutron cross section measurements in U-235 fission spectrum for some threshold reactions. *Radiochim. Acta* 57, 63.
- Lyon W. G. and Manning J. J. (1954) Phys. Rev. 93(3).
- Merritt J. S. and Gibson F. H. (1978) Standardization of ^{137}Cs by the 4π (PC) β - γ efficiency-tracing method with ^{134}Cs as tracer. Report AECL-6203, Atomic Energy Canada Limited.
- Moura L. P. (1969) Generalized Coincidence Method for Radionuclide Absolute Activity Measurement. Ph.D. Thesis, University of Campinas (in Portuguese).
- Parma E. J. Jr and Hart R. R. (1982) Measurement of the Gamma Abundance of Silicon-31. In Proc. 4th Neutron Transmutation Doping Conference, p. 127. NBS. Gaithersburg.
- Wyllie H. A., Johnsons E. P. and Lowenthal G. C. (1970) Int. J. Appl. Radiat. Isot. 21, 490.
- Zijp W. L. and Baard J. H. (1979) Nuclear Data Guide for Reactor Neutron Metrology. In Commission of the European Communities, Nuclear Science and Technology (EUR-7164 EN Part I and II) Brussels.