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The

measurement of neutron-induced reaction cross sections often requires detection of either prompt gamma rays or gamma rays

emitted

during the decay of radio nuclides

.

This paper describes the analytical procedures we use to generate calibrations for

germanium

gamma-ray detector full-energy-peak efficiency E versus photon energy E, and to predict the associated uncertainties

.

Our

method,

which involves fitting a parameterized regression formula to measured data by the principle of least squares, is widely

applicable

beyond the specific problem considered here

.

It differs from most commonly used methods in that comprehensive use is

made

of available information on all known sources of random and systematic (correlated) error associated with the calibration

process.

This is accomplished through the formation and application of a calibration-data covariance matrix

.

Objective prediction of

the

errors in subsequently derived quantities (e

.g.,

detector efficiencies at energies not directly represented in the calibration data) is

then

achieved through error propagation

.

Specifically, this paper discusses our experiences in fitting the particular empirical formula

In

E =Uk- I Pk(In E)" - t to measured calibration data at gamma-ray energies from just above 200 keV to several MeV

.

A numerical

example

is provided to demonstrate the utility of this approach

.

l .

Introduction

In

experimental physics one is frequently faced with

the

problem of representing measured calibration data

by

means of a smooth curve

.

This happens because the

experimental

calibration points rarely address explicitly

all

the individual conditions of interest to the experi-

ment .

The most common technique is to generate this

smooth

curve by fitting (in some fashion) a para-

meterized

regression formula to the calibration data

.
The

objective of such a fitting exercise is always to

determine

"best values" for these few parameters

.

The

intent

is that they will provide an "adequate" descrip-

tion

of the measured calibration data (by means of a

selected

functional relationship which employs them)

and,

furthermore, allow for interpolation (and possibly

limited

extrapolation) to regions where measured data

are

unavailable

.
There

are two fundamental considerations involved

.
The

firçt ronsideratitm is that of selecting the form of

the

regression formula, i

.e .,

the model for parameteriz-

ing

the data

.

In practice, this may be a, purely empirical

exercise

or it may involve a large measure of physical

justification,

depending upon the circumstances of the

*

Work supported by the U

.S .

Department of Energy, En-

ergy

Research Programs, under Contract W-31-109-Eng-38

.
Permanent

address

:

Divisao de Fisica Nuclear, IPEN, C

.P .
11049-Pinheiros,

0100 Sao Paulo

.

Brazil

.

0168-9002/90/$03 .50

(1) 1990 - Elsevier Science Publishers B

.V .

(North-Holland)

499

problem .

In the final analysis, this choice is usually

governed

rather subjectively by the experience of the

experimenter

as to what "works well"

.

The second

consideration

concerns how one goes about determining

the

"best" parameters for such a model, once it has

been

selected

.

This, in fact, can be posed as a very well

defined

mathematical problem in statistics, one for

which

there exists an exact solution

.

It is in this second

aspect

of the problem, namely "fitting" the formulas to

the

data, where most of the previously reported schemes

are

found to be deficient

.

The problem lies in the way in

which

the available calibration data are weighted in the

fitting

process, i

.e .,

in the way the experimental data

uncertainties

are specified and employed in the analysis

.
It

is quite common for important sources of error to be

overlooked,

and even more typical for correlations be-

tween

the various errors to be neglected

.

The result of

such

oversight is inevitably the generation of estimates

for

the fitting parameters which do not make optimal

use

of the available information

.

In short, the fitting

parameters

are biased and not of minimum variance

.
Furthermore,

most procedures do no! yield error esti-

mates

for the "best-fit" parameters which they produce

.
and

they also fail to provide methods for estimating the

uncertainties

associated with those calibration values

which

are subsequently derived from the fitted formula

.
Our

research program emphasizes the measurement

of

neutron reaction cross sections, particularly those

involving

detection of prompt gamma rays or gamma
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rays emitted from product radionuclides . The impor-
tance of objective error estimation in such investigations
has been emphasized in a review paper on the subject
[1] . In the present paper, we specifically address the
matter of generating calibrations for full-energy-peak
efficiencies of germanium gamma-ray detectors at en-
ergies from above 200 keV to several MeV, a region of
particular relevance to our research activities . We have
observed that those uncertainties in our measured cross
sections which can be traced to the calibration proce-
dure are typically in the range of 1-2%. Since the total
errors in our measured cross-section results generally
are in the vicinity of 5%, this calibration error compo-
nent is significant . Although the focus of this paper is
on the calibration of germanium gamma-ray detectors,
the methods described here are widely applicable to
other curve-fitting problems in experimental physics .

Germanium detectors have been used effectively as
photon detectors for more than two decades . They offer
excellent energy resolution, good stability and adequate
efficiency for many applications . Standard single- or
multiline photon sources are readily used to experimen-
tally derive full-energy-peak photon detection efficiency
calibrations for these instruments. It is not our intent to
review the plethora of journal articles and reports which
have been written about the various methods used in
oerforming calibrations of this nature . Relevant papers
from this journal alone amount to nearly 50 contribu-
tions since 1980 . We have used the particular method
described in this paper with good success for several
years, in both (n, n'y) and (n, X) reaction activation
experiments . The associated experimental details have
been reported elsewhere [2-4] . It has been our experi-
ence that calibration data from such measurements can
usually be represented well by the empirical formula

m

In E _

	

P,(In E)k-I ,
k=1
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provided that the energy range spanned does not extend
much below 200 keV where the efficiency function
exhibits considerable curvature for most germanium
detectors . Our observations are consistent with those
reported by other investigators [5,6] . We shall see below
that an important feature of this formula is that eq . (1)
is linear in the fitting parameters pk .

Section 2 of this paper describes our basic proce-
dure, step by step . In order to avoid sacrificing readabil-
ity, most of the relevant mathematical details are rele-
gated to appendix A, which is provided for the conveni-
ence of readers who wish to acquire a more thorough
understanding of the statistical foundations of this
method . A detailed numerical example, involving actual
detector calibration data, is presented in section 3 in
order to demonstrate how the method is applied in

practice . Finally, the content and significance of the
present work are summarized in section 4 .

2. Description of the method

We now proceed to offer the reader a step-by-step
prescription for the application of this method. The
related mathematical details are discussed further in
appendix A and in the literature (e.g., refs . [13-25]) .
The procedure itself is demonstrated with a numerical
example in section 3 .

2.1 . Tabulation of measured efficiencies and their uncer-
tainties

We suppose that n distinct measurements have been
made of the absolute full-energy-peak efficiency E for a
particular detector . The experimental values are de-
noted by E,, corresponding to gamma-ray energies E;
(i =1, - - - , n) . These energies need not be distinct, e.g.,
there might be several measurements at the same
gamma-ray energy, corresponding to various sources of
the same radioactive species or repeated measurements
with one source. It is entirely up to the discretion of the
investigator as to how the set of pairs of experimental
calibration values for the efficiency, (E,, E,), is to be
generated in his experiment . The details will certainly
be strongly influenced by the experimental setup, the
available calibration sources, etc .

The degree of attention which must be paid to
specifying the uncertainties in the measured efficiencies
may be unfamiliar to the reader . This task can be
broken down into two well-defined steps. The first step
involves establishing all the distinct error sou:c-s in the
measurement process . What we mean here by "distinct"
is that the considered error sources be uncorrelated .
Examples of such distinct error sources are statistical
errors, errors in absolute source strengths, geometric
errors, etc . Ultimately, each experimenter must decide
for himself which constitute the distinct error sources in
his particular calibration experiment . Each individual
error source is tagged with a subscript l . We shall
assume that a total of 1, such error sources has to be
considered . The second step involves tabulating the
actual error components. Consider a particular error
source 1 . The experimenter must estimate the corre-
sponding magnitude of the error component e,,,, in
units of absolute efficiency, for each value of measured
efficiency E, . He should then specify the correlations
between these partial errors e,,, ( i = 1, - - - , n) for this
particular 1. This collection of microcorrelations forms
an n x n matrix S,, . Since the various error sources
considered are treated as distinct, no correlations are
presumed to exist between any two partial errors involv-
ing different values of 1 . This procedure, when applied



for all 1= 1, - - - , L, yields a complete array of values
e,, t , of dimension n x L, as well as a set of L microcor-
relation matrices S, t (l = 1, - - - , L) .

This information on the partial errors and their
correlations provides a basis for constructing the covari-
ance matrix V, which completely represents the uncer-
tainties in the measured efficiencies . The elements of
this matrix can be computed explicitly using the for-
mula

L

V,~, _

	

SE~,te,,~te,

and the total errors in the measured efficiencies are
related to the variances through the formula
(v"ol"' .

2.2 . Conversion to a logarithmic representation

It is clear from eq . (1) that the fitting analysis
involves natural logarithms of efficiencies rather than
direct efficiencies . Therefore, the next step in the method
is to convert the measured efficiencies c, to equivalent
natural logarithms, i .e., z ; =1n E, . This is simple. Con-
version of the covariance matrix V, to VZ is a bit more
complicated . Nevertheless, it can be accomplished in a
straightforward manner using the error propagation for-
mula . Thus,
V. = T+VT.

T, = s,, ( az,/aE, ) = s,, [ a (ln E,)/aE,1=
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The symbol "+", as a superscript, denotes matrix trans-
position and individual elements of the matrix T are
given by the formula

where S;, = 1 if i = j and 0 if i $j (the Kronecker delta
function). Therefore, the elements of V. assume the
form

V, ; j = V ; jl(E,E j ) .

Eq . (5) tells us that the covariance matrix for the
logarithmic parameters z ; equals the relative covariance
matrix for the corresponding efficiencies E, .

2.3 . Estimation of the fitting parameters and their uncer-
fi.inlinc

At this point in the analysis we possess all the
information required to generate best estimates for the
parameters pk of the fitting function given in eq. (1) .
For convenience we denote the complete set of these
parameters by the vector p . Since z, =In E,, we can
represent eq . (1), reproduced for each calibration data
point as labelled with index i, by the compact matrix
expression

where A is an n x m matrix whose elements are A,k =
(In E, )~ -1 . The reason why z is related to p through an
approximate equality in eq . (6) is that even with the best
possible choice of p, it will never be possible to repro-
duce (i .e., "fit") the measured data perfectly . The least-
squares condition states that the best estimate for p is
the one which minimizes the statistic X2 given by the
quadratic form

X2 = (z - AP)+V`(z - AP),

50 1

where "-1", as a superscript, denotes matrix inversion .
The solution p, can be extracted from the normal
equations, a(X2 )/apk = 0 (k = 1, - - - ,m). It is given by
the formulas

P = VPA'V_ ~.: ,

VP = (A' V.- 'A) _I .

(g)

(9)

VP is the covariance matrix for the solution parameters
P.

2.4. Testing the quality of fit and consisteno, of the data

Substitution of the solution for p into eq . (7) yields a
specific value for X 2 , thereby providing a means to test
the quality of the fit . This statistic is governed ap-
proximately by a XZ distribution with (n - rn) degrees
of freedom, so its expected value is (n - m) . In physical
terms, the value of X 2 indicates not only the quality of
fit, but also tests the consistency of the measured ef-
ficiency data through its sensitivity to the degree of
scatter in the experimental efficiencies about the fitted
curve . A value of X2 about equal to (n - m) indicates
an optimal situation, namely a good fit and scatter of
the data around the fitted cut , _ so ' , consistent with
the data errors . Values of X` significantly less then
(n - m) are fortuitous and therefore without conse-
quence. However, occurrence of a X2 which is substan-
tially larger than (n - m) signals the presence of a
problem. There are several possibilities which the inves-
tigator will need to explore . One possibility is that the
errors assigned to the data are too small . A second
possibility is that one (or possibly more) of the mea-
sured efficiencies is in error (a "wild" data point) and
may need to be corrected . Q third possibility is that the
parameter estimates are distorted by computer round-off
errors and need to be recalculated using higher-preci-
sion arithmetic . A fourth possibility is that the choice of
fitting function is inappropriate to represent the mea-
sured data (perhaps either fewer or more parameters pA

are required) . Whenever excessively large values of X2

are obtained, it is the responsibility of the investigator
to trace the origin(s) of the discrepan,y, remedy the
problem(s), and then refit the data to obtain a more
reasonable X2 value .
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2.5. Derived efficiencies and their uncertainties

The true power of this method is the opportunity
which it provides to not only compute efficiencies at
energies other than those represented in the set, E;, but
also to predict the uncertainties in these derived ef-
ficiencies in a statistically rigorous fashion . Let us sup-
pose that we wish to compute the efficiencies c c � for
several arbitrarily selected gamma-ray energies E� (v =
1, - - - , N ), within the range of applicability of the fitted
formula . The subscript c indicates that these efficiencies
are to be calculated using eq . (1) and the best-fit param-
eter set p. It is obvious how the efficiencies themselves
should be calculated, but how are the corresponding
uncertainties to be determined? In fact, with this for-
malism this task is quite straightforward . It is accom-
plished by again employing the error propagation for-
mula mentioned above, namely

VZ ,, = A'VPA«: ,

	

(10)

with the elements of A,, given by the formula A, kv =
(In E�)k-1 . However, our requirement is for the covari-
ance matrix, V,, corresponding to the calculated ef-
ficiencies, Er,, . From the discussion following eq. (5) we
will recall that the covariance matrix for the logarithms
of the efficiencies is just the relative covariance matrix
for the efficiencies themselves . Thus, we conclude that
the elements of V« can be obtained using the formula

Vccv11 -EvYzc,,AEJ,

	

(Y + A= 1, . . . + N) ,	(11)

and the total errors in the calculated efficiencies are
related to the variances through the formula a,
( v~cvv~'l2'

Although the procedure described in this section
involves a w.rnber of matrix multiplications and two
matrix inversion operations, this should not be a very
formidable task for most calibration applications so
long as the experimenter has access to a small com-
puter .

3. A numerical example

To illustrate the method discussed in section 2, we
now describe how we generated a specific gamma-ray
detector efficiency calibration curve, over the energy

Table 1
Standard calibration sources

Germanium gamma-ray detector efficiency

range 250-1400 keV, based on data acquired during a
neutron activation experiment conducted in March 1988 .
The detector in question is a coaxial Ge(Li) detector
fabricated by ORTEC, Inc. [7] . The nominal full-en-
ergy-peak efficiency . a s stated by the vendor, is = 150
relative to a 7.6 cm x 7.6 cm Nal(TI) scintillation detec-
tor (for measurement of 1333 keV photons at a 25 cm
source-to-detector distance) . In the present experiment,
a precise calibration of absolute point-source efficiency
vs photon energy was developed for a counting position
on the detector axis at a source-to-detector distance

20 cm .
The experimental data used in this exercise were

obtained from measurements utilizing standard 6°Co
(5.271 ± 0.001 y [8]), 137CS (30.174 f 0.034 y [9]) and
t52Eu (13.33 ± 0.04 y [8]) sources. The vaiues in
parentheses are decay half-lives 01/2) for these activi-
ties . Each standard consists of a near-point source of
active material deposited on a low-mass plastic backing .
The sources originate from different laboratories, in fact
from distinct countries [10-12] . Parameters for these
sources are listed in tables 1 and 2 . Thin layers of shim
stock were used to insure that these sources were all
counted in nearly identical geometries . Several counts
were taken for each source 'o improve statistics and to
test measurement reproducibility .

Full-energy-peak yields per unit livetime, C, for each
of the 12 lines listed in table 2 were extracted from the
recorded gamma-ray spectra . Only dominant, isolated
lines were analyzed in the 152Eu spectra . Detector ef-
ficiencies for all of these lines were then derived from
the data . Let A be the source activity (in Bq) at the time
of the count, B the number of photons emitted per
disintegration (table 2), and E the number of detected
events its the full-energy-peak per photon emitted from
the source (absolute full-energy-peak efficiency) . These
quantities are related through the equation

Before applying eq . (12), the calibration activity A o
(table 1) had to be converted to an effective activity A
at the time of the measurement by application of the
exponential decay law, i .e .,
A = A0 exp( -At ), (13)

where A is the decay constant - related to half-life by

Source Identity Ref. Calibration

Date Activity [Bq]
64)Co NBS-SRM-4203D-1 1101 1 Feb. 1984 3.193 x 105 ( ± 0.9%)137Cs PTB-273-83 [111 1 Jan. 1985 1 .565 x105 ( ± 1 .5%)
152 Fu LMRI-EGMA-3-5243 [121 20 Apr. 1979 4.208 x 10 5 ( ± 1 .5%)



Table 2
Gamma-ray lines from the standard calibration sources

a) Label for the gamma-ray line.
b) Only the gamma-ray lines used in the present calibration are

listed .

the expression A = In 2/tt/2 - and t is the time elapsed
since the standard was calibrated . Eq . (13) is strictly
applicable only when the counting time interval is very
short compared to the decay half-life . This condition
was very well satisfied in the experiment .

Generation of the efficiency data covariance matrix,
in accordance with eq . (2), involved examination of
each factor in eqs . (12) and (13). The uncertainty in the
measured peak yield per unit livetime, C, was obtained
by propagating the statistical errors for those quantities
employed in computing the full-energy-peak area,
namely the spectrum total count and background count
in the vicinity of the peak . A weighted average of the
results of repeated experimental determinations of C,
based on the explicit counting errors, was calculated for
each gamma-ray line using the techniques described in

Table 3
Gamma-ray detector efficiency calibration data

L.P. Geraldo, D.L. Smith / Germanium gamma-rat, detector efficiency

a) Label for the gamma-lay line (corresponds to table 2) .
h) Measured absolute detector full-energy-peak efficient
`) Components are identified in the text (section 3), en .>

rels . j119-22.11.
m This is equivalent to generating a one-

parameter fit, where that parameter is the expected or
average value of corresponding experimental data for C .
A X2 statistic is associated with this procedure. Accord-
ing to the discussion in appendix A, the expected value
for this statistic is (n - 1), where n represents the
number of values being averaged . Values of X2/(n - 1)
> 1 were observed in several instances (all X2 values
fell in the range 0.02-3.58), indicating that some of the
counting results were afflicted by unidentified sources
of error . Therefore, as discussed in ref. 1211, the com-
puted error in the weighted average of C(1= 1) was
enhanced by the factor [X21(n - 1)1 1/ 2 to account for
this added "reproducibility effect" if X21(n - 1) > 1,
however, the error was not reduced if X21(n - 1) < 1 .
The overall error in C was treated as random .

There are two error components for the source activ-
ity A, and their effects can be determined from eq . (13) .
The decay-constant

(tlf?
or X) errors (1= 2) were

negligible,

	

except for

	

2Eu where the impact was
0.1% . The calibration (Ao) errors (1= 3) were taken

directly from information provided by the standards
laboratories (table 1) . Each of these error components is
1000 correlated for gamma-ray lines from the same
source and uncorrelated otherwise .

The final error component (1= 4) considered here is
attributed to the gamma-ray branching factor B . The
branching errors were negligible for 6°Co [81 and
amounted to 0.6% for 137Cs 191 . Branching errors for
specific gamma-ray lines of )52 Eu could be readily de-
duced from the documentation provided with this
standard source 1121 . These errors can be traced to
determination of the relative peak yields for gamma
rays, so they were treated as random in this experiment .

The measured efficiencies and associated error com-
ponents deduced from this analysis are compiled in

.ire Qp~,en to the nearest 0.1`x .
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Line
number a)

Efficiency
[ x 10° ]

Component
I=1

errors `) [c%]
I=2 I=3 1=4

Total
error

1 3.089 0.4 0.0 0.9 0.0 1 .0

2 2.783 0.4 0.0 0.9 0.0 1 .0

3 5.016 0.3 0.0 1 .5 0.6 1 .6

4 12.69 0.2 0.1 1 .5 2.1 2.6

9.278 0. ! 0_1 1 .5 1 .5 2.1

6 7.337 0.4 0.1 1 .5 1 .6 2.2

7 4.315 0.3 0.1 1 .5 1 7 2.3

8 4.031 0.4 0.1 1 .5 1 .3 2.0

9 3.681 0.2 0.1 1 .5 1 .6 2.2

10 3.320 0.3 0.1 1 .5 2.2 2.7

11 3.284 0.2 0.1 1 .5 1 .5 2 .1

12 2.683 0.2 0.1 1 .5 1 .3 2.0

Source Ref . Line
number a)

Energy
[keV]

Branch
tab]

60Co 191 1 1173 100.0
2 1333 100.0

137CS 19] 3 662 85 .0
152Eu h) 1101 4 245 7.42

5 344 26 .4
6 444 3.08
7 779 13.0
8 867 4.16
9 964 14 .5

10 1086 11 .8
11 1112 13 .6
12 1408 20.7
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Table 4
Gamma-ray detector efficiency calibration-data macrocorrelation matrix a)

table 3 . These errors, and information on their assumed
microcorrelations, were employed in computing matrix
elements for the gamma-ray detector calibration-data
covariance matrix, as prescribed by eq . (2) . The result-
ing total errors are listed in table 3 and the correspond-
ing macrocorrelation matrix appears in table 4. In this
example the calibration results originating from differ-
ent standard sources are completely independent (un-
correlated) . This is very desirable because it reduces the
chances that a serious systematic normalization error
will perturb the calibration process . For this reason, it is

LP. Geraldo, D.L Smith / Germanium gamma-ray detector efficiency

a) Correlations for the total errors presented in table 3, given to two-significant-figure accuracy ; indices correspond to gamma-ray
line labels from table 2.

Table 5
Analysis of the quality of fit of a two-parameter curve to gamma-ray detector efficiency caliK . :ion data

a) Eq . (1) is fitted to data provided in tables 2-4.
b' Label for the gamma-ray line (corresponds to table 2) .
" Measured efficiency ( and its error from table 3.
d) Calculated efficiency Ec and its error, based on eq . (1) . with
e)

(E - Ec )/E in percent .
Based on addition of errors in E and E, in quadrature .

s) N = negligible .

always good experimental practice to use as diverse a
collection of calibration standards as possible.

The process of fitting eq . (1) to the detector calibra-
tion data summarized in tables 2 to 4 was carried out
using a code written in Fortran-77 for an IBM-compati-
ble personal computer. Only two parameters (m = 2)
were employed because no significant improvement in
the fit was observed when additional parameters were
introduced . The results of the two-parameter fit are as
follows : p ) = 7 .358 (±0.9%), p2 = -0.8815 (± 1 .0`X),
parameter error correlation = -0.9932 and X2 = 11 .44 .

p, = 7.358 and P2 - -0.8815, and error propagation .

1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 0.84 1
3 0 0 1
4 0 0 0 1
5 0 0 0 0.41 1
6 0 0 0 0.39 0.48 1
7 0 0 0 0.38 0.46 0.44 1
8 0 0 0 0.43 0.52 0.50 0.49 1
9 0 0 0 0.40 0.48 0.46 0.45 0.51 1
10 0 0 0 0.33 0.40 0.38 0.37 0.42 0.38 1
11 0 0 0 0.41 0.50 0.47 0.46 0.52 0.48 0.40 1
12 0 0 0 0.44 0.53 0.51 0.49 0.56 0.51 0.42 0.53 1

Line
number b)

Efficiency

( c)

[x 104 ]
cc d)

Difference `) Errors [%]
E

c) cc d) Combined f )
1 3.089 3.090 N P,) 1.0 0.8 1.3
2 2.783 2.760 0.8 1 .0 0.8 1 .3
3 5.016 5.116 -2.0 1 .6 0.8 1 .8
4 12.69 i 2.29 3.2 2.6 1 .5 3.0
5 9.278 9.110 1 .8 2.1 1 .2 2.4
6 7.337 7.275 0.8 2.2 1.0 2.4
7 4.315 4.432 -2.7 2.3 0.8 2.4
8 4.031 4.033 N 2.0 0.7 2.1
9 3.681 3.673 0.2 2.2 0.7 2.3
10 3.320 3.307 0.4 2.7 0.7 2.8
11 3 .284 3.239 1.4 2.1 0.7 2.2
12 2.683 2.630 2 .0 2.0 0.8 2.2



The parameters p t and P2 are clearly very strongly
anticorrelated . This is quite understandable since, in
fitting a line (two parameters) to a set of nearly linear
data, there is essentially no freedom to adjust one of the
parameters (e.g., the slope P2) without having to com-
pensate in the opposite direction with the second
parameter (e.g., the intercept p,), in order to minimize
the residuals X2 statistic) . There are 10 degrees of
freedom in this problem, so the value obtained for X2

per degree of freedom (equal to 1.144) is indeed fairly
close to unity. The excellent quality of this fit is evident
from the information appearing in table 5 . Good con-
sistency between the measured and calculated efficien-
cies is observed for all the calibration energies, i .e ., the
differences between the calculated and experimental
efficiencies at the calibration energies are either of the
order of or less than the combined experimental and
computational errors (based on error propagation).

For demonstration purposes, calculated efficiencies,
their errors and error correlations were determined at
E = 300, 500, 700, 900, 1100 and 1300 keV, six equally
spaced energies within the range of the fitted calibration
curve. The results are summarized in table 6. Two
features of this analysis are evident from this table :
(i) The errors in the calculated efficiencies are of the

order of 1%, with larger uncertainties at the lower
energies (where the density of calibration points, on
a logarithmic scale, is lower than for higher en-
ergies) .

(ii) These uncertainties in the calculated efficiencies are
more strongly correlated for neighboring energy
points than for more distant points, a result which
is intuitively quite reasonable.

4. Summary

L. P. Geraldo, D.L. Smith / Germanium gamma-ray detector efficiency

The example presented in section 3 demonstrates
that the least-squares procedure described in section 2
(and in more detail in appendix A), coupled with use of
the fitting formula given in eq . (1), is capable of yielding

') Errors are given to nearest 0.1% .
ti) Correlations are given to two-significant-figure accuracy .

50 5

consistent (as quantified by a X2 statistic) fits of good
quality (small uncertainties) to germanium detector
gamma-ray efficiency calibration data . This method also
provides rational estimates of the best-fit parameter
uncertainties and their correlations . When such detailed
information is available, it is possible to compute ef-
ficiencies at arbitrary energies within the range of appli-
cability of the fitted curve and to predict their uncer-
tainties and uncertainty correlations as well. Although
we have discussed the fitting of germanium detector
efficiency calibration data, it should be emphasized that
this approach is quite general and can be applied to
advantage in a variety of problems in experimental
physics .

This method is clearly quite demanding of detailed
information concerning the calibration measurements,
particularly with regard to the matter of errors . There
are two objections which are sometimes raised in oppo-
sition to this approach . The first of these questions
whether this method is any better than others in com-
mon use which do not require paying such detailed
attention to errors . The answer to this objection is that
careful attention to the experimental error sources and
their magnitudes is indeed imperative if optimal use
(i.e., proper weighting) is to be made of the calibration
data in seeking best estimates for the fitting parameters .
Any other approach will most likely lead to parameter
estimates which are biased and not of minimum vari-
ance. If the detector is being calibrated for a sensitive
experiment, e.g., for a precision spectroscopic measure-
ment or for the determination of a reaction cross sec-
tion which must be accurately established in order to
meet the needs of a certain application, then the method
is clearly justified . The second objection revolves around
skepticism as to whether it is really possible in practice
to produce reliable estimates for all the partial error
components and their correlations, as required to con-
struct the calibration-data covariance matrix VE accord-
ing to eq . (2) . There is concern that faulty error esti-
mates will lead to incorrect results . It is certainly true
that flawed error estimates will thwart analytical meth-

Table 6
Calculated
eq . (1) and

gamma-ray detector efficiencies,
data provided in tables 2-4)

uncertainties and correlations based on a two-parameter fit to calibration data (based on

Energy Calculated Total Correlations h)

(keV]
. -

Efficiency
[ x 104 1

error
1%]

300 10.28 1 .3 1
500 6.552 1 .0 0.96 1
700 4.870 0.8 0.84 0.96 1

900 3.902 0.7 0.65 0.83 0.96 1
1100 3.270 0.7 0.44 0.67 0.86 0.97 1

1300 2.822 0.8 0.26 0.A 0.74 0.90 0.98 1
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ods which rely on this information . However, it is our
experience that reasonable error estimates can usually
be made without excessive difficulty, provided that one
develops the habit of carefully documenting the relevant
details which are available during the course of an
experiment . It is surprising how much critical informa-
tion is lost or discarded in experiments, e.g., informa-
tion which would insure reasonable estimation of the
necessary error components, simply because most inves-
tigators are not trained to observe and record this
information at the time when it is readily at hand to
them during the course of the experiment . It is our
opinion that routine exercise of appropriate experimen-
tal discipline, e.g ., as required to produce and document
the error information necessary for the conduct of data
analysis exercises like the one described in this paper,
will inevitably lead to improved experiments and there-
fore to higher-quality results .

Appendix A
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The basic principles involved in generating the co-
variance matrix for a calibration data set, and then
fitting these data with a specific parameterized form:ala
(regression analysis) are discussed in ref. [51, in ruaay
textbooks (e.g., refs. [13-171) and in earlier reports and
articles from this laboratory (e.g ., refs . [18-241) . How-
ever, a sclf-contained treatment of the :nathcrnatical
formalism which is specifically applicable to the present
problem is provided in this appendix for the conveni-
ence of the interested reader .

Regression analysis is a statistical procedure in which
a collection of sampling results (experimental data) are
represented by a chosen parameterized formula. The
theory offers no a priori guidance as to what form this
formula should take . This decision must be made by the
investigator on the basis of other criteria, including
experience . Once the choice of the formula is made,
estimators are developed to derive the "best" possible
values for the parameters . Since the fitted data are
uncertain (have errors), it follows that the deduced
parameters are also uncertain . There are two important
advantages to employing regression formulas in which a
linear relationship exists between the observables to be
fittPrt anA the nara-tare of tha fitting f�n~ti . . . . .nn . . . ...Thc.... ... ... ». . .. ..... 1.. .. . ... . .,. . . . . .~ . . .... .. .. . ..b ...... . . .
first and most obvious advantage is simplicity . The
second advantage, which is the more important one, is
that the well-known Gauss-Markov theorem can then
be invoked . This theorem (as amended in 1957 by
Aitken [251 to include correlated data) states that the
least-squares met hod will provide estimators for these
parameters which are both unbiased and of minimum
va -lance. Consequently, this is the method of choice for
solving this regression fitting problem .

Let c represent an array of n experimentally de-
termined detector efficiencies E ;, corresponding to n
gamma-ray energies E; . The quality of the calibration
depends strongly upon the number of the gamma-ray
lines involved (the more the better) and the degree to
which they provide a reasonably uniform coverage of
the energy range (Emirs, E...) . The uncertainties for
these data are then represented by an n x n covariance
matrix . The elements of this matrix, V;,, are con-
structed from a table of compiled partial error compo-
nents, et ;,, by means of the formula

L

V>j =

	

SEr,;teE~teE,;t

	

(i, l = 1, . . . ,n),

	

(A.1)
~=t

where SE ; j, is a typical element of SE ,, the n x n micro-
correlation matrix for the lth source of error . When a
particular error source is random, the corresponding
microcorrelation matrix is a diagonal unit matrix. How-
ever, if nonvanishing correlations exist (systematic er-
ror) this matrix cannot be diagonal . It is assumed that
there are L distinct sources of experimental error and
that no correlations exist between partial errors of dif-
ferent origin (i .e., with different 1) . The correlations of
the covariance matrix VE can be readily computed using
the formula

CEr
j
=V .;l(V

ii
Vi;)~~z (i, j

	

(A.2)

C E is called the macrocorrelation matrix .
Our objective is to fit the n-fold efficiency calibra-

tion data set with a linear expression having the general
form

m

z = g(E) = E Pkfk(E) (m<n) .

z,` pkfk(E,) (i=1,-,n) .
k=1

(A .3)

We are particularly interested in the case where g(c) =
In E and fk (E) = (In E )k -', since this corresponds to
eq . (1) . The first step in this process is to determine the
covariance matrix for z which is obtained from c by the
transformations z; = g(E; ), for (i = 1, - - - , n) . This anal-
ysis involves the well-known law of error propagation,
V_ = T+VET, (A.4)
where T is the matrix consisting of the elements TJ

S, ;(ag;/8E;) and S,j is the Kronecker delta function .
The symbol " + ", as a superscript, denotes matrix trans-
position . From eq . (A.4) and this definition of T it
follows that the elements of V_ are given by the formula

v~,=(ag;/aEr)VE~r(ag,/aE,) j=1,- . .,n) .

(A .5)

The uncertainty correlation :> for z and c are identical,
i .e ., C. = CE .

The fitting of eq . (A.3) to efficiency calibration data
involves estimating the parameter vector p (consisting
of elements pk ) so that to a good approximation

(A .6)



In equivalent matrix notation,

.-_ Ap,

	

(A.7)

where the n x m matrix A, composed of the elements
fk (E,), is known as the calibration design matrix . The
symbol " = " appearing in eqs. (A.6) and !A.7) signifies
approximate equality. Exact equality is not possible,
even for the best choice of parameters pk, since real
experimental data can never be perfectly fitted by a
regression formula involving fewer parameters than data
(m < n) . Since eq. (A.3) is linear in the Pk, A does not
depend upon p! As indicated above, an unbiased esti-
mator with minimum variance for p can be obtained by
the least-squares method. The quantity to be minimized
is the quadratic expression

X2 = ( z - Ap) + V,- '( Z - AP ),	(A.8)

L.P. Geraldo, D. L. Smith / Germanium gamma-ray detector efficience

The symbol "-1", as a superscript, denotes matrix
inversion . We remark in this context that Vf , and thus
V., must be positive definite in order to represent real
physical errors and to insure the existence of the inverse
V,7 1 [24] . It is clear that the experimental detector
efficiencies are actually calculated from several more
elementary physical quantities which are directly mea-
sured in the laboratory. Therefore, as a consequence of
the central-limit theorem, it is reasonable to assume that
these indirectly derived efficiencies are nearly normally
distributed . Thus X2 , as defined by eq . (A.8), is a
statistic which should approximately follow a chi-square
probability distribution with (n - m) degrees of free-
dom . The expected value of the X2 statistic is <X2> = (tl

- m) . The quantity X 2 (when calculated from eq . (A.8)
using the least-squares solution parameter vector p )
therefore plays a valuable role in testing the goodness of
fit . As long as the solution vector p leads to a value of
X2 < (n - m), the results of the fit are considered to be
acceptable . However, significantly larger values of X2
generally signal the presence of one or more of the
following conditions :

The scatter in the efficiency calibration data is
inconsistent with Vf , indicating that the errors have
been underestimated .

(ii) There exist one or more "wild" data points which
need to be re-examined, and possibly eliminated,
followed by reanalysis of the data .

ill

	

cvs,aure suffers from limit.ati.ons
()

	

Iuc ïtütTtciiî.aaiyroW.m ~ w . . .. . . . . . . . . . . . .~- .

in computer precision (round-off errors) .
(iv) The selected regression formula provides a poor

model for fitting the calibration data.
We have found that condition (iv) is a distinct possibil-
ity for the formula in eq . (1) if the lower energy of the
calibration range, Em;., lies considerably below 200
keV . This is a region where the full-energy-peak ef-
ficiency for many germanium detectors is observed to
vary strongly with photon energy . A reasonably broad

calibration energy range can be accommodated by eq .
(1) for a suitable choice of m, but there may be prag-
matic limitations (usually associated with condition (iii)
above) .

Minimization of X2 [eq . (A.8)] is equivalent to satis-
fying the set of conditions a(X2

)/apk = 0 (k =
1, - - - , m), commonly called the normal equations. Their
solution, p, is given by the formula

p = (A +V.- 'A) - 'A+V- ' z .

	

(A.9)

It follows from an application of error propagation that
the m x m covariance matrix VP for p is given by

VP = (A+V-'A) -' .

	

(A.10)

If the solution provided by eqs. (A .9) and (A.10)
yields an acceptable value of X2 . we are then able to
calculate the detector efficiencies E c � for an arbitrarily
selected set of energies E� (v = 1, - - - , N) falling in the
range (Emi. , Emux ), with some measure of confidence .
Furthermore, the theory provides a rational estimate of
the corresponding N x N covariance matrix V, for
these results . The efficiencies E,,,, are readily derived
from eq. (1). Determination of V, is somewhat more
difficult, but it essentially involves an exerzise in error
propagation . First, we compute the elements of the
N x N covariance matrix V., for the collection of values
z~ (v = 1, - , N) which result from an application of
eq . (A.3) . It is evident that the appropriate error propa-
gation formula is

V-, = A' Vt, A,

	

(A.11)

where the 0n x N matrix A,: is composed of the ele-
ments fk ( E,,) . We shall keep in mind the fact that
fk(E,,) = (In E,)4- ' in the present application . Accord-
ing to a discussion appearing earlier in this appendix,
the uncertainty correlations for the calculated efficien-
cies c c ,, are the same as those for the corresponding
values z c ,, . The standard deviation (error) in z, is
related to its variance by the formula a. C V = ( V__ c ~ � ) 1 /2 .
Since z, = g(E« ), it follows that the standard deviation
in E,:,, can be obtained from the expression

a,,,, = o~_ , y /abs[ ( ag/aE ) f =f�.] ,
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where abs[ #] denotes absolute value. Finally, since in
the present work g(E) = in E, we conciuue that

The elements of the covariance matrix for the
calculated efficiencies, V, can then be generated by
combining these results. The appropriate expression is

'CCA-OfCYCfCYÂOfC%1 (v, X=11 . . .,N),

	

(A .12)

where Cf, � x is an element of the correlation matrix Cf :,
which is identical to the correlation matrix C:,: associ-
ated with the covariance matrix V_ c given by eq . (A .1 I) .
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