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Abstract

A full-range orthogonality relation is developed and used to construct the in"nite-medium Green's
function for a general form of the discrete-ordinates approximation to the transport equation in plane
geometry. The Green's function is then used to de"ne a particular solution that is required in the solution of
inhomogeneous versions of the discrete-ordinates equations. ( 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

In a series of papers [1}3] concerning radiation-transport problems in plane geometry,
linear-algebra techniques were used to develop particular solutions to be used with the
spherical-harmonics method when solving problems based on an inhomogeneous version of the
equation of transfer. In this work, we use the elementary solutions of the homogeneous discrete-
ordinates equations to develop the in"nite-medium Green's function, which is then used to
construct a particular solution of a general form of the inhomogeneous discrete-ordinates
equations.

As we wish to include in this work a model [4, 5] used in studies of scattering with complete
energy redistribution, we start with the equation of transfer
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for q3 (0, q
0
) and m3[!c, c]. As we also wish to include here all of the Fourier-component

(m50) problems basic to the general azimuth-dependent transport equation [6], and since
the details are not required for what we do here, we do not specify the functions %

l
(m) and

((m) or the constants M f
l
N that appear in Eq. (1). However, we do exclude from our
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current development the conservative case which we de"ne in Section 5 of this work. To
complete our discussion of Eq. (1), we note that the inhomogeneous term Q (q, m) is considered to be
known.

To have a set of discrete-ordinates equations we use an N-point quadrature scheme with nodes
Mm

i
N and weights Mw

i
N and rewrite Eq. (1) as

m
i

d
dq

G(q, m
i
)#G(q, m

i
)"

L
+
l/0

f
l
%

l
(m

i
)

N
+
n/1

w
n
( (m

n
)%

l
(m

n
)G (q, m

n
)#Q (q, m

i
) (2)

for i"1, 2,2, N. As we do not put any restrictions on our quadrature scheme, we clearly include
the possibility of using a composite scheme where the full-range integration interval [!c, c] is
subdivided into any number of sub-intervals with an equal or unequal number of quadrature
points in each of them.

2. The elementary solutions of the discrete-ordinates equations

Our goal here is to "nd a particular solution of Eq. (2); however to do that we "rst want to
construct the in"nite-medium Green's function in terms of solutions to the homogeneous version of
Eq. (2). So, seeking exponential solutions, we substitute
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into the homogeneous version of Eq. (2) to obtain
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We consider that l N Mm
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It is clear that

)(l)"det[I!M(l)]"0 (9)

will de"ne the acceptable collection of separation constants or eigenvalues Ml
k
N. It is also clear that

once we have found these eigenvalues, the components of g(l
k
) can be found from Eq. (7), and so in

this way we can, in principle, complete the de"nition of the elementary solutions listed as Eq. (6).
We note that there is an important class of problems [6] where special properties of the de"ning

functions ((m) and %
l
(m ), along with particular values of the constants c and M f

l
N and certain

choices for the quadrature scheme, make it possible to simplify greatly the use of Eqs. (9) and (7) to
"nd the eigenvalues Ml

k
N and the required components of the vector g(l

k
) . However, since we wish

to keep our formulation general, we do not pursue that line of analysis here.
It is clear that, while the condition )(l)"0 does de"ne the spectrum, trying to "nd the

eigenvalues (or even the number of eigenvalues) from Eq. (9) is not, in general, very attractive
from a computational point of view. However, we have another way. Considering Eq. (4) for
i"1, 2,2, N, we can write that collection of equations in the form
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Now since Eq. (10) is in the standard form of an eigenvalue problem, we see that there are exactly
N eigenvalues and that they can be computed by using, for example, the driver program RG from
the EISPACK collection [7]. In addition, we note that while computing g(l

k
) from Eq. (7) and

using the components of these vectors in Eq. (6) to establish the required elementary solutions can
be e$cient for cases where ¸@N, one should consider, when this is not the case, computing the
elementary solutions directly as the eigenvectors de"ned by Eq. (10).

It is usually the case in transport calculations [6, 8] that the eigenvalue spectrum Ml
k
N is such that

the eigenvalues occur in plus}minus pairs; however, since we do not wish to impose any special
properties on the de"ning functions or assign any special values to the constants in Eq. (1), and
since we wish to allow the possibility that our discrete-ordinates solution can be based on
a composite quadrature scheme, that need not even be symmetric about the origin, then we cannot
assume that the eigenvalues occur in pairs. So to maintain as much generality as possible, we
assume only that the eigenvalue problem as de"ned by Eq. (10) yields J positive and N!J
negative, distinct and real eigenvalues and that the intersection of Ml

k
N and Mm

i
N is null.

We consider that we have found the eigenvalues Ml
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N, and so we now want to prove that these

elementary solutions /(l
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) satisfy a full-range orthogonality relation. To see this we "rst
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over i to "nd
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If we subtract Eq. (13) from a version of Eq. (13) that has j and k interchanged we "nd the classical
form
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and so, since we have assumed the eigenvalues to be distinct,
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We note that elementary linear-algebra techniques can also be used to derive this orthogonality
condition from Eq. (10).

To complete this part of our work, we note that the functions /(l
j
, m
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), as de"ned by Eqs. (4) and

(5), can be scaled by an arbitrary constant, and so we choose to normalize these solutions by taking
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3. The in5nite-medium Green:s function

Since we have developed the elementary solutions of the homogeneous version of Eq. (2), we
can use those solutions to construct the Green's function we seek. We therefore consider
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for i, a"1, 2,2,N. Here we take the &&source location'' to be x3(0, q
0
) and the &&source direction''

to be ma3Mm
i
N. We note that d (q!x) is the Dirac delta &&function'' and that d

i,a is the Kronecker
delta.

To develop the desired solution for G (q, m
k
: x, ma ) we can, as discussed for example by Case and

Zweifel [8], write one solution valid for q'x (and bounded as qPR) and another solution valid
for q(x (and bounded as qP!R); we can then match-up these two solutions with the &&jump
condition''
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for i"1, 2,2, N.
We now wish to use the elementary solutions derived in the previous section of this work to

construct the Green's function; however, we must "rst distinguish between the positive and the
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negative eigenvalues. So from this point in our work onward, we use l
j
for j"1, 2,2, J to denote

the positive eigenvalues and we use!l
j
for j"J#1, J#2,2, N to denote the negative eigen-

values. We therefore can express the desired solution as
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Substituting Eqs. (19) into Eq. (18) we "nd
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and so we multiply Eq. (20) by w
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4. The particular solution: general and special cases

Having found the Green's function, we can immediately express the desired particular solution
to Eq. (2) as
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and
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and where the A
j,a and B

j,a are de"ned by Eqs. (21). Equation (24) is our particular solution for the
general case; so we now look at two cases of interest where that result can be simpli"ed.

The "rst special case we consider is de"ned by the source term in Eq. (2) being independent of m
i
,

so that Q (x, m
i
) can be replaced by Q (x) in Eqs. (25), and so we can use Eqs. (21) and the

normalization condition given by Eq. (16) to write
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For our second special case we consider
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which is encountered [6] in radiation-transport problems when the radiation due to an incident
beam is separated from the &&di!use "eld'' in order to avoid some complications that can arise when
generalized functions are used to de"ne the boundary conditions of the problem. For this case we
"nd we can write Eqs. (25) as
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5. The conservative case

We now would like to discuss brie#y the conservative case, which we have implicitly excluded
from our analysis in the preceding sections of this work. While it is possible that the term
conservative case can be interpreted in various ways, we use the term here to mean those values
of the parameters M f

l
N, for a given ¸, which allow the separation constant l in Eq. (3) to be

unbounded. Continuing, we see from Eq. (3) that allowing l to be unbounded implies that the
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homogeneous version of Eq. (2) can be satis"ed by a solution of the form
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So now if we substitute Eq. (30) into the homogeneous version of Eq. (2) we "nd
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We now multiply Eq. (31) by w
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the index i to obtain
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Finally, we can rewrite Eq. (33), for a"0, 1,2,¸, as

[I!A]g"0, (35)

where the (¸#1)](¸#1) matrix A has elements aa, l and the vector g has elements g
l

for
l"0, 1, 2,2,¸. Clearly any combination of the parameters M f

l
N that makes the coe$cient matrix

I!A singular will yield what we have de"ned to be a conservative case.
From an analytical and computational point of view, the problem with the conservative case is

that the largest separation constant becomes in"nite, and so the exponential solution, introduced
by Eq. (3), does not always generate the two independent forms of the solution that are needed.
Rather than develop the modi"cations to our particular solution for non-conservative cases to
include all possible conservative cases, we note that these modi"cations have been developed and
used [9] for the classical azimuth-dependent model of radiative transfer [6].

6. Concluding comments

Particular solutions, of course, are not unique since to any given particular solution we can
always add arbitrary multiples of solutions of the homogeneous equation. And so in some cases
results simpler than the ones we have found here can be obtained; however, these simpler forms (see
for example the one used by Chandrasekhar [6] to solve the classical albedo problem) can have
singularities for certain values of the de"ning parameters.

While we have focused our attention in this work on "nding a particular solution for use with the
discrete-ordinates method, we have found that the methods used here can also be used to obtain
the particular solutions for the spherical-harmonics method that are reported in Refs. [1}3].
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