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Abstract

Precise elastic scattering differential cross sections have been measured for the16O+120Sn,
138Ba, 208Pb systems at sub-barrier energies. The corresponding “experimental” nuclear potentials
have been determined at interaction distances larger than the Coulomb barrier radii. These
experimental potentials have been compared with our earlier results for other systems, and with
theoretical calculations based on the double-folding and liquid-drop models. We have shown that
the nuclear potentials have a systematic behavior at the surface region. The present results for the
16O +208 Pb system are used to extend earlier studies of the dispersion relation to sub-barrier
energies. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this work, we present elastic scattering differential cross sections for the16O+ 120Sn,
138Ba, 208Pb systems at sub-barrier energies. The main purpose of the experiments
was to determine the corresponding nuclear potentials. The method was applied earlier
successfully to the16O+ 58,60,62,64Ni, 88Sr, 90,92Zr, 92Mo systems [1–3]. As discussed
in these previous works, the imaginary part of the optical potential is negligible at sub-
barrier energies due to the small number of reaction channels with relevant cross sections.
Thus, the elastic scattering data analysis, at this energy range, determines the real part
of the optical potential (nuclear potential). The slopes and strengths of the experimental
(i.e., extracted from data analyses) nuclear potentials have been determined within 5% to
10% uncertainty in the surface region,R > barrier radius' 1.4× (A1/3

1 +A1/3
2 ) fm.

The optical potential is the result of the addition of the bare and polarization potentials.
The bare potential represents the ground-state expectation value of the interaction
operator, which contains as basic input the average effective nucleon–nucleon force. The
polarization potential contains the contributions arising from nonelastic couplings. Due to
the very small reaction cross sections, the absorptive imaginary part of the polarization
potential is negligible at sub-barrier energies. We have estimated the contribution of the
polarization potential to the real part of the optical potential to be small at the energy
region at which our elastic scattering data were taken. Thus, the data extracted experimental
potentials are representative of the corresponding bare potentials, and have been compared
with those derived from double-folding and liquid-drop (proximity potential) theoretical
models.

With the present work, we have completed a set of results (this work and Refs. [1–3]) to
demonstrate a systematic behavior of the nuclear potential for systems involving the16O
as projectile. All the target nuclei are magic or semi-magic, with mass number ranging
fromA= 58 toA= 208. The systematization indicates a universal exponential shape for
the experimental potentials, as predicted by the liquid-drop model, but with a diffuseness
value smaller than that from the proximity potential [4]. A similar result was found by
Christensen and Winther (hereafter CW) [5] in another systematic study of potential
strengths, which were extracted from elastic scattering data analyses at energies above
the barrier. In that work, a diffuseness of 0.63 fm was found for the heavy-ion nuclear
potential, a value very close to that (0.62 fm) obtained from our sub-barrier data analyses.
We have detected a small difference among the potential strengths at the sub-barrier region
in comparison with those from the CW work. We have associated this difference to the
following sources: (i) variation with the energy of the polarization potential contribution
to the optical potential, (ii) variation of the bare potential with the energy, due to nonlocal
effects, and (iii) ambiguities in the extraction of potential strengths from the higher-energy
data analyses.

The polarization potential is expected to obey a dispersion relation [6] which connects
the real and imaginary parts of the optical potential. This relation has been observed for
several systems [6], including16O+ 208Pb for which the dispersion relation had already
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been studied in a large energy range [7]. We have used our present results to extend this
study to the sub-barrier region.

The paper is organized as follows: Section 2 gives the experimental details and data
analyses. In Section 3, the experimental potentials are compared with those derived from
double-folding and liquid-drop models. In Section 4 is presented a comparison between
potentials extracted from data analyses at the sub-barrier region with those from higher
energies. The dispersion relation for the16O+ 208Pb system is analysed in Section 5.
Section 6 contains a brief summary and the main conclusions.

2. Experimental results and data analysis

The measurements for the16O+ 120Sn,138Ba systems were made using the16O beam
from the São Paulo 8UD Pelletron Accelerator, Brazil, and the data for the16O+ 208Pb
system were taken at the 14UD BARC-TIFR Pelletron at Bombay, India. The detecting
system has already been described in Ref. [1]. The thickness of the120Sn,138Ba and208Pb
targets were about 70µg/cm2. Figs. 1–3 exhibit the elastic scattering cross sections for the
three systems in the energy ranges: 536 ELAB 6 55 MeV (120Sn), 546 ELAB 6 57 MeV
(138Ba) and 746 ELAB 6 78 MeV (208Pb). We have included a small contribution of
detected transfer processes in the “elastic” cross sections for the16O+ 208Pb system.

Fig. 1. Elastic scattering angular distributions for the16O+120Sn system at the bombarding energies
ELAB = 53, 54 and 55 MeV. The solid lines correspond to optical model calculations with an
energy-independent nuclear potential, with diffusenessa = 0.62 fm (see details in the text).
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Fig. 2. The same as in Fig. 1, for the16O+138Ba system atELAB = 54, 55, 56 and 57 MeV.

Fig. 3. The same as in Fig. 1, for the16O+208Pb system atELAB = 74, 75, 76, 77 and 78 MeV.
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In the optical model (hereafter OM) calculations, we have adopted a procedure similar
to that described in the analysis of the sub-barrier elastic and inelastic scattering data for
the 16O+ 58,60,62,64Ni, 88Sr, 90,92Zr, 92Mo systems [1–3]. We have assumed a Woods–
Saxon shape for the real part of the optical potential, with radius parameters equal to the
Coulomb radii, which were obtained from electron-scattering experiments [8]. We have
also used an inner imaginary potential, which takes into account the rather small internal
absorption from barrier penetration. The chosen parameters for this potential result in very
small strengths at the surface region. This procedure must be adopted in the data analysis
due to the small cross sections of peripherical reaction channels at sub-barrier energies.
No sensitivity in the cross section predictions has been detected related to depth variations
of this absorptive potential. The depth,V0, and the diffuseness,a, of the (real) nuclear
potential were searched for the best data fits. For each system and bombarding energy
we have found a family of potentials, with different depth and diffuseness parameters,
which give equivalent data fits, as illustrated in Fig. 4 for the16O+ 208Pb system at
two different energies. These potentials cross at a particular radius,RS , which is usually
referred to as the strong absorption radius in the case of higher-energy elastic scattering

Fig. 4. Determination of the nuclear potential at the sensitivity radius (RS ) for the 16O+208Pb
system, as obtained from OM analysis of the experimental data (ELAB = 74 and 78 MeV). The lines
represent potentials with different values of diffuseness and depth parameters, which give equivalent
data fits.
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data analyses. At sub-barrier energies, this radius is related to the classical turning point,
and is energy dependent. Due to the small absorption involved in this case, we refer toRS

as the sensitivity radius.
We have used the energy dependence ofRS (see Fig. 5) to characterize the shape of

the nuclear potentials at the surface region for the16O+ 120Sn, 138Ba, 208Pb systems.
For comparison purpose, we have included in Fig. 5 the earlier results [2,3] that we had
obtained for two lighter systems. As discussed in Ref. [1], the potential strength error bars
were estimated considering the variation by unity of chi-square around the minimum value.
The shape of the nuclear potential is quite close to an exponential, represented by solid
lines in Fig. 5. Table 1 gives the diffuseness values obtained for the16O+ 120Sn, 138Ba,
208Pb systems. We have included, in Table 1, the results for the16O+ 58,60,62,64Ni, 88Sr,
90,92Zr, 92Mo systems that we had obtained previously [1–3]. Within the uncertainties,
the diffuseness parameters are compatible with the average valuea = 0.62 fm. This
diffuseness value is in good agreement with theoretical double-folding calculations, as
will be discussed in the next section. Using the valuea = 0.62 fm, we are able to fit all the
angular distributions (see Figs. 1–3) with an energy-independent nuclear potential for each
system (which are represented by solid lines in Fig. 5). Table 1 gives the radii (R1 MeV)
at which the strengths of the energy-independent nuclear potentials equal 1 MeV, and
the strengths at these same radii of the corresponding folding (Vf ) and proximity (Vpr)

Fig. 5. The nuclear potential strength as a function of the sensitivity radius for the16O+58Ni,
92Zr, 120Sn, 138Ba and208Pb systems. The bombarding energies of the elastic scattering angular
distributions in which the sensitivity radii have been obtained are indicated in the figure. The solid
lines represent potentials with the same diffuseness value,a = 0.62 fm.
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Table 1
The diffuseness values of the nuclear potentials from optical-model data analyses (a) and double-
folding calculations (af ), and the radii (R1 MeV) at which the strengths of the OM energy-
independent nuclear potentials equal 1 MeV. In the calculations of theR1 MeV values,a = 0.62 fm
was assumed to be the diffuseness for the OM nuclear potentials. The strengths of the folding (Vf )
and proximity (Vpr) potentials at the radiiR1 MeV are also included in the table

Target a (fm) af (fm) R1 MeV (fm) Vf (MeV) Vpr (MeV)

58Ni 0.57± 0.03 0.57 10.06 0.81 0.62
60Ni 0.58± 0.04 0.58 10.21 0.72 0.55
62Ni 0.60± 0.05 0.58 10.28 0.72 0.54
64Ni 0.67± 0.05 0.59 10.39 0.67 0.50
88Sr 0.71± 0.05 0.58 10.93 0.71 0.54
90Zr 0.63± 0.03 0.59 10.98 0.70 0.55
92Zr 0.61± 0.05 0.61 11.11 0.66 0.48
92Mo 0.63± 0.06 0.59 10.99 0.73 0.57
120Sn 0.59± 0.07 0.65 11.73 0.76 0.44
138Ba 0.63± 0.03 0.61 12.07 0.60 0.42
208Pb 0.56± 0.04 0.63 12.94 0.75 0.49

potentials. In the case of the16O+ 120Sn system, the theoretical fit overestimates the data
for ELAB = 55 MeV andθCM ' 120◦ (see Fig. 1). Considering the complete set of our
measurements, the energy of this angular distribution is the closest to the Coulomb barrier.
The small discrepancies between data and OM predictions for this angular distribution are
due to effects of reaction channel couplings which are more relevant for energies closer to
the barrier.

3. Double-folding and proximity calculations

In this section, we present theoretical calculations with the aim of evaluating the nuclear
part of the ion–ion potential, by using the double-folding [9] and liquid-drop [4] models.

The double-folding potentials were calculated in a similar way as described in
Refs. [1–3]. The ground-state nuclear density of the16O nucleus was derived from
electron scattering experimental results [8], with the assumption that the neutron and
proton densities have the same shape as the charge density. For the208Pb nucleus, we
have used densities of Ref. [10] derived from Hartree–Fock calculations. For the neutron,
120Sn, and proton,138Ba, superfluid (and semi-magic) nuclei, we have calculated nuclear
densities using a self-consistent Dirac–Hartree–Bogoliubov model [11]. Fig. 6 presents the
proton (dashed lines), neutron (dotted lines) and total (solid lines) densities for the58Ni,
120Sn,138Ba and208Pb nuclei. For the heavier nuclei, the number of protons is significantly
smaller than the number of neutrons, and the proton densities are somewhat more internal
as compared to the corresponding neutron ones.
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Fig. 6. The ground-state proton (dashed lines), neutron (dotted lines) and total (solid lines)
densities derived from theoretical calculations for the58Ni, 120Sn, 138Ba and208Pb nuclei. The
58Ni and 208Pb densities were obtained from Refs. [2,10], respectively. The densities for the
neutron (120Sn) and proton (138Ba ) superfluid nuclei were calculated using a self-consistent
Dirac–Hartree–Bogoliubov model [11].

We have calculated the folding potential contributions of the proton and neutron target
densities according to the following expressions:

Vp(R)=
∫
ρo( Er1) vo

( ER− Er1+ Er2)ρp( Er2)dEr1 dEr2, (1)

Vn(R)=
∫
ρo( Er1) vo

( ER− Er1+ Er2)ρn( Er2)dEr1 dEr2, (2)

Vf(R)= Vp(R)+ Vn(R)=
∫
ρo( Er1) vo

( ER − Er1+ Er2)ρt( Er2)dEr1 dEr2, (3)

whereρo is the total16O density;ρp, ρn andρt are the proton, neutron and total target
densities, respectively;Vp, Vn and Vf are the corresponding proton, neutron and total
folding potentials. These folding potentials at the surface region are shown in Fig. 7. As
expected, due to the neutron and proton density features, the heavier the target nucleus
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Fig. 7. Proton (dashed lines), neutron (dotted lines) and total (solid lines) double-folding potentials
at the surface region for the16O+58Ni, 120Sn,138Ba and208Pb systems (see text for details).

the greater is the neutron potential contribution in comparison to the corresponding proton
one.

The predictions of the folding calculations for the potential strengths are smaller than
the corresponding experimental values (see Table 1). We have previously [1–3] discussed
this discrepancy for the16O+ 58,60,62,64Ni, 88Sr, 90,92Zr, 92Mo systems. These studies
have indicated that the discrepancy is mainly connected to the16O nuclear density model
adopted in the folding calculations [3].

Table 1 gives the “diffuseness parameters” obtained from the slopes of the folding
potentials. The folding diffuseness values are similar for all systems and close to the
average “experimental” value (0.62 fm). This result indicates that the heavy-ion nuclear
potentials have a “universal” shape in the surface region rather independent of the “size
of the system”. This behavior should be expected, considering that the features of the
potential in the surface interaction region are dependent on the nuclear densities in the
nucleus surface region, and that heavy ions have very similar nuclear density diffuseness
values, as detected for charge distributions from electron scattering experiments [8].
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A theoretical interaction, which predicts a universal shape for the heavy-ion nuclear
potentials, has been proposed [4] within the framework of the liquid-drop model. This
interaction is based on the Proximity Theorem, which relates the force between two
nuclei to the interaction between two flat surfaces made of semi-infinite nuclear matter.
This theorem leads [4] to an expression for the potential which is a product of a simple
geometrical factor and a universal function of the separation (s =R−RC1−RC2) between
the surfaces of the nuclei

V (R)= 4πγ SRαΦ(s), (4)

with γ = 0.9517(1− 1.7826I2) MeV/fm2, I = N−Z
A

andα ' 1 fm. The mean curvature
of the system is obtained from

SR = RC1RC2

RC1+RC2
. (5)

RC1 andRC2 are the central radii of both nuclei, which are related to the effective sharp
radii byRCi 'Reff,i (1−α2/R2

eff,i). The formula indicated [4] for the effective sharp radius
is

Reff,i = 1.28A1/3
i − 0.76+ 0.8A−1/3

i . (6)

The universal function was calculated [4] using the nuclear Thomas–Fermi model with
Seyler–Blanchard phenomenological nucleon–nucleon interaction [12–14]

Φ(s 6 1.2511α)'−1

2

( s
α
− 2.54

)2− 0.0852
( s
α
− 2.54

)3
, (7)

Φ(s > 1.2511α)'−3.437 exp
(
− s

0.75α

)
. (8)

The proximity potential predicts an exponential shape at the surface region (Eq. (8)),
but with a diffuseness parameter (0.75 fm) greater than the value (0.62 fm) that we have
obtained from data analyses. The radiiR1 MeV (see Table 1) at which the experimental
potential strengths equal 1 MeV, correspond to separation distances about 3 fm. In this
region, the strengths of the proximity potentials are about half of the corresponding
experimental values (see Table 1). In the same region, similar differences among
experimental results and theoretical predictions, concerning both diffuseness and potential
strength values, had already been shown in the original paper in which the proximity
potential was proposed (see Fig. 9 of Ref. [4]). We believe that such differences are due to
the model adopted for the nuclear densities in the derivation of the proximity potential.

4. Systematization of the nuclear potential

The main features of the proximity potential are the universal shape and the dependence
of the strengths with the mean curvature (SR) of the system. These features are also
included in the empirical potential (Eq. (9)) proposed by Christensen and Winther in the
seventies [5]. In that work, the radii involved in thes and SR calculations were obtained
from expression (10). The valuesV0 = 50 MeV/fm anda = 0.63 fm were obtained from
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the fit of “experimental” potential strengths, extracted from elastic scattering data analyses
for several systems at energies above the Coulomb barrier:

V (R)=−V0SRe−s/a, (9)

RCi = 1.233A1/3
i − 0.978A−1/3

i . (10)

We have selected potential strength “data” from the CW systematization [5] for systems
that involve the16O nucleus. Fig. 8 (bottom) presents theV/SR values as a function of
the nucleus surface separation distance. The solid lines in the figure represent the CW
empirical potential. Our sub-barrier strength “data” are also presented in Fig. 8 (top).
The sub-barrier strength “data” are systematically greater than the CW empirical potential.

Fig. 8. The “normalized” potential strengths (V/SR) from sub-barrier (top) and above-barrier (bottom)
elastic scattering data analyses as a function of the nucleus surface separation distance, s, for systems
that involve the16O nucleus. The open triangles (bottom) represent potential strengths deduced from
earlier [15,16] OM analyses of the angular distributions presented in Fig. 9. The Christensen and
Winther’s (CW) empirical potential [5] is represented by solid lines. The dashed lines represent a fit
of the sub-barrier potential strengths by Eq. (9).
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The dashed lines in Fig. 8 represent a fit of the sub-barrier strength “data” to expression (9),
which resulted the valuesa = 0.61 fm andV0= 75.5 MeV/fm.

Fig. 8 (top) shows that the difference between sub-barrier strength “data” and the CW
empirical potential is slightly dependent on thes value. The average difference between
the complete set of sub-barrier strength “data” and the CW empirical potential (solid lines
in Fig. 8) is 18%. We point out that also the higher-energy strength “data” for systems
with 16O (Fig. 8, bottom) are, in average, slightly greater than the CW empirical potential.
We estimate that the average difference among sub and above-barrier strength “data” is
about 15%. Thus, the agreement between both analyses is good, and we have associated
this small difference to three sources: (i) variation with the energy of the polarization
potential contribution to the optical potential, (ii) variation with the energy of the bare
potential, due to nonlocal effects (this subject is discussed in the next section), and
(iii) ambiguities in the determination of the optical potential from elastic scattering data
fits at energies above the barrier.

We have already extensively discussed [1–3] the contribution of the polarization
potential to the nuclear potential strengths that we have obtained from sub-barrier data
analysis for the16O+ 58,60,62,64Ni, 88Sr, 90,92Zr, 92Mo systems. Extensive and rather
complete coupled channel (hereafter CC) calculations have indicated that the strengths
of the polarization potential, at the energy range at which our sub-barrier data have been
obtained, are about 17% of the bare potential strengths [3,17], which corresponds to 14%
of the optical (polarization+ bare) potential. The contribution of the coupling for the
16O 3− state (which has a very large fonon amplitude) is about 50% of the full polarization
potential (which corresponds to all coupled channels). Nevertheless, recent comparison
[18] between the predicted fusion cross sections of this full CC analysis and precise
fusion data indicates that such CC calculations overpredict the data at energies below the
barrier (see Fig. 3 of Ref. [18]). Thus, we believe that the couplings are not so strong as
considered in such CC calculations, and the polarization potential strength should be even
less significant in comparison to the optical potential. Based on these studies, we estimate
the contribution of the polarization potential to the experimental potentials extracted from
sub-barrier data to be less than 10%. In this sense, we consider the experimental potentials
at sub-barrier energies to be representative of the corresponding bare potentials.

In the sub-barrier elastic scattering data analysis, we have assumed the strengths of
the imaginary part of the optical potential to be very small in the surface region. As we
have already discussed, this procedure is consistent with the very small absorption in
this energy region. At higher energies, it is very difficult to set the imaginary part of
the optical potential based on physical grounds. Thus, the corresponding OM elastic
scattering data analyses usually involve parametrized shapes (mostly the Woods–Saxon
one) for the imaginary part of the potential, and this procedure results in ambiguities in
the determination of the strengths of the real part of the optical potential. As an example,
we have taken elastic scattering data for the16O+ 208Pb system [15,16] in three energies,
which are included in the CW potential strength systematization (open triangles in Fig. 8,
bottom). We have fitted the angular distributions (solid lines in Fig. 9) assuming the
sub-barrier energy-independent nuclear potential for the real part of the optical potential.
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Fig. 9. Elastic scattering angular distributions for the16O+208Pb system at the energies
ELAB = 104, 129.5 and 192 MeV (the data were extracted from Refs. [15,16]). The solid lines
represent data fits, in which the sub-barrier energy-independent nuclear potential was assumed for
the real part of the optical potential. In the data fits, only the diffuseness and depth parameters of the
Woods–Saxon shape imaginary potential were allowed to vary.

In these fits, only the diffuseness (ai) and depth (W0) of a Woods–Saxon shape (with
ri0 = 1.2 fm) imaginary potential were allowed to vary. Table 2 contains the resulting
ai andW0 values. Table 2 also presents a comparison among the potential strengths at
the strong absorption radii of the present sub-barrier energy-independent potential (VSB)
with those (VCW) obtained from the earlier OM data fits of Refs. [15,16] (which were
used in the CW systematization [5]). There are significant differences between these
sets of potential strengths, but the elastic scattering data fits obtained from both sets are
equivalent. Therefore, the potential strengths extracted from the data at energies above the
barrier are not so well determined as in the sub-barrier case. The degree of ambiguity
in the determination of the potential depends on the system and on the energy of the
elastic scattering angular distribution. In general, due to the low absorption, lighter systems
present less ambiguities in comparison to heavy systems. At energies much higher than the
Coulomb barrier the data extracted optical potential is well determined in an interaction
region different from that probed at low energies [19]. For instance, data analysis for
heavy-ion systems at intermediate energies (406ELAB/A6 200 MeV/nucleon) provides
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Table 2
The table presents the diffuseness (ai ) and depth (W0) parameters of the imaginary part of the OM
potential, obtained from the fit of elastic scattering angular distributions for the16O+208Pb system
atELAB = 104, 129.5 and 192 MeV. In these fits, the energy-independent (VSB) nuclear potential,
obtained from the sub-barrier data analyses, was assumed for the real part of the optical potential.
Also the strong absorption radii (RSA), the corresponding potential strengths from the Christensen
and Winther’s systematization (VCW), and the sub-barrier potential (VSB) atRSA are included in the
table

ELAB (MeV) ai (fm) W0 (MeV) RSA (fm) VCW (MeV) VSB (MeV)

104.0 0.316 951 12.672 1.088 1.541
129.5 0.523 102 12.520 1.557 1.968
192.0 0.443 176 12.493 1.324 2.056

information of the potential at radii farther inside the barrier radius (see Refs. [20–23]).
We stress that the present sub-barrier data analysis determines the real part of the optical
potential without ambiguity in the surface region.

5. The dispersion relation

Elastic scattering data analyses for some heavy-ion systems have resulted in a rapid and
localized variation of the optical potential with the energy, known as “threshold anomaly”
[6]. This variation has been observed in the vicinity of the Coulomb barrier, and has been
associated to the contribution of the polarization to the optical potential [6]. The dispersion
relation, Eq. (11) [6], describes the connection between the energy dependence of the real
and imaginary parts of the polarization potential

1V (E)= P
π

∞∫
−∞

W(E′)
E′ −E dE′. (11)

The16O+ 208Pb system is included among the systems for which the threshold anomaly
was first observed [7]. The dispersion relation was verified for this system from the
Coulomb barrier to higher energies. We have used the present results to extend these studies
to the sub-barrier energy region. In an earlier work [3], we have made a similar study for
the lighter systems. Fig. 10 presents the data extracted OM potential strengths from Ref. [7]
(closed circles and open triangles) and the present sub-barrier results (open circles). The
solid lines in the figure represent the trend suggested in Ref. [7], which is compatible with
the dispersion relation.

In Section 4, we have discussed the ambiguity in the determination of potential strengths
from elastic scattering data analyses at energies above the Coulomb barrier. This sort
of ambiguities is illustrated in Fig. 10. The open triangles in this figure correspond to
earlier OM data analyses (from Ref. [7]) for the angular distributions presented in Fig. 9.
The closed triangles in Fig. 10 represent the results of our OM analyses for the same
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Fig. 10. Potential strength values obtained from earlier [7] OM data analyses of elastic scattering
angular distributions at energies above the barrier (closed circles and open triangles). The open
circles represent the energy-independent nuclear potential that we have obtained from sub-barrier
data analyses. The open triangles correspond to earlier [7] data analyses of the angular distributions
presented in Fig. 9. The closed triangles correspond to present OM analyses of the same angular
distributions (see text for details). The lines represent behaviors compatible with the dispersion
relation, with (dashed line) and without (solid line) the additional effect due to the nonlocal nature of
the bare potential.

angular distributions, in which the “sub-barrier” energy-independent nuclear potential was
used for the real part of the optical potential. The differences between closed and open
triangles provides an estimation about the “error bars” that the potential strengths may
have. Thus, the trend adopted for the optical potential suggested based on the “data”
behavior is itself also ambiguous. The ambiguity in the determination of potential strengths
from OM elastic scattering data analysis at energies above the barrier could be reduced by
using a realistic (based on fundamental physical grounds) imaginary part for the optical
potential. A model for a realistic polarization potential should be consistent with the
dispersion relation.

There is an additional energy dependence of the optical potential that arises from the
nonlocal nature of the bare nuclear interaction [6]. This energy dependence has been
neglected in most studies of the dispersion relation. The nonlocality of the bare interaction
has been studied (for instance, see Refs. [24] to [30]) based on the dependence of the
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nucleon–nucleon interaction with the nuclear matter density and on intrinsically quantum
effects connected to exchange of nucleons between the two nuclei. The difference between
solid and dashed lines in Fig. 10 (top) represents the additional variation of the optical
potential due to the nonlocality of the bare potential (the calculations have been based on
the model proposed in Refs. [28–30]). As demonstrated in Ref. [3], for energies close to
the Coulomb barrier the effect of the nonlocality on the bare potential is negligible (see
also Fig. 10), and therefore it does not need be taken into account in the determination of
potential strengths from sub-barrier data analysis.

6. Summary and conclusions

In summary, we have performed optical model analyses of elastic scattering angular
distributions for the16O+ 120Sn, 138Ba, 208Pb systems at sub-barrier energies. The sub-
barrier data analyses determine the optical potential without the usual ambiguities found
in elastic scattering data analyses at energies above the barrier. The present sub-barrier
data are well reproduced with energy-independent nuclear potentials, which are real and
have an exponential shape in the surface region. Similar results had been obtained by
us earlier for the16O+ 58,60,62,64Ni, 88Sr, 90,92Zr, 92Mo systems. The diffuseness of all
these experimental potentials are compatible, within the uncertainties, with the average
valuea = 0.62 fm. This result is in agreement with theoretical double-folding calculations,
and with the Christensen and Winther’s systematization of real potential strengths which
were extracted from higher energy OM data analyses. Our sub-barrier results indicate a
systematic behavior for the nuclear potential, which contains the main features predicted
by the liquid-drop model. By combining exchange nonlocal effects and the liquid-drop
model [31], it is possible to describe the heavy-ion nuclear potential in a much larger
energy range than that considered in this work.
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