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Abstract

The procedure to determine the statistical correlations between g-ray intensities is described here, as well as that

required to take these correlations into account. The advantages of using branching-ratios and feeding fractions instead

of g-ray intensities in the g-ray standards are discussed.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The statistical correlations between g-ray intensities

are required in detector efficiency calibration when using

multi-g-ray radioactive sources for determining correctly

standard deviations and performing statistical tests.

The g-ray intensities of a multi-g-ray radioactive

source are correlated when they are determined simul-

taneously in an experiment where the detector efficiency

is given by an analytical function fitted to experimental

efficiency values. It requires many similar experimental

studies to observe these correlations, consequently they

are seldom evident. Nevertheless, the nuclide 152Eu

provides an example shown in Section 2.

The procedure to account for the statistical correla-

tions in the efficiency calibration is described in Section

3 and the determination of the correlations between the
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g-ray intensities due to the efficiency calibration is shown

in Section 4. This approach provides a solution for the

problem when there is no quest for the highest attainable

precision and should be followed providing an appro-

priate framework for further data analysis. However, it

is not the best solution because it leaves out the

constraints imposed by the physical nature of the

problem, the nuclear decay.

When developing g-ray standards for detector effi-

ciency calibration, the requirements of precision and

consistency are higher, because all uncertainties will

propagate in subsequent measurements. Overall consis-

tency requires proper account of the decay scheme

constraints, which leads to a reduction in the number of

parameters and a corresponding increase in the number

of degrees of freedom, resulting in better precision. The

simplest approach is to fit the branching-ratios and

feeding fractions to the observed peak areas in the g-ray

spectrum, as will be shown in Section 5. Besides, by

obeying all decay-scheme constraints, branching-ratios

and feeding fractions form the minimal data set that

describes a decay scheme. The central problem of
d.
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calibrating the efficiency of a detector without any

dependency on unknown statistical correlations is briefly

presented in Section 6.
2. c-Ray intensities correlations in 152Eu

Sources of 152Eu are often used in efficiency calibra-

tion because the emitted g-rays cover a large energy

range. In an effort to improve the precision of the decay

data, many different laboratories determined the g-ray

intensities in the scope of an IAEA Coordinated

Research Project (Bambynek et al., 1991). Fig. 1

presents scatter-plots of values for selected pairs of g-
ray transition intensities obtained by the different

laboratories. From the plots it is possible to infer the

existence of correlations and even estimate the correla-

tion coefficient of the data set but, since the experiments

were not planned to determine the correlations, it is

impossible to determine exactly the correlation between

the mean-values of the intensities, which requires a least-

squares method (LSM) procedure.
3. Efficiency calibration taking into account the

covariances

Detector efficiency calibration is almost invariably

performed by LSM. In practice, a matrix formulation is

required to deal with the covariances (Kendall et al.,

1979; Eadie et al., 1971). In the following, we will

summarize the formulas for the linear model, without

loss of generality because the covariances enter into the

calculations in the same way in the non-linear case. The

general case of non-linear efficiency calibration is

described elsewhere (IAEA, 2004; Venturini and Vanin,

1993).
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Fig. 1. Each plotted point corresponds to the emission probabilitie

energies label the axis, observed in each one of the 31 experiments per

The values plotted are the differences to the mean values, norma

coefficient of the data set, r is presented for each plot.
3.1. The procedure

Consider a set of experimental values for the

efficiencies determined from observed peak-areas Aj ;
each one corresponding to a g-ray of energy Ej with

intensity Ij photons per decay,

ej ¼
Aj

N � Ij

; ð1Þ

where N is a normalization constant. It is assumed that

Aj is the peak-area corrected for all secondary detection

effects, including pile-up and sum (Debertin and

Helmer, 1988; Mann et al., 1988; Knoll, 1989). The

absolute efficiency is obtained with the substitution

N ¼ O7sO;

where O is the number of decays and sO its standard

deviation.

In most experiments, the three quantities in the right-

hand side of Eq. (1) are statistically independent and the

peak-areas are uncorrelated. Therefore, the covariance

between two experimental values is given by

covðej ; ekÞ
ejek

¼
sAj

Aj

� �2

þ
sIj

Ij

� �2
" #

djk

þ
sO
O

� �2

þ
covðIj ; IkÞ

IjIk

; ð2Þ

where djk is the Kronecker delta and the term involving

O exists only for absolute calibrations.

A linear relationship between the efficiency para-

meters and the experimental data can be given by the

matrix expression

~yy ¼ X �~aa0 þ~ee; ð3Þ

where ~yy is the data vector, ~aat
0 ¼ ða01; a02;y; a0mÞ is the

vector of parameters to be estimated, and the design

matrix X is defined by Xin ¼ qyi=qan: The quantity ei is
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s of the pair of g-ray transitions following 152Eu decay whose

formed in the scope of the IAEA CRP (Bambynek et al., 1991)

lized by their respective standard deviations. The correlation
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Fig. 2. Decay scheme used in the example of Sections 4 and 5.
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the unknown experimental error of yi with /eiS ¼ 0;
/e2

i S ¼ s2
i ; and /eiejS ¼ covðyi; yjÞ: In order to make

the discussion less abstract, let us assume that the

efficiency is well represented by the function

ln e ¼
Xm
n¼1

an ln
E

Eb

� �n�1

; ð4Þ

where the reference energy Eb is conveniently chosen

around the middle of the energy range; hence yi ¼ ln ei;
and the design matrix is defined through Xin ¼
ðlnðEi=EbÞÞ

n�1:
The LSM estimate of ~aa0; #~aa; is obtained by minimizing

Qð~aaÞ ¼ ð~yy � X �~aaÞt � V�1 � ð~yy � X �~aaÞ ð5Þ

with respect to all an: In this case, allowing for the

logarithmic transformation of the efficiency,

Vjk ¼ Vln ej ln ek
¼

covðej ; ekÞ
ejek

ð6Þ

and, therefore, each element of V is given by the right-

hand side of Eq. (2).

The solution of Eq. (5) is

#~aa ¼ ðXt � V�1 � XÞ�1 � Xt � V�1 �~yy ð7Þ

and the covariance matrix of the fitted parameters is

given by

Va ¼ ðXt � V�1 � XÞ�1: ð8Þ

3.2. Correlation in interpolation

The efficiency for each g-ray can be calculated from

Formula (4) using the appropriate energy with the fitted

parameters, giving a set of values ei whose covariance

matrix can be calculated from the covariance matrix of

the fitted parameters (Eq. (8)). The interpolated effi-

ciency values for different energies are correlated, and

cause the correlation between different g-ray intensities

as detailed in the next section. The propagation of the

covariances from the efficiency calibration coefficients to

the efficiencies at different energies can be condensed

into a matrix formula,

Ve ¼ DVaD
t; ð9Þ

where Va is the covariance matrix of the fitted efficiency

parameters (Eq. (8)) and D is the matrix of derivatives

with respect to the parameters that, considering the

efficiency model given in Eq. (4), results in

Djn ¼
qeðEjÞ
qan

����
#~aa

¼ eðEjÞ ln
Ej

Eb

� �	 
n�1

: ð10Þ
4. Determination of covariances between c-ray intensities

in spectroscopy measurements

This section outlines the calculation of the g-ray

intensity covariances in a usual g-ray spectroscopy

experiment. Even if the application example developed

here is simplified, it contains all the required elements

for the calculation of the covariance matrix in real cases.

We made the discussion more concrete by choosing a

simple decay scheme. However, the generalization is

straightforward.

4.1. Data description

Consider the decay scheme of Fig. 2 and assume that

the g-rays gi were observed with a detector whose

efficiency was calibrated using Eq. (4). For each gi; the

observed peak-area is C0
i7s0i that, after correcting for

sum, pile-up, and any other secondary detection effects,

changes to Ci7si: Although the corrections introduce

some statistical dependencies between the different

values, the resulting covariances can normally be

neglected. Therefore, the covariance matrix of the net

peak areas can be well approximated by the diagonal

matrix

VC ¼

s2
1

& 0

s2
i

0 &

s2
m

������������

������������
; ð11Þ

where m is the number of g-ray transitions. However, if

there are unresolved doublets, the covariances between

the corresponding peak areas must not be neglected and

shall be placed in the appropriate rows and columns

of VC :
The g-ray intensities are calculated from Expression

(1), where now the normalization constant is interpreted
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differently and depends on the peak-areas, the efficiency,

and possibly on a complimentary set of parameters t
(which includes the ground-state beta feeding fraction,

internal conversion coefficients, etc.),

Ii ¼
Ci

NðC; e; tÞei

: ð12Þ

For the sake of brevity, we will neglect the conversion

coefficients and assume no beta feeding to the ground

state.

4.2. Absolute g-ray intensities

Considering that the sum of intensities of the

transitions to the ground state is 1, the normalization

factor for the decay scheme of Fig. 2 is determined as

NðC; eÞ ¼
C1

e1
þ

C3

e3
þ

C4

e4
: ð13Þ

Note that the determination of the emission intensities

along with their covariances is a problem of change of

variables, with m functions (given by Eq. (12)) of 2m

random variables: m net peak-areas and m efficiencies.

However, since the observed peak-areas and the inter-

polated efficiencies are statistically independent, the

matrix of total variances of the intensities can be given

by the sum of the variance matrices corresponding to

these two primary data sets, avoiding the use of larger

matrices to accommodate all 2m random variables at

once,

VI ¼ FVCF
t þGVeG

t; ð14Þ

where F and G are defined through

Fin ¼
qIi

qCn
and Gin ¼

qIi

qen
; ð15Þ

respectively. Care must be taken when calculating these

derivatives in order to capture the correct dependency

on the random variables.

The result that reduces the experimental data, i.e., the

set of values that summarizes and conveys all the

statistical information obtained in the experiment in a

way that no other data will be required for the

calculation of any statistical quantity related to it, is

the set of intensities Ii and their covariance matrix, VI :

4.3. Relative g-ray intensities

Sometimes, however, only relative intensities are

provided, either because the decay scheme is not

sufficiently well known to find a suitable normalization

factor or because they are much more precise than the

absolute ones. In this case, the covariances between the

normalization factor and the relative intensities must be

provided to allow further statistical calculations, like

normalizing the decay scheme or changing the reference

line for intensities.
The normalization factor for relative intensities in this

case is

NrðC; eÞ ¼
Cr

Irer

; ð16Þ

where r identifies the reference transition.

Since the reference value has no error, the dimension

of the covariance matrix of the relative transition

intensities is m � 1; m being the number of g-ray

transitions. However, with this smaller matrix it will

be impossible to retrieve the correct uncertainties in the

relative photon fluxes fi ¼ Ci=ei; which are in number

of m: The best way to complete the set of variables is to

add the normalization factor Nr to the set of relative

intensities and re-scale the normalization factor to the

reference value Ir: This re-scaling is obtained by defining

a constant S which equals the numeric value of Nr but

which is not a random variable as Nr is; hence, the

additional random variable to be considered when

constituting the covariance matrix of the relative

intensities is

Iref ¼
IrNr

S
; ð17Þ

where we emphasize that S is not a random variable but

has the value of the calculated normalization factor,

much like Ir which is an arbitrary constant and not a

random variable. Thus, Iref is an exquisite variable with

the value of the (arbitrary) reference intensity and the

statistical behavior of the (random) normalization

factor.

Note that, when restoring the original values for the

relative photon fluxes, all the covariance terms must be

taken into account. For example, when recalculating

f1 ¼ C1=e1 ¼ NrIr1pIref Ir1; its relative variance is given

by

sf1

f1

� �2

¼
sIref

Iref

� �2

þ
sr1

Ir1

� �2

þ2
covðIr1; Iref Þ

Ir1Iref

:

5. Fitting the decay-scheme parameters

In the following, we will focus on the decay scheme

shown in Fig. 2 to explain the method. All the formulas

in this section, relating g-ray intensities to the decay

parameters with or without sum correction, can be

obtained for any decay scheme in compact formulation

(Andreev et al., 1972; Morel et al., 1985), which also

takes into account the internal conversion coefficients

(ICC), very important for the precise evaluation of a

decay scheme. However, we will not include the ICCs in

the formulas below because they just clutter the

formulas, adding nothing new to the understanding of

the problem.
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5.1. Imposing the constraints

To take into account the decay-scheme constraints,

Eq. (12) must be changed so that it expresses appro-

priately these constraints. Note that the intensities of the

four g-rays represented in Fig. 2 are not independent and

can be written as functions of only two decay

parameters, which we will call f3; the beta feeding

fraction to level 3, and k3�1; the branching-ratio from

level 3 to 1:

I1 ¼ f3k3�1;

I2 ¼ f3k3�1;

I3 ¼ f2 ¼ 1 � f3;

I4 ¼ f3k3�0 ¼ f3ð1 � k3�1Þ: ð18Þ

Substituting the formulas above in Formula (12), we

find a set of four relations between f3, k3�1; and N ; given

by the four experimental peak-areas Cj ; which allows the

determination of these three parameters and their

covariances by the LSM.

Note that the g-ray intensities can be recalculated

from the beta feeding fractions and branching-ratios by

the same set of Eq. (18) used to impose the constraints;

their variance matrix can be obtained by a procedure

similar to that adopted for the efficiencies in Section 3.1.

5.2. Correcting for sum

In a real experiment, sum correction is most likely to

be performed, either because a close geometry is used

giving rise to an important correction, or because the

precision required is high. In the example, the observed

peak area for transition g1 is

A1 ¼ Ne1 f3k3�1 � f3k3�1etotalðg2Þ
� �

;

where etotal is the total efficiency. It can be pointed out

that this expression, although more complicated than

that given by Eq. (18), still depends on the same

parameters, which can still be fit by the LSM. Moreover,

if written in terms of g-ray intensities, these expressions

tend to be more complicated, because the branching-

ratios are functions of the transition intensities.

5.3. Evaluating branching-ratios measured in decays from

different parents

The intensities of g-ray transitions are very sensitive to

the specific nuclear reaction; therefore the branching-

ratio measurement precision varies strongly with the

parent nuclide. Averaging the branching-ratios from two

different decays by taking into account the covariances

must be accomplished by the LSM with the appro-

priated data vector and design matrix. Let us call ~yy and~zz
the data vectors containing the branching-ratios mea-

sured in the decays from nuclides Y and Z; respectively.
Most likely, the dimensions of the data vectors will be

different, because the levels fed by each of the two

parents are different. Let us call ~AA the vector of all

branching-ratios observed in both decays. The model

equations can be cast in a format similar to Eq. (3),

~yy

~zz

 !
¼ X~kk0 þ~ee; ð19Þ

where just one element of each row of X is 1, that in the

column corresponding to the index of the branching-

ratio in ~kk0; all the other elements in the row being null.

The variance matrix of the data vector is also constituted

of blocks,

Vyz ¼
Vy 0

0 Vz

 !
: ð20Þ

The averages and the covariance matrix are calculated

by formulas (7) and (8), using the X and Vyz given in

Eqs. (19) and (20).
6. Discussion

All the elements for the correct determination and use

of the statistical correlations between g-ray intensities

determined in spectroscopy measurements are well

known and well studied. However, their integration is

cumbersome and requires proper bookkeeping. Unfor-

tunately, due to the nature of the problem, there is no

simpler solution than that presented here.

Since the g-ray intensity covariances are required to

determine the covariances between the efficiencies,

which in turn are required to determine the g-ray

intensity covariances, there is a circular dependency in

these calculations that must be broken. One possibility is

to calibrate the detector efficiency using activity-

calibrated monochromatic sources, which is a very

difficult task because it requires many activity-calibrated

standard sources simultaneously. Other possibility con-

sists in calculating the efficiency by simulation guided by

a few measurements of selected activity-calibrated

standard sources (Hardy et al., 2002; Helmer et al.,

2003).

When developing g-ray standards for detector cali-

bration, it is possible, with some additional effort, to

determine the branching-ratios and feeding fractions

instead of g-ray intensities, which has many advantages:

they form the minimal data set that specifies completely

a decay scheme; they embody the constraints arising

from the nature of the physical problem; their determi-

nation requires the complete specification of the decay

properties, including conversion coefficients, leaving no

room for ambiguities in the application of the standard;

they are the required quantities to correct for summing,

necessary in almost any real-life efficiency calibration.
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Finally, branching-ratios can be easily averaged when

observed in the decay of different isobars and isomers,

improving the accuracy of the decay data.
7. Conclusion

Section 4 presented the procedure to determine the

covariances between g-ray intensities in a usual g-ray

spectroscopy measurement. Unless the covariances

between the standard emission probabilities are well

determined, this procedure should be followed assuming

that these covariances are negligible. This is a good

approximation because most of the statistical depen-

dency between the intensities arises from the normal-

ization and the common efficiency calibration curve,

appropriately accounted for by Eq. (14). The procedure

outlined in Section 5 is proposed to develop better decay

data standards and should not be applied in general.
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