Electrochemical studies of 254SMO stainless steel in comparison with 316L stainless steel and Hastelloy C276 in phosphoric acid media in absence and presence of chloride ions

L. DE MICHELI A. H. P. ANDRADE C. A. BARBOSA S. M. L. AGOSTINHO The electrochemical behaviour of 254SMO stainless steel in phosphoric acid media, both with and without chloride ions, has been investigated and compared with that of 316L stainless steel and Hastelloy alloy C276. Open circuit potential measurements, potentiodynamic polarisation curves, and SEM analyses were used in the study. The 254SMO alloy displayed better corrosion resistance that 316L, being passive in 3M H₃PO₄ solutions for $[Cl^-] \leq 1M$ and in 6M H₃PO₄ solutions for $[Cl^-] \leq 0.1M$. Its performance was comparable with that of Hastelloy C276, except in 6M H₃PO₄ solutions containing 1M NaCl, where 254SMO exhibited an active region over the entire range of temperatures studied (26–70°C) while Hastelloy C276 remained passive under these circumstances.

Dr De Micheli and Dr Agostinho are in the Institute of Chemistry of the University of São Paulo (IQUSP), Av. Prof. Lineu Prestes, 748-B3i, São Paulo, SP, Brazil 05508-900, Dr Andrade is in the Institute of Energetic and Nuclear Research, São Paulo, Brazil, and Eng Barbosa is with Villares Metals SA. Manuscript received 29 October 1996; accepted 1 December 1998.

© 1999 IoM Communications Ltd.

INTRODUCTION

Stainless steels are normally resistant to attack in phosphoric acid media. However, the presence of impurities such as chloride and fluoride ions promotes the corrosion of these materials.^{1,2}

Avesta Sheffield 254SMO stainless steel (UNS S31254) was developed to provide high corrosion resistance in chloride media where common stainless steels such as 304, 316, and 316L suffer pitting corrosion. The 254SMO alloy has been available since 1977, and there have been a number of studies concerning its resistance to corrosion in different media.^{3–9}

The aim of the present work was to study the electrochemical behaviour of 254SMO alloy in phosphoric acid media, in the absence and presence of chloride ions, and to compare it with that of 316L stainless steel (UNS S31603) and Hastelloy C276 (UNS NI 0276). The 316L stainless steel and Hastelloy C276 were chosen for this comparative study because a recent study⁵ has shown that, in hydrochloric acid media, 254SMO displays better corrosion resistance than 316L and almost the same behaviour as Hastelloy C276. Open circuit potential measurements, potentiodynamic polarisation curves, and scanning electron microscopy were used in the study.

EXPERIMENTAL

Table 1 presents the chemical compositions of the materials used, which were cut as disc electrodes with areas of 1.02 cm^2 (254SMO) and 0.48 cm^2 (316L and Hastelloy C276). These electrodes were polished with progressively less coarse emery papers (of 320, 400, and 600 grit), rinsed first with water then with ethanol, and air dried. The

solutions were prepared from analytical grade reagents and doubly distilled water. The experiments were conducted at room temperature (26° C) and at 45, 53, and 70° C. A conventional electrolytic cell was used with a saturated calomel reference electrode (SCE) and a platinum foil counter electrode. Potential measurements were made using a digital voltmeter while a PAR model 273A potentiostat coupled to a 386 microcomputer was used for the determination of polarisation curves. Microscopic analysis was undertaken with a Philips XL-30 scanning electron microscope (SEM).

RESULTS AND DISCUSSION

Values of the corrosion potential $E_{\rm corr}$ for the alloys in each solution were established from open circuit potential measurements; $E_{\rm corr}$ was considered to have been attained when the potential drift became less than 1 mV in 10 min. The $E_{\rm corr}$ values determined for the three alloys in each of the seven solutions used in the investigation after 16 h immersion at ambient temperature are given in Table 2.

From Table 2 it can be seen that for the 254SMO alloy the values of $E_{\rm corr}$ are approximately 180 and 260 mV(SCE) in chloride free solutions of 3 and 6M phosphoric acid respectively. The presence of chloride ions shifts $E_{\rm corr}$ to more positive values, except in 6M H₃PO₄ solutions where the addition of 1M NaCl moves $E_{\rm corr}$ by more than 500 mV in the negative direction to a potential of approximately -284 mV(SCE), suggesting that the metal surface is in an active state.

In the case of 316L stainless steel, negative values for $E_{\rm corr}$ are encountered more frequently in the presence of chloride ions. For example, the addition of 1M NaCl

Table 1 Chemical compositions of alloys studied, wt-%

	С	Si	Mn	Cr	Ni	Мо	Cu	Ν	Р	S	Fe
254SMO	0.02	0.42	0.49	20·1	18·4	6.42	0.77	0.21	0.02	0.004	Bal.
Hastelloy C276	0·02 …	0·50 	1·/1 	16·2 15·0	11.0 Bal.	2·18 16·0	0·35 6·0	0.07	0.03	0.023	Bal. 6·0

 Potentiodynamic polarisation curves for 254SMO stainless steel in given H₃PO₄ solutions at 26°C: scan rate 0.5 mV s⁻¹

to 3M H_3PO_4 solution or of 0.1M NaCl to 6M H_3PO_4 solution is sufficient to shift E_{corr} values to negative potentials. For Hastelloy C276, however, all E_{corr} values are positive, suggesting that a passive state exists in all the media studied.

Figure 1*a* shows the electrochemical behaviour of 254SMO in 3M H_3PO_4 in the absence and presence of chloride ions at room temperature. It can be observed that the presence of 1M NaCl decreases the passive current value and shifts the transpassivation potential E_{trans} in the positive direction. In the presence of 6M H_3PO_4 the passive current density decreases and the value of E_{trans} becomes more positive, for each of the three materials studied, when compared with their behaviour in 3M H_3PO_4 , as can be seen for 254SMO in Fig. 1*b*. This change in potential can be attributed to variations in solution pH and to the fact

2 Potentiodynamic polarisation curves for 316L stainless steel in given H_3PO_4 solutions at 26°C: scan rate 0.5 mV s⁻¹

that the 6M H_3PO_4 solutions have a larger passivating effect than the 3M H_3PO_4 solutions, as can be seen from the decrease in current density values as the H_3PO_4 concentration increases.

For 254SMO in 6M H_3PO_4 (Fig. 1c) the presence of 0.1M NaCl does not change the polarisation curves, but with 1M NaCl there is an active region with a critical current density equal to 0.16 mA cm⁻² and a critical potential at -214 mV(SCE). Going to more positive potentials, there are passive current densities higher than those observed in more dilute chloride solutions.

Figure 2*a* shows the electrochemical behaviour of 316L stainless steel in 3M H_3PO_4 media. The curves in the absence and presence of 0.01 and 0.1M NaCl are similar, showing the passivation of the material and $E_{\rm trans} \approx 1020 \,\mathrm{mV(SCE)}$. For 1M NaCl, however, the metal

Table 2Values of E_{corr} for 254SMO stainless steel, 316L stainless steel, and Hastelloy C276 after 16 himmersion in H₃PO₄ solutions in absence and presence of chlorides, mV(SCE)

Solution	254SMO	316L	Hastelloy C276
3M H₃PO₄	181 ± 60 (4)*	209 ± 9 (3)	222 ± 5 (4)
$3MH_{3}PO_{4} + 0.01M NaCl$	268 ± 27 (4)	242 ± 14 (4)	234 ± 14 (3)
$3MH_{3}PO_{4} + 0.1MNaCl$	217 + 70 (5)	240 + 28 (6)	226 + 4(4)
3M H ₃ PO ₄ + 1M NaCl	309 + 20(3)	-318 + 7(3)	237 + 15 (3)
6M H ₃ PO ₄	257 + 8 (4)	261 + 7(4)	253 + 6 (3)
$6M H_3PO_4 + 0.1M NaCl$	326 ± 16 (2)	-254 ± 22 (3)	288 ± 3 (2)
$6M H_3PO_4 + 1M NaCl$	-284 ± 9 (2)	-315 ± 0 (2)	327 [—] ±8 (2)

* Number of experiments carried out.

3 Potentiodynamic polarisation curves for Hastelloy C276 in given H_3PO_4 solutions at 26°C: scan rate 0.5 mV s⁻¹

exhibits an active region with $i_{\rm crit} = 0.45$ mA cm⁻². The potential at which the current value increases suddenly (150 mV(SCE)) is smaller and the passive current is higher than those observed in other chloride concentrations, suggesting the occurrence of pitting corrosion.

Figure 2b compares 316L stainless steel in 3M and 6M H_3PO_4 solutions, indicating that the E_{trans} values increase as H_3PO_4 concentrations increase. The same behaviour is observed for 254SMO stainless steel. In 6M H_3PO_4 solutions, 316L stainless steel (Fig. 2c) displays three different types of behaviour: in the absence of chloride it is passivated with $E_{trans} \approx 1050 \text{ mV}(\text{SCE})$, in the presence

4 Effect of temperature on potentiodynamic polarisation curves for 254SMO stainless steel in 6M H_3PO_4 + 1M NaCl solution: scan rate 0.5 mV s⁻¹

a polished to 1 μ m diamond paste finish; *b* at open circuit potential; *c* at 600 mV(SCE); *d* at 1050 mV(SCE)

5 Scanning electron micrographs of 254SMO, as polished and after exposure for 15 min in 6M H₃PO₄ + 1M NaCl solution at given potentials of 0.1M NaCl it exhibits an active region with $i_{\text{crit}} = 0.26 \text{ mA cm}^{-2}$ followed by a passive region up to $E_{\text{trans}} = 1060 \text{ mV}(\text{SCE})$, and for 1M NaCl it shows an active region with high current densities at -310 mV(SCE).

Hastelloy C276 exhibited passive behaviour in all the media studied. This behaviour is confirmed by the positive E_{corr} values referred to previously and by the potentiodynamic polarisation curves presented in Fig. 3.

Figure 4 shows the effect of temperature on the anodic polarisation curves for 254SMO stainless steel in a 6M H_3PO_4 solution containing 1M NaCl. It can be seen that i_{crit} values increase as temperature increases, but the material is passivated and has $E_{trans} \approx 1040 \text{ mV(SCE)}$ at temperatures ranging from 25 to 70°C, indicating the absence of pitting.

Figure 5*a* shows the surface of the 254SMO steel as observed by SEM after polishing to a 1 μ m finish with diamond paste. A few inclusions can be seen. Figure 5*b*-*d* shows the appearance of the 254SMO steel following exposure to 6M H₃PO₄ + 1M NaCl solution for 15 min at the open circuit potential, at 600 mV(SCE), and at 1050 mV(SCE). The surface appearance in these three cases is similar to that shown in Fig. 5*a*, showing the absence of any significant corrosion process and the presence of a few inclusions.

CONCLUSIONS

This work permits the following conclusions to be made:

1. Stainless steel 254SMO has better corrosion resistance than 316L stainless steel and almost the same corrosion resistance as Hastelloy C276 in phosphoric acid media in the absence and presence of chloride ions.

2. The 254SMO is passivated in 3M H_3PO_4 solutions containing [Cl⁻] \leq 1M.

3. The 254SMO is passivated in 6M H_3PO_4 solutions containing $[Cl^-] \leq 0.1M$.

4. The 254SMO is active in 6M H_3PO_4 solutions containing 1M NaCl, with critical current densities varying from 0.16 mA cm⁻² at 25°C to 1.47 mA cm⁻² at 70°C.

ACKNOWLEDGEMENTS

The authors are grateful to FAPESP (Foundation for the Support of São Paulo State Research) and CNPq (Brazilian Scientific and Technological Development Council) for research grants.

REFERENCES

- 1. A. GUENBOUR, J. FAUCHEU, and A. B. BACHIR: Corrosion, 1988, 44, (4), 214.
- 2. B. LINDER: Ind. Corros., 1987, 5, (3), 12–17.
- L. DE MICHELI: 'Estudo comparativo da resistência à corrosão por pite dos aços inoxidáveis austeníticos 254, 316 e 304 em meios de cloreto', master's thesis, Institute of Chemistry of USP, São Paulo, Brazil, May 1994.
- 4. L. DE MICHELI and S. M. L. AGOSTINHO: Proc. 34th Brazilian Conf. on Chemistry, Porto Alegre, Brazil, October 1994.
- 5. L. DE MICHELI, C. A. BARBOSA, and S. M. L. AGOSTINHO: Proc. 18th Annual Meeting of Brazilian Society of Chemistry, Caxambu, MG, Brazil, May 1995.
- 6. R. QVARFORT: Corros. Sci., 1989, 29, (8), 987.
- 7. J. OLSSON: Stainless Steel Ind., Jan. 1990, 18, (101).
- 8. J. OLSSON and H. GRUTZNER: Werkst. Korros., 1989, 40, (5), 279.
- N. ALONSO: 'Análise do método potenciodinâmico de deteminação do potencial de pite', doctoral thesis, Escola Politécnica da USP, São Paulo, Brazil, 1992.

