Radiolabeling of substance P with 177Lu and in vivo evaluation of = tumor cell=20 uptake in nude mice: Preliminary = results

Priscilla=20 Pujatti¹, Of=E9lia Barrio¹, = Jos=E9=20 Caldeira¹, M=EDriam Suzuki² = and=20 Elaine Ara=FAjo¹

¹ Radiopharmacy Center; ; ² = Laboratory of=20 Biotechnology, Nuclear and Energetic Research Institute, S=E30 Paulo, = S=E30 Paulo,=20 Brazil

2303

Objectives: This study describes the production of a pure = and⁼²⁰ stable substance P analog (SP) radiolabeled with Lutetium-177⁼ (177Lu) and its in vivo biodistribution in Nude mice bearing⁼²⁰ pancreatic tumor (PT), to verify the viability of this tumor⁼²⁰ model to predict the specificity of radiolabeled SP to = neurokinin⁼²⁰ receptors (NKr), usually overexpressed in glial malignant = brain⁼²⁰ tumors.

Methods: Different radiolabeling conditions were assayed = $\text{for}^{=20}$ obtaining high radiochemical yield of labeled SP. ITLC and = HPLC⁼²⁰ analysis were applied to determine free lutetium and the = stability⁼²⁰ of the preparations was evaluated either after storing at = 4=B0C⁼²⁰ or incubation in human plasma at 37=B0C for 1, 4 and 24 = hours.⁼²⁰ Biodistribution studies were performed 1 hour post i.v. = injection⁼²⁰ of radiolabeled SP in AR42J rat pancreatic tumor cell = xenografted⁼²⁰ Nude mice.

Results: Substance P was successfully labeled with high = yield⁼²⁰ (>99%) at optimized conditions and kept stable for more = than⁼²⁰ 72 hours at 4=B0C and 24 hours in human plasma. = Biodistribution⁼²⁰ studies showed that SP excretion was mainly performed by = renal⁼²⁰ pathway. In addition, 177Lu-DOTA-SP showed an important = uptake⁼²⁰ by the tumor (~1.0% ID) when compared to normal pancreas = (~0.2%⁼²⁰ ID), suggesting the presence of NK receptors in AR42J = pancreatic⁼²⁰ tumor.

Conclusions: The developed model can be applied to = $evaluate^{=20}$ specific SP uptake by tumor cells. Further investigations are ⁼ in development to predict the therapeutical potencial of this ⁼ radiopharmaceutical in different tumor models.

Research Support: IPEN / CNEN, IAEA and CNPq.