Universidade de São Paulo Instituto de Física

DATAÇÃO DE PEÇAS ARQUEOLÓGICAS PELO

peter raphael szmuk

MÉTODO TERMOLUMINESCENTE

Orientador : DR. Prof. Shi gues Watanake

Tese apresentada ao Instituto de Física da Universidade de São Paulo para obtenção do título de "Mestre em Ciências"

- 1970 -

a meus pais

AGRADECIMENTOS

Agradeço:

ao Prof. Dr. Shigueo Watanabe, pela orientação e supervisão <u>ge</u> ral dêste trabalho,

ao Dr. Michael R. Mayhugh, pelo incentivo e proveitosas discus sões, sem o que dificilmente êste trabalho alcançaria têrmo,

à Dra. Luciana Pallestrini e Prof. Dr. Ulpiano Bezerra de Men<u>e</u> zes, pelo formecimento das peças arqueológicas utilizadas para datação,

ao Prof. Dr. Rômulo Ribeiro Pieroni, Diretor do Instituto de Energia Atômica, pela utilização de quase todo aparelhamento e pelas facilidades para a realização dêste trabalho,

ao Departamento de Geologia da Universidade de São Paulo, por ter possibilitado o uso do separador magnético,

à Fundação de Amparo à Pesquisa do Estado de São Paulo, pelo auxilio financeiro fornecido em uma das fases do desenvolvimento do trabalho,

à Srta. Terezinha Caires, Secretária da Divisão de Física de Reatores, pelo eficiente serviço de datilografia,

ao Sr. José Florentino dos Santos, da Oficina Gráfica do Inst<u>i</u> tuto de Energia Atômica, pelo caprichoso trabalho de impressão desta tese,

à minha espôsa e amigos pelo incentivo que prestaram durante o desenvolvimento deste trabalho.

ÍNDICE

CAPÍTULO I				
	•	•	•	1
I.l - Considerações gerais	•	•	•	1
I.2 - Modêlo de termoluminescência	•	•	•	4
I.3 - Aplicação da termoluminescência na datação	•	•	•	7
I.4 - Radioatividade natural da terra e da cerâmica .	•	0	9	9
CAPÍTULO II				
MATERIAL E MÉTODO · · · · · · · · · · · · · · · · · ·	•	•	•	10
II.l - Preparação do quartzo	•	•	•	10
II.2 – Irradiação	•	•	•	15
II.3 - Determinação da termoluminescência do quartzo.	•	•	•	15
II.4 - Determinação do teor de Urânio e Tório	•	•		18
II.4.1 - Considerações teóricas	•	•	•	21
CAPÍTULO III				
PROCEDIMENTO EXPERIMENTAL	•	•	•	28
III.l - Calibração do contador alfa	•	•	•	28
III.2 – Cálculo da dose absorvida pelo quartzo	•	•	•	34
III.2.1 - Determinação da dose devido a radiação gama	•	•	•	34
III.2.2 - Determinação da dose devido a radiação beta	•	•	•	42
III.3 - Resposta termoluminescente do quartzo	•	•	•	44
CAPÍTULO IV				
RESULTADOS E DISCUSSÃO	•	•	•	48
IV.1 - Datação das peças recolhidas em Itapeva	•	•	•	49
IV.2 - Datação da peça da Grécia	•	•	•	55
IV $_{\circ}$ 3 - Datação das peças de Piraju e Angatuba	•	•	•	59
CONCLUSÃO E DISCUSSÕES	•	¢	•	62
APÊNDICE	•	•	•	65
BIBLIOGRAFIA	•	•	•	67

Página

CAPÍTULO I

INTRODUÇÃO

I.1 - Considerações gerais

Êste trabalho se baseia na medida da idade de cerâmicas arque ológicas, usando o método da TERMOLUMINESCÊNCIA, que embora não seja nova no mundo, é a primeira vez que foi usada no Brasil.

A maioria dos cristais isolantes possui uma propriedade interessante, que consiste em emitir luz, quando o cristal, após submetido a alguma forma de irradiação com raios γ , raios X ou partículas carregadas, é aquecido. Êste é, em essência, o fenômeno de termoluminescência (TL).

No caso de rochas ou cerâmicas enterradas, a radioatividade natural das próprias rochas ou cerâmicas, ou da redondeza, pode induzir TL, no decorrer do ano, de tal modo que, conhecendo a taxa de exposição da radiação por ano e a TL induzida, podemos determinar a idada das rochas ou de cerâmicas. O zero da idade é, no caso das rochas a época da sua formação, e no das cerâmicas, o momento em que estas ficaram expostas à radiação do solo. A fabricação da cerâmica por si só, devido ao co simento a alta temperatura, elimina totalmente a TL já induzida no material de que é feita a cerâmica. Qualquer TL encontrada na peça é, portan to, devido a irradiação posterior à sua fabricação. Êste fato é uma das vantagens sôbre o método de carbono-14 onde se determina a idade da madeira ou carvão cujas idades, em muitos casos, não correspondem ao seu contacto com o homem. Outra vantagem está em que, muitas vêzes, para os arqueólogos, a cerâmica é a base de referência no tempo. Também, pela sua durabilidade, são encontradas mais cerâmicas do que vestígios orgâni cos nos sítios arqueológicos. Além das vantagens acima mencionadas o método da termoluminescência é, visivelmente mais econômico.

Esta técnica foi sugerida em 1953 por F. Daniels (1) e vem sen do aplicada desde 1958. Até 1967 o processo foi utilizado nas Universidades de Berne (2), Birmingham (3), California (4), Kyoto (5), Oxford (6), Pennsylvania (7) e Wisconsin (8). Em todos êsses centros foram obtidas idades relativas ou seja, através da datação de peças desconhecidas, em com paração às peças retiradas da mesma região, de idade já conhecida. O êrro cometido neste processo era de cêrca de 20%.

Em 1967, Aitken e Tite (9) desenvolveram o método para obtenção de idades absolutas, mas o resultado por êles obtidos envolvia um êrro com um fator 5. Somente em 1968 foi utilizado êste método com êxito,pa ra obtenção de idades absolutas, por Aitken, Zimmerman e Fleming (10). A precisão por êles obtida era de, mais ou menos, 15%.

O desenvolvimento dêste trabalho originou-se de um pedido feito por uma arqueóloga*, do Museu Paulista da Universidade de São Paulo,cujo grupo de trabalho havia encontrado um sítio arqueológico na região de Itapeva, com algumas urnas funerárias feitas de cerâmica (11).

Os métodos utilizados até então, no Brasil, consistiam em avaliar a idade através de documentos históricos encontrados junto às escava ções, ou havendo a presença de matéria orgânica esporàdicamente, era envi

* Pedido feito pela Dra. Luciana Pallestrini.

ada uma amostra para os Estados Unidos para a datação pelo método do car bono-14. Com êste procedimento, chegava-se a levar meio ano ou mais para a obtenção dos resultados. O método descrito neste trabalho possibilita a datação de uma peça em apenas 4 a 5 dias e com uma precisão de 15 a 20%.

Através dêste método foram datadas urnas funerárias de Itapeva, Piraju e Angatuba, cujos resultados são confrontados com os resultados obtidos através do carbono-14*. Foi datada também, uma peça da Grécia de idade jã conhecida.

* O método de carbono-14 foi aplicado nos esqueletos encontrados dentro das urnas.

I.2 - Modêlo de Termoluminescência

Vamos apresentar um modêlo simples que explica qualitativamen te a termoluminescência.

Os cristais não condutores apresentam defeitos na rêde crista lina: átomos da rêde, que abandonam suas posições normais indo a uma posição intersticial deixando uma vacância no lugar de origem - Defeito ti po Frenkel; átomos do cristal que vão para a superfície deixando uma vacância no interior do cristal - Defeito tipo Schottky; introdução de alguma impureza poli-valente na estrutura do cristal; deslocamento de uma linha da rêde cristalina, e outros.

Como sabemos da Física dos Cristais Iônicos, êstes apresentam uma estrutura de banda, no que concerne os estados eletrônicos. Particu larmente num cristal iônico puro perfeito um certo número de bandas mais baixas se apresentam totalmente ocupadas, e a próxima completamente vazia (Fig. 1). A última banda ocupada chama-se banda de valência e a próxima vazia, banda de condução. Nos cristais com defeitos, surgem na faixa proibida, níveis discretos, aqui chamados de ARMADILHAS. Algumas arma dilhas podem receber elétrons, outras, as lacunas (ou buracos).

Quando o cristal é submetido à uma irradiação elétrons são promovidos da banda de valência para a de condução, estado em que os el<u>é</u> trons são livres, podem vaguear pelo cristal até serem capturados pelas armadilhas ou recombinar com as lacunas, que se formam na liberação (Fig. 1a).

Assim que o cristal é aquecido (Fig. 1b), o elétron capturado

recebe energia suficiente e volta para a banda de condução, podendo ser recapturado pelas armadilhas (a probabilidade de permanecer aprisionado é pequena pois o cristal está recebendo energia sob forma de calor), ou encontrar um centro de recombinação, podendo emitir luz (termoluminescên cia). Este processo pode ocorrer também, com uma lacuna (buraco) se êste for menos estável que o elétron. Como os dois processos são similares, é conveniente considerar somente o primeiro caso, onde os elétrons são cap turados.

Figura 1

A profundidade da armadilha em energia, contada a partir da banda de condução, está relacionada com a temperatura necessária para li bertar o elétron, produzindo termoluminescência. Ao esquentar um cristal, a probabilidade para que os elétrons sejam libertados aumenta, de modo que há uma temperatura em que se dá um máximo de produção de luz. O gráfico assim obtido (TL x Temperatura) se denomina curva de emissão (glowcurve). Na maioria dos cristais existem numerosas armadilhas de profund<u>i</u>

dades diferentes e a curva de emissão pode apresentar vários picos. Se a diferença de energia for suficientemente grande entre as armadilhas, os picos podem ser resolvidos. Isto também pode ser feito diminuindo a velo cidade do aquecimento.

A quantidade de luz emitida, como vimos, está relacionada à quantidade de radiação ionizante absorvida pelo cristal. Portanto, o cristal pode funcionar como um dosímetro de radiação.

Se a profundidade das armadilhas for menor do que 0.8 eV, mu<u>i</u> tos elétrons serão libertados, mesmo à temperatura ambiente (fosforescê<u>n</u> cia) (12). A estabilidade dos elétrons capturados é tanto maior quanto maior for a profundidade em energia da armadilha contada da banda de co<u>n</u> dução.

I.3 - Aplicação da Termoluminescência na datação

A cerâmica, em geral, é feita com mistura de argila com terra. O material mais importante como dosímetro na cerâmica é o quartzo (SiO_2) . Portanto, é êle quem nos fornece todos os dados para a datação da peça. A radiação é proveniente tanto dos elementos radioativos da cerâmica,quam to da terra que a envolveu. O quartzo da cerâmica recebe as radiações gama tanto da própria cerâmica, quanto da terra e as partículas beta e alfa provêm, principalmente, dos emissores contidos na própria cerâmica devido a pouca penetrabilidade dos mesmos. O alcance das partículas alfa no ar é de 20µ a 50µ e a sua contribuição na dose é altamente atenuada, sendo prâ ticamente nula para quartzos de diâmetro acima de 100µ. Para quartzos de 75µ até 150µ, a contribuição na dose absorvida será, principalmente, devi do a radiação gama e das partículas beta. Foi feito um estudo teórico nes te sentido por Kononenko (13) cujo resultado está na fig. 2.

7

Portanto, a datação consiste em separar êstes grãos de quartzo de cerâmica, selecioná-los pelo tamanho, ler a termoluminescência natural, determinar a sensibilidade (TL/Dose) e finalmente determinar a dose recebida por ano, enquanto esteve enterrada. Quando a medida é feita com os quartzos de 75µ a 150µ a idade será dada por:

Idade (anos) =
$$\frac{\text{TL natural}}{(\text{TL/Dose})_{\beta,\gamma} \circ (\text{Dose/ano})_{\beta,\gamma}}$$
(1)

Neste caso, despreza-se a contribuição das partículas alfa.

I.4 - Radioatividade natural da terra e da cerâmica

A dose radioativa recebida pelo quartzo na cerâmica provem, principalmente, dos emissores radioativos contidos na cerâmica e na terra, e uma pequena fração de radiação cósmica (2% da dose total) (10). És tes elementos radioativos são da série natural do Urânio e do Tório, e o elemento radioativo Potássio, onde se supõe as duas séries em equilíbrio secular, isto é, a atividade de cada membro da mesma série é igual.

As duas séries emitem radiação alfa, beta e gama enquanto que o elemento radioativo Potássio emite somente radiação beta e gama. Para determinar a dose absorvida pelo quartzo devido a estas partículas, é n<u>e</u> cessário determinar o teor dêstes elementos radioativos na terra e na c<u>e</u> râmica. Esta determinação pode ser feita quimicamente, ou através das contagens das partículas radioativas emitidas. Devido ao teor baixo de U e Th não foi possível determinar quimicamente a sua concentração motivo pelo qual determina-se pelo método das contagens. O teor do elemento método das contagens. O teor do elemento

CAPÍTULO II

MATERIAL E MÉTODOS

II.1 - Preparação do quartzo

As peças datadas são fragmentos de urnas funerárias feitas de cerâmica queimada (Fig. 3).

A superfície das peças vinha, em geral, recoberta de terra. Foi retirada uma camada de amm da superfície a fim de limpá-la e, tambem, eliminar a cerâmica que estava exposta às partículas alfa e beta da terra. Com êste procedimento asseguramos o fato de que a radiação alfa e b<u>e</u> ta provém somente da própria cerâmica enquanto que a radiação gama, provém tanto da terra quanto da cerâmica.

Com auxílio de um alicate o material foi quebrado em pequenos fragmentos que foram recolhidos em peneiras, de diferentes tamanhos da rêde, a fim de seleciona-los pelo tamanho. Os tamanhos obtidos foram:

> grãos > de 0.149mm* grãos de 0.074mm a 0.149mm grãos < de 0.074mm

Os grãos grandes foram triturados para nova peneiração e os pequenos

* Valores nominais da rêde da peneira em que foram selecionados.

Figura 3 -Secção transversal de uma peça e as contribuições das radiações provenientes da terra e da cerâmica

(<0.074mm), guardados para determinação do teor dos elementos radioativos.

Os grãos médios (aproximadamente 0.074mm a 0.149mm) foram lavados com água, ácido clorídrico e álcool. Com êste procedimento limpou -se a superfície do quartzo das poeiras aderentes. Também com a lavagem foi facilitada a separação magnética do quartzo do resto de componentes da amostra bem como foi aumentada a sua resposta termoluminescente, já que a superfície fica mais transparente. Observa#se que com a lavagem a leitura da termoluminescência pode ser aumentada de 30%.

Com o material lavado e sêco efetuou-se a separação magnética dos grãos de quartzo. O separador utilizado foi de marca Frantz Isodynamic modêlo L-1 do Departamento de Geologia da Universidade de São Paulo.

O separador é bàsicamente um plano inclinado colocado num cam po magnético. A amostra é colocada no ponto mais alto do plano e os grãos da amostra deslizam pelo plano abaixo. As duas paredes laterais impedem que a amostra caia fora, pelos lados do plano. Aplica-se um campo magné tico no plano (perpendicular ao movimento dos grãos). O campo magnético atrai os minérios magnéticos para um dos lados, separando-os dos não mag néticos (no nosso caso o quartzo). Para facilitar a separação, o plano é inclinado em tôrno do seu eixo vertical, de maneira que os minérios não magnéticos vão para um dos lados do plano e os magnéticos são atraídos para o outro lado. No fim do plano, as duas partes são recolhidas em separado.

As condições de operação do separador foram:

- inclinação do plano na direção do movimento = 22°
- inclinação do plano em tôrno do eixo vertical = 3°
- intensidade da corrente para produzir o campo magnético = 1,6Amp

A operação é repetida várias vêzes até ser obtida uma amostra pura de quartzo que pode ser observada com auxílio de uma lupa de aumento de 4x*.

A quantidade de quartzo assim obtida era aproximadamente 1/10 da terra total. Foi dividida em duas partes,a amostra obtida, uma delas para a determinação da termoluminescência natural e a outra para a irradiação artificial, a fim de obter a sensibilidade (TL/dose).

* Observamos que em algumas amostras o quartzo apresentava superfícies arredondadas, como se tivessem sofrido a ação de rolamento. Êste dado confirmou uma hipótese formulada pela arqueóloga de que a matéria pri ma para a confecção da cerâmica fosse procedente de 1 determinado ria cho da região (11).

. . . .

corte longitudinal

corte transversal

Figura 4 Esquema do separador magnético

ý.

II.2 - Irradiação

Para a irradiação das amostr**a**s foi utilizada uma fonte de ³³⁷Cs*. Na época de experiência a 10cm da fonte, a taxa de exposição era de 16,46R/min e a 30cm de 1,99R/min.

A fonte era suspensa a 1,5cm do fível da mesa ondeeram coloc<u>a</u> das as amostras ao redor da fonte.

II.3 - Determinação da termoluminescência do quartzo

Para medir a TL da amostra precisamos de um sistema que aquece a amostra e um que mede a luz emitida.

O conjunto, Harshaw "Model 2000 Thermoluminescence Analyzer", aqui utilizado, tem as seguintes características: é composto do detetor TL 2000-A e de um integrador automático 2000-B; fotomultiplicadora de corrente de fundo baixa e constante devido a contrôle de temperatura; r<u>e</u> gistro da temperatura através do termopar junto à placa de aquecimento, assegurando taxa de aquecimento constante e reprodutível da amostra; integrador de corrente automático com mudança automática de escala; sistema de injeção de nitrogênio com uma taxa constante de vazão.

* Fonte do Instituto de Biociências do Departamento de Biologia da Universidade de São Paulo (doação Rockefeller Foundation). As condições de uso foram:

- Alta tensão - 1200volt.

- Temperatura máxima - 350°C em 60seg

- Razão de aquecimento - 100°C em 15seg

A calibração do conjunto com uma fonte de luz padrão, como um pré-requisito, assegurou as condições idênticas de operação.

Na Figura 5 mostramos a razão de aquecimento da plancheta e a radiação de fundo por ela emitida, ao ser aquecida.

¢

b) Radiação de fundo emitida pela plancheta.

II.4 - Determinação do teor de Urânio e Tório

Para a determinação do teor dêstes elementos foi utilizado o método da contagem das partículas alfa.

Para esta finalidade foi construido um detetor de partículas alfa que consiste, essencialmente, de uma tela de plexiglass sobre a qual é depositada uma película uniforme de ZnS ativada com Ag. Esta tela é acoplada a uma fotomultiplicadora, onde o sinal é amplificado e discri minado de maneira que são eliminados os pulsos provenientes do ruído da fotomultiplicadora. O pulso em seguida passa por um outro discriminador de tempo, que deixa passar cada pulso ou deixa passar somente um "trem" de pulsos, quando o intervalo de tempo entre o primeiro e o último pulso for menor do que 0.32seg.

Para efetuar a análise de uma amostra colocada sobre a tela, faz-se a contagem total das partículas alfa emitidas e em seguida, com auxílio do discriminador de tempo contam-se os pulsos duplos do decaimen to alfa do²²⁰Rn e do ²¹⁶Po.

No apêndice é deduzido o cálculo dos pulsos duplos espurios. Pulsos êstes que não são provenientes do decaimento do ²²⁰Rn e do²¹⁶Po, mas da coincidência de duas partículas alfa das duas séries que sejam emitidas, ao acaso, num intervalo de tempo 0.32seg.

Na Figura 6 pode ser visto o diagrama de bloco do contador.

1-tela de ZnS5-amplificador2-fotomultiplicadora6-atenuador3-fonte de alta tensão7-discriminador4-pré-amplificador8-discriminador de tempo9-escalímetro

Figura 6 - Diagrama de bloco do contador alfa.

Para a contagem dos pulsos foi construido* um dispositivo (discriminador de tempo) que conta somente os pulsos que são emitidos num intervalo de tempo menor do que 0.32seg. Seu esquema está descrito na Figura 7. Éle consiste, essencialmente, de um circuito monoestável que é disparado pelo primeiro pulso e que fica aberto durante 0.32seg. Se o segundo pulso vier durante êste intervalo de tempo será registrado, caso contrário, o monoestável fechará o circuito não permitindo a passagem do segundo pulso. Neste caso cada pulso registrado corresponderá a um par de pulsos emitidos num intervalo de tempo de 0.32seg.

A calibração do sistema será descrito no Capítulo III.

* Projeto do Eng? Alberto Martins Jorge do Instituto de Energia Atômica a quem agradecemos.

WOTTEN BE REAL ATENCA

VI.4.1 - Considerações teóricas

A seguir veremos a relação entre o número de cintilações det<u>e</u> tadas e a atividade da amostra; bem como a relação entre a atividade da família do Tório e do Urânio, e as contagens totais e dos pares.

Consideremos uma porção de amostra de espessura d emitindo partículas alfa uniformemente através de seu volume, e o plano do detetor XY (Fig. 8). Seja R o alcance das partículas alfa no meio ativo. Con sideremos um elemento de volume (dA.dh) do meio ativo e a uma distância h do fósforo (plano XY) e seja N o número de partículas alfa emitidas por unidade de volume do meio ativo por unidade de tempo.

Se o elemento de volume dA.dh emite N partículas alfa calcul<u>a</u> remos quantas destas partículas serão emitidas no ângulo sólido Ω.

 $d\Omega = 2\pi \text{ sen } \theta d\theta$

= - $2\pi d(\cos \theta)$

onde cos $\theta = \frac{h}{R}$ e portanto Ω sera dada por:

$$\Omega = - \int_{1}^{h/R} 2\pi \cos \theta = 2\pi \left(1 - \frac{h}{R}\right) =$$

$$= 2\pi \frac{R-h}{R} \qquad (para h \leq R)$$

Como no volume todo são emitidas N partículas então no ângulo sólido Ω serão emitidas

$$x = \frac{2\pi N R - h}{4\pi R} = \frac{N R - h}{2 R}$$
 partículas

E o número total de partículas que emergem por unidade de area da amostra (espessura d) é

$$N_{A} = \frac{N}{2} \int_{h=0}^{h=d} \frac{R-h}{R} dh = \frac{Nd}{2} (1-\frac{d}{2R})$$
 (para $d \leq R$)

Se der R, considera-se d = R, e o número N_o de partículas alfa que emergem na area A por unidade de tempo, é evidentemente o número de cintilações que se observa (eficiência 100%) sobre aquela area por unidade de tempo e é (para A >> R^2),

$$N_0 = \frac{NRA}{4}$$

onde a atividade em função do número de contagens observadas ${\tt N}_{\rm O}$ é:

$$N = \frac{4N_0}{RA}$$

Se 0 e a densidade do meio ativo, N_o número de cintilações o<u>b</u> servadas por hora, acima da radiação de fundo, a atividade em Ci*da amo<u>s</u> tra serã:

$$S = \frac{4N_{o}}{RA\rho} \frac{1}{3.7 \times 10^{10} \times 3.6 \times 10^{3}}$$

$$= \frac{N_o}{RA\rho} \times 3.008 \times 10^{-14} \text{ Ci/g}$$

O alcance das partículas depende do número atômico do meio assim como da sua densidade. A formula que mais satisfazdesta relação é:

$$R\rho = 3.2 \times 10^{-4} \times R_0 Z^{2/3} cm$$

onde R_o é o alcance das partículas em cm no ar (14). Portanto a atividade S é dada por

$$S = \frac{N_{o} \times 3.008 \times 10^{-14}}{R_{o} A \times 3.2 \times 10^{-4} \times 2^{2/3}}$$
$$S = \frac{N_{o}}{R_{o} A Z^{2/3}} \times 9.4 \times 10^{-11} \text{Ci/g}$$

* 1Ci = 3.7×10^{10} desintegrações/seg.

Determinação da relação Th/U

Calcularemos a relação entre a quantidade do 232 Th e o 238 U da amostra. Observando a Figura 8 vemos que a fração da desintegração dupla (220 Rn e do 216 Po) que ocorre num volume elementar dA.dh produzindo duas partículas alfa e que são emitidas num ângulo sólido Ω é dado por:

$$dn_d \stackrel{\text{def}}{=} \left[\frac{1}{2} \left(1 - \frac{h}{R} \right) \right]^2 dA.dh$$

Se n é o número de desintegrações duplas, num volume unitário por unidade de tempo, então o número de pares que serão emitidos no ângulo sólido Ω é:

$$dn_d = \frac{n}{4} (1 - \frac{h}{R})^2 dA \cdot dh$$

Portanto, o número de pares reais por unidade de área de uma amostra de espessura d é:

 $v_{d} = \frac{dn_{d}}{dA} = \frac{n}{4} \int_{h=0}^{h=d} (1 - \frac{h}{R})^{2} dh$ por unidade de tempo

 $= \frac{n}{4} d - \frac{d^2}{R} + \frac{d^3}{3R^2} \quad \text{por unidade de tempo}$

Se d > R, o número de pares emergentes por unidade de área por unidade de tempo pode ser obtido considerando d = R na equação anterior, obtendo então:

$$v = n.R/12$$

se a atividade alfa da amostra é devido a presença somente da série do Th em equilíbrio secular do ²³²Th até o ²⁰⁸pb (6 partículas ao todo)e se N é número total de desintegrações por unidade de volume por unidade de tempo, durante um período na qual acumulam-se muitas contagens, então:

N = 6n

o número de pares observados será:

 $v_{d} = N_{*}R/72$ por unidade de área/unidade de tempo

Se A = área do detetor e ρ a densidade da amostra, então o número de pares observados será:

 $v_d = \frac{4N}{72} \cdot A_* R_* \rho$ por unidade de tempo

Mas o número total de eventos observados é

 $v_d^* = \frac{N}{4} \cdot A_* R_* \rho$ por unidade de tempo

portanto a razão:

$$\frac{\text{pares}}{\text{N9 total de eventos}} = \frac{\text{N}/72}{\text{N}/4} = \frac{1}{18}$$

Então a taxa de desintegração do ²³²Th (ou de qualquer outro da série) é:

$$K = 12N_{p}$$

de uma massa de AR ρ gramas onde N $_p$ é o número de pares observados por unidade de tempo.

Na Figura 9 temos a relação entre a razão ²³²Th/²³⁸U e o núme ro de pares observados num período de tempo correspondente a 1000 contagens simples.

Figura 9- Curva que relaciona a razão entre o 232Th/ 238U e o

N9 de pares por 1000 contagens observadas.

CAPÍTULO III

PROCEDIMENTO EXPERIMENTAL

III.1 - Calibração do contador alfa

No capítulo II foi visto que existe uma íntima relação entreo número de partículas emitidas pela amostra (atividade), e as partículas que atingem a tela de ZnS, produzindo luminescência. Nesta seção, será vista uma série de experiências que comprovam as relações deduzidas no capítulo II.

Inicialmente, consideremos o processo da construção e calibra ção da tela de ZnS:Ag. Na construção da tela é necessário obter-se a maior eficiência possível, para a contagem das partículas alfa. A espes sura da película, para êste fim, é crítica. Se fôr muito fina, algumas partículas não interagirão com ela, e, por outro lado, se fôr muito espessa haverá absorção da luz produzida.

As placas onde se depositam o ZnS são placas de plexiglass cir culares de ~2mm de espessura. O processo de deposição da camada de ZnS sôbre a placa é a parte mais delicada do processo. Coloca-se a placa sôbre um suporte de 1cm de altura, no fundo de um recipiente circular de ~25cm de altura e de raio 0,5cm maior do que a placa. Enche-se êsse reci piente de água e depois despeja-se lentamente, gôta por gôta, uma solução ZnS:Ag com água, de concentração bem determinada. Esta solução forma uma suspensão que sofre um decaimento lento. Após 24 horas, todo ZnS deposita-se sôbre a tela, formando uma película fina de fósforo, com uma espessura pràticamente uniforme. Esta uniformidade foi testada, verificando-se a eficiência da tela em vários pontos distintos, através do pro cesso de contagem das partículas alfa. A diferença maior encontrada foi de 5% aproximadamente. Em seguida, a água é retirada lentamente por debaixo da placa, de maneira que não se forme correntes na solução (figura 10).

Depois que tôda a água foi retirada, deixa-se secar a placa à temperatura ambiente, durante aproximadamente 48 horas. A espessura da película de ZnS:Ag depositada pode ser fàcilmente determinada, pois são conhecidas a concentração da solução de fósforo e a área do recipiente. Para uma deposição uniforme, conforme jã foi mostrado, determina-se a es pessura da película em mg/cm².

Após o processo de secagem da placa fixa-se o ZnS sôbre a tela. Isto é feito vaporizando-se clorofórmio sôbre a placa. O clorofórmio reage com a tela de plexiglass amolecendo-a, de maneira que as partículas de ZnS nela penetram. Fazer isto de uma maneira uniforme constitui-se na parte mais difícil do processo. Depois de sêco o clorofórmio, o ZnS fica tão intimamente ligado à tela que pode-se até submetê-la a uma limpeza com uma escôva, que o fósforo não se desprenderã. Sendo assim, pode-se usar a mesma placa para várias misturas e para amostras diferentes.

Anteriormente a contagem das partículas alfa foi necessária uma análise e seleção de melhores placas. Assim, foram preparadas 6 placas de espessuras diferentes a fim de se obter aquela que tivesse a melhor eficiência. Por meio de comparação com uma fonte de ²³⁸U*, faz-se a determinação das eficiências de cada uma das placas. As eficiências e e<u>s</u> pessuras constam da tabela abaixo.

Placa Nº	Espessura (mg/cm ²)	Eficiência (%)
1	6,2	67,7
2	10,1	76,4
3	14,3	94,0
4	16,4	95,0
5	17,5	94,5
6	22,8	89,5

* A fonte foi calibrada por meio de uma contador proporcional 4πφeroda, pela pesquisadora Cleide Renner, do I.E.A., a quem agradecemos.

Pela tabela, obviamente, conclui-se que a melhor placa é a de nº 4 (16,4mg/cm²) com uma eficiência de 95,0%. Esta placa foi então utilizada em tôdas as leituras.

Uma vez escolhida a placa, podem-se começar as medidas dos pul sos induzidos pelas partículas alfa. O pulso produzido através de uma fo tomultiplicadora é observado com o auxílio de um osciloscópio. Verificou -se a existência de pulsos parasitas, ou devido ao "overshoot" eletrônico nos pulsos, ou devido ao ruído da fotomultiplicadora.

Para a eliminação dêstes pulsos espúrios, foi usado um discri minador que, auxiliado pelo osciloscópio, possibilitou a determinação de um nível de discriminação. Portanto, foram contados somente pulsos decor rentes das partículas alfa e radiação cosmica e alguns pulsos altos provenientes do ruído da fotomultiplicadora. Nestas condições, a radiação de fundo era de 6.696 contagens num período de 72 horas, dando uma taxa de 1,55 c/min.

Para interpretar as contagens de pulsos duplos é necessário saber as características do discriminador de tempo, que foi calibrado da seguinte forma: inicialmente, foi determinado o tempo de discriminação. Com um gerador de pulso (largura do pulso da ordem de μ 'seg), ligado ao discriminador variou-se o intervalo de tempo t entre dois pulsos consecu tivos, até o ponto em que o discriminador entra em funcionamento. Isto significa que o discriminador só conta pulsos que vieram num intervalo de tempo igual ou menor que t. O tempo t determinado foi de 0,322 seg.Os pulsos duplos devido a radiação de fundo eram de 1,0 c/h, num período de 72 horas. Em seguida, usou-se o conjunto detector com uma amostra que continha tôda a família do Th em equilíbrio secular. Para isto, utilizou -se uma amostra de areia monazítica, rica em Th*. Sabe-se que a relação teórica entre ospulsos simples e os duplos, provenientes da família do Th, inteira em equilíbrio secular, é de 1/18. A fim de se comprovar experimentalmente esta relação, foi colocada uma amostra desta areia sôbre a placa e contado o número de pulsos simples. A contagem foi dasordem de 8.000 c/min. Com êste conjunto não se pôde trabalhar com atividades tão elevadas, pois a probabilidade de ocorrem dois pulsos espúrios no intervalo de tempo de 0,322 seg é muito grande. Para evitar êste fato, a areia foi diluída com uma amostra de terra, até obter-se uma taxa de 4,15c/min de pulsos simples e 9,5 c/h de pulsos duplos.

A terra em que a areia monazítica foi misturada continha uma atividade correspondente à 0,7 c/min de pulsos simples e 0,8 c/h de pulsos duplos (leituras de 48 horas e 72 horas, respectivamente). Subtraindo-se do 4,15 c/min a taxa correspondente a da terra (0,7 c/min) e a radiação de fundo (1,55 c/min), obtem-se uma taxa de 1,90 c/min de pulsos simples, devido à família do Th em equilíbrio secular, na areia monazíti ca. E subtraindo-se do 9,5 c/h de pulsos duplos a taxa correspondente à da terra (0,8 c/h) e a radiação de fundo (1,0 c/h) obtem-se 7,7 c/h.Como o discriminador de pulsos fica aberto sômente 0,322 seg, e existe a probabilidade da ocorrência da alguns pulsos duplos, de intervalo maior que 0,322, então foi feita uma correção de 20% (18). Com esta correção, o nº de pulsos provenientes da família do Th, sé 9,2 c/h.

* A areia foi oferecida e calibrada pela Administração da Produção da Mo nazita, a quem agradecemos na pessoa do Cel. H. Amorim.

Finalmente, dada a família do Th em equilíbrio secular e dada a probabilidade de ocorrência de pulsos espúrios, calcula-se o número de pulsos duplos esperados a fim de compará-lo com valores experimentalmente obtidos. A relação entre o número de pulsos simples e o número de pu<u>l</u> sos duplos é de 1/18, e assim o número de pares esperados deve ser 1,90/18 × 60 c/h, mais o número de pulsos espúrios que é determinado p<u>e</u> la equação (vide apêndice) $\frac{2,64 \times (4,15)^2 \times 60}{1.000}$ c/h. Portanto, o número de pulsos esperado é de 9,04 c/h.

Comparados os dois valores, aquêle obtido experimentalmente e aquêle obtido teòricamente, a diferença entre os dois é menor que 2%. Es ta operação foi repetida para três diluições diferentes da monazítica, e foi obtido, em todos os caso, um desvio da ordem de 2%. Podemos daí concluir que o contador alfa é auto-consistente e reproduz fielmente os cál culos teoricos.

Foi também realizado um teste a fim de determinar o teor de U e Th de uma amostra de terra, e confrontá-lo com_e os resultados obtidos por dosimetros enterrados no local donde a terra foi retirada. O result<u>a</u> do obtido envolve um desvio de 3,8%.

III.2 - Calculo da dose absorvida pelo quartzo

O elemento responsável pelo fornecimento de todos os dados ne cessários para a determinação da idade é o quartzo. Ele absorve as radia ções, durante os anos, e os armazena de alguma forma, possibilitando ao pesquisador a determinação quantitativa da dose recebida, e finalmente,a obtenção da idade. Esta radiação absorvida provém, como já foi visto,dos emissores gama da terra e alfa e beta da cerâmica. Após a determinação do teor dos emissores, é possível determinar a dose absorvida pelo quart zo. Para isto, foi necessário deduzir as equações que permitem o cálculo desta dose, em função do teor dos emissores. Também foi necessário calcu lar o intensidade (abundância) de todos os emissores, das duas séries ra dioativas e do elemento K.

III.2.1 - Determinação da dose devido a radiação gama

Consideremos num meio ativo (emissor,γ) uma camada esférica dr, com raio r. Calcula-se a dose de exposição no centro da esfera, devi do a esta radiação.

Figura 11

O fluxo de fótons no centro da esfera devido a esta camada es férica será dado por:

$$d\phi = S_v \times 4\pi r^2 dr \frac{e^{-\mu \times r}}{4\pi r^2} \quad \text{fotons/cm}^2 \times \text{ano} \tag{1}$$

onde: $S_v \in a$ atividade de emissor em desintegrações/ano × cm³

 μ é o coeficiente de absorção do meio em g/cm²

Integrando de r=O a r=R teremos o fluxo devido as radiações γ, provenien tes da esfera tôda.

$$\phi = \frac{S_v}{u} (1 - e^{-\mu R}) \quad \text{fotons/cm}^2 \times \text{ano} \tag{2}$$

Mais corretamente, precisamos levar em conta o efeito da radi ação y espalhada, isto é, a interação fotoelétrica, radiação de aniquila mento com a criação de pares e o bremsstrahlung com o freiamento dos elé trons energéticos pelo absorvedor. Portanto, o fluxo calculado em (2)terá um acréscimo chamado fator de criação (Buildup), que depende da energia do fóton e da característica do meio absorvedor e da geometria. Êste fator pode ser descrito em têrmos de uma soma de **exponenciais**(17).

$$B(E, \mu\rho) = \sum_{n}^{N} A_{n} e^{-\alpha_{n} \times \mu\rho}$$
(3)

onde: $A_n \in \alpha_n$ são funções de E (energia do fóton) para um meio específico. Na prática, constata-se que é suficiente considerar somente os dois primeiros têrmos. No caso de um meio esférico, o fator de criação E multiplica a parte exponencial (17) da equação de fluxo (2), e o fluxo corrigido se rá:

$$\Phi = \frac{S_{v}}{\frac{\mu}{M}} \left[1 - (A_{1} e^{-\mu R(1+\alpha_{1})} + A_{2} e^{-\mu R(1+\alpha_{2})}) \right]$$
(4)

Foram consultadas as tabelas da referência (17) para serem ob tidos os valores das constantes A_1 , A_2 , α_1 e α_2 .

Tendo-se obtido o fluxo de fotons no centro da esfera, determina-se agora a dose absorvida pelo quartzo devido a êsse fluxo.

a) Conversão do fluxo Φ em dose absorvida pelo quartzo

Existe uma Íntima relação entre o fluxo de fotons e a dose de exposição \overline{d} . Isto quer dizer que podemos determinar a exposição \overline{d} devido a 1 foton/cm seg (15). Portanto, a dose total no ar será:

$$d_{ar} = \frac{\overline{d}}{3,6 \times 10^3} \Phi$$
 Roentgens/ano (5)

Num ponto no ar, onde a dose de exposição é de 1 Roentgens, a dose absorvida é de 87,7 erg/g. Portanto, num ponto no ar, onde a dose de exposição foi de R roentgens, a dose absorvida seria dada por:

$$\mathbf{D}_{ar} = \mathbf{0}, 877 \times \mathbf{R} \quad rad \tag{6}$$

Quando o meio é diferente do ar, a dose absorvida por éste

meio sera um fator que multiplica a dose Dar. Éste fator, dependente da energia, é a relação entre os coeficientes de absorção do meio e do ar.

$$D_{meio} = 0,877R \frac{\mu_m}{\mu_a} = fR rad$$
 (7)

Êste fator, para energias acima de 100 keV, é aproximadamente 1,1. Como 1 rad = 100 erg/g, no caso do quartzo pode-se considerar 1 R = 1 rad.

Existe também uma relação entre a dose absorvida e o número a tômico Z, do meio (17). Portanto, se determinarmos a dose absorvida no ar D_{ar}, através desta relação podemos determinar a dose absorvida num meio qualquer de número atômico Z. Neste caso, a dose absorvida no quartzo se rá:

$$D_q = D_{ar} \times W = \frac{0.877 \ \overline{d}}{3.6 \times 10^3} \Phi \times W \ rad/ano$$
 (8)

onde: W é a relação entre a dose absorvida no meio e no ar. Resta calcular a atividade S_v do meio.

b) Determinação da atividade S_v do emissor

Em 1 cm³ do meio, no nosso caso terra, temos:

$$\frac{\rho \times A}{M}$$
 moléculas/cm³

onde: ρ = densidade da terra (g/cm³)

A = número de Avogadro (6.023 × 10^{23})

M = massa molecular média da terra

(9)

Em geral, a concentração de um emissor, quando é pequena,é re presentada em têrmos de partes por milhão (ppm). Isto quer dizer que, em caso de termos X emissores em 10⁶ moléculas, a concentração será dada por X ppm. Portanto, o número N de emissores por cm³ será:

$$N = \frac{\rho \times A \times X \text{ ppm}}{M \times 10^6} \quad \text{emissores/cm}^3$$
(10)

E a atividade em desintegrações/cm³ × ano será:

$$S_{v} = \frac{0.693}{T_{1/2}} N \times I = 4.17 \times 10^{17} \times \frac{\rho \times X \ ppm \times I}{T_{1/2} \times M}$$
(11)

onde: I = intensidade da radiação gama

 $T_{1/2}$ = meia vida do emissor em anos

Substituindo na equação todos os valores, obtemos finalmente a dose absorvida por ano num grão de quartzo:

$$D_{q} = 1,158 \times 10^{14} \frac{\overline{d} \times W \times \rho \times X \text{ ppm} \times I}{T_{1/2} \times M \times \mu} \left[1 - (A_{1} e^{-\mu R(1+\alpha_{1})} + A_{2} e^{-\mu R(1+\alpha_{2})}) \right] \text{ rad}$$
(12)

onde: os valores \overline{d} , W, A₁, A₂, α_1 e α_2 estão nas curvas da referência (17).

III.2.2 - Determinação da dose devido as partículas beta

No caso de emissores de partículas beta, a dose no centro de uma esfera, de meio ativo e de raio infinito, será dada pela equação seguinte, referência (15):

$$D^{\beta} = 1,6 \times 10^{-8} \times \overline{E} \times S_{y} \quad rad \tag{13}$$

onde: Ē é a energia média da radiação em MeV,

 S_v é a concentração dos emissores em desintegrações/g

a) Determinação de S_m

Através da equação (11) temos a atividade por cm². Como o nos so meio (terra) tem uma densidade ρ , a atividade por unidade de pêso da terra será:

$$S_{\rm m} = S_{\rm v}/\rho = 4,17 \times 10^{17} \times \frac{X \text{ ppm} \times I}{T_{1/2} \times M} \text{ Betas/ano} \times g$$
(14)

onde: I é a intensidade da radiação beta

 $T_{1/2}$ é a meia vida do emissor M é a massa molecular média da terra

b) Determinação do \overline{E}

As energias médias das radiações beta estão tabeladas na ref<u>e</u> rência (15). Substituindo-se o valor de S_m, obtemos a dose:

$$D^{\beta} = 6,6 \times 10^{9} \times \overline{E} \times \frac{X \text{ ppm} \times I}{T_{1/2} \times M} \quad \text{rad/ano}$$
(15)

III.2.3 - Calculo da dose absorvida pelo quartzo devido a um teor de 1 ppm de U e Th e 1% de K

Como exemplo, vamos determinar a dose recebida por um quartzo mergulhado num meio (terra), que contém l ppm de ²³²Th, l ppm de ²³⁸U e 1% de K. Considerando que as duas séries estejam em equilibrio secular, vamos calcular a dose gama, beta reecebida pelo quartzo. Não serão consi seradas doses decorrentes das partículas alfa, pelo fato de estarmos tra balhando com quartzos de 0,074 mm a 0,149 mm, onde o efeito das partículas alfa é desprezível.

a) Cálculo da dose gama

Para calcular-se a dose, devado as radiações gama, utiliza-se a equação (12) já deduzida, substituindo-se os valores na equação. Na ta bela abaixo, estão colocados os valores encontrados e a referência, quan do necessário.

Constantes	Série do Th	Série do U	Potássio	Unidade	Ref.
E sgr	0,606	0,332	1,410	MeV	*
I	332	285	11	%	*
d	$1,25 \times 10^{56}$	0.7×10^{-6}	$5,2 \times 10^{-6}$	R/h	17
W	1,2	1,2	1,2		20
ρ	1,4	1 _s 4	1,4	g/cm ³	**
X ppm	1	1	(1%)	ppm	exemplo
M	85	85	85	g	5
μ	0,08	0,101	0,052	cm ² /g	17
A1	22	29	8,25		17
A2	-21	-28	-9 ,25	مند ملحو المراجع المنافعة المنظمة المنظم المراجع المراجع الم	17
α1	-0,13	-0,17	-0,095		17
α ₂	0	0	0*;065		17
R	50	50	50	cm	***
$T_{1}/2$	$1,39 \times 10^{10}$	$0,45 \times 10^{10}$	$0,139 \times 10^{1}$	⁰ anos	20

* Os valores das energias médias de cada série foram determinados com auxílio de um esquema de decaimento (19) para cada elemento da série. Foram encontrados todos os emissores gama, beta com as suas respectivas abundâncias e, finalmente, calculou-se a média. Os valores encontram-se na tabela 2.

** A densidade foi determinada no laboratório: pêso/volume.

*** Considerou-se, para o alcance da radiação gama na terra,o *
valor de 50 cm (10).

Efetuando os calculos, obteve-se:

 $D_{Th}^{\gamma} = 0,0055 \text{ rad/ano}$ $D_{U}^{\gamma} = 0,00832 \text{ rad/ano}$ $D_{K}^{\gamma} = 0,035 \text{ rad/ano}$

b) Calculo da dose beta

Usando a equação (15), e astabelas 1 e 2, obtem-se para a dose beta os valores:

$$D_{Th}^{\beta} = 0,006 \text{ rad/ano}$$
$$D_{U}^{\beta} = 0,040 \text{ rad/ano}$$
$$D_{K}^{\beta} = 0,073 \text{ rad/ano}$$

Assim obteve-se as doses absorvidas pelo quartzo, devido a ra

diação beta e gama, quando aquêle está num meio onde a concentração de U e Th é de 1 ppm e do K é 1%. Não foi calculada a dose devido as particulas alfa porque as dimensões dos grãos de quartzo, em questão, são de 0,074 mm a 0,149 mm e tem-se, como decorrência disto, as partículas beta e gama como as principais responsáveis pela dose total.

				and the second s		
Nuclideo	E _γ (MeV)	I (%)	E _β (MeV)	I (%)	E_{α} (MeV)	I (%)
²³² Th ₉₀	0,059	24,0			4,0	100,0
²²⁸ Ra88			0,020	100,0		
228 _{Ac 89}	0,649	.95,0	1,500	100,0		
²²⁸ Th ₉₀	0,084	29,0			5,3	100,0
²²⁴ Ra88	0,241	5,0			5,7	100,0
²²⁰ Rn86	0,540	0,3			6,2	100,0
216 _{P084}					6,8	100,0
²¹² Pb82	0,239	84,0	0,369	96,0		
212 _{Bi83}	0,174	31,0	2,250	64,0	6,1	36,0
212 _{P084}					8,8	64,0
²⁰⁸ T181	1,740	63,7	1,800	16,9		
Média	0,606	332,0	0,962	376,0	5,9	600,0

						J
К	1,410	11,0	1,320	89,0		
					L	

Tabela 1 - Energias da radiação gama, beta e alfa da série do Th e do elemento radioativo K.

Nuclideo	E _y (MeV)	I (%)	E _β (MeV)	I (%)	E_{α} (MeV)	I (%)
²³⁸ U92	0,048	23,0			4,2	100,0
²³⁴ Th ₉₀	0,092	16,0	0,158	100,0		
²³⁴ Pa ₉₁	0,780	40,0	2,31	99,0		
²³⁴ U92	0,065	31,0			4,7	100,0
²³⁰ Th ₉₀	0,100	28,0			4,6	100,0
²²⁶ Ra88	0,198	5,0			4,7	100,0
²³² Rn86	0,510	0,08			5,4	100,0
²¹⁸ Po84					6,0	100,0
²¹⁸ At ₈₅					6,7	0,02
²¹⁴ Pb ₈₂	0,352	6,0	1,030	6,0		
²¹⁴ Bi83	0,860	50,0	3,180	99,0	5,5	0,04
²¹⁴ Po84		· · · · · · · · · · · · · · · · · · ·			7,6	99,0
210 _{T181}	0,950	1,6	1,960	0,0002		
²¹⁰ Pb82	0,046	85,0	0,025	100,0		
²¹⁰ Bi83			1,170	99,0		
210 _{P084}					5,3	99,0
²⁰⁶ T181			1,510	0,0002		
Média	0,332	285,68	1,360	503,0	6,8	800,0

Tabela 2 - Energias da radiação gama, beta e alfa da série do U.

III.3 - Resposta termoluminescente do quartzo

A estabilidade de um pico está relacionada com a profundidade, em energia contada a partir da banda de condução, da armadilha responsável por êste pico. Decorre daí que, quanto mais profunda for a armadilha mais energia necessita para libertar o elétron e emitir termoluminescência. Por causa desta instabilidade térmica os picos de temperatura baixa do quartzo natural apresentam pouca emissão de luz à temperatura baixa e portanto, não são êstes picos adequados para datação. Por outro lado, o quartzo irradiado recentemente no laboratório pode apresentar uma emissão bem forte mesmo à temperatura baixa. Para o quartzo natural foram ob servados três picos distintos: os de 160°C, 220°C e 270°C.

A figura 12 apresenta uma curva de emissão típica. A curva <u>a</u> mostra a curva de emissão do quartzo natural e a curva <u>b</u>, a curva de emissão do quartzo natural que recebeu uma dose de irradiação de 300 rad no laboratório. Pode-se observar, nas curvas, a existência dos picos <u>a</u> temperatura baixa para a amostra que foi irradiada recentemente no laboratório. O acréscimo na altura do pico de 270° C, depois de irradiado com uma dose de 300 rad, <u>é</u> que define a sensibilidade do quartzo (TL/dose).

Verificou-se que o acréscimo na altura de um determinado pico, quando irradiado no laboratório, é uma função linear da dose recebida. Esta linearidade foi testada irradiando-se a amostra com doses conhecidas. Para a datação, supõe-se que esta linearidade se manteve constante desde a fabricação da peça.

Realizou-se também um teste de linearidade, com uma amostra de quartzo de Itapeva, após sofrer recozimento de 400°C por uma hora.

Figura 12 Curva de emissão de uma amostra de quartzo da peça de Itapeva, urna Nº1 (970anos).

a)Curva de emissão do quartzo natural.

b)Curva de emissão do quartzo irradiado com uma dose correspondente a 300rad.

O quartzo foi irradiado com 137 Cs, a várias doses diferentes (figura 13). Nesta figura pode ser observada a linearidade da altura do pico de 270°C com a dose de até 549 rad.

Foram feitos testes para verificar a influência da luz sobre a TL. Constatou-se que apos a exposição de uma amostra de quartzo à luz de mercúrio, ocorre o decaimento do pico de 270°C e 225°C, e ocorre ainda o aumento do pico de 90°C. Êste teste qualitativo é suficiente para constatar a influência da luz sobre a TL. Decorrente disto, é recomendá-#el que se evite a exposição do material à luz, durante todo o processo.

Foi triturada uma amostra de quartzo irradiado e em leituras feitas em ambiente de N_2 não foi observada triboluminescência (TL não in duzida por irradiação, mas por choque mecânico). Em geral, êstes picos a parecem à temperaturas acima de 500°C (21). Como as amostras queéñão sofreram choques mecânicos têm curvas de emissão, do mesmo aspecto que as amostras naturais da cerâmica, é razoável supor que os naturais também não têm triboluminescência.

Concluindo, foi observado que:

- devido a estabilidade térmica, deve ser usado o pico de 270°C para a datação;
- 2. existe linearidade entre a altura do pico e a dose;
- 3. existe influência da luz sôbre a altura do pico de 270°C;
- 4. leituras feitas em N gasoso não apresentaram triboluminescência.

CAPÍTULO IV

RESULTADOS E DISCUSSÃO

Neste capítulo será descrita a datação das peças arqueológicas que foram estudadas. Convém lembrar que os elementos básicos deste método de datação são:

- 1. determinação da atividade natural da terra e da cerâmica encontrada. Esta atividade é que impulsiona o "relógio ter moluminescente". A atividade é determinada pelo método das contagens das partículas alfa e o teor de K pelo método químico que engloba técnicas descritas no capítulo II;
- 2. transformação da atividade em uma taxa de dose (dose rate), possibilitada pelo conhecimento dos raios gama e beta emitidos pelo K e pelas séries radioativas do U e do Th. Detalhes dêste cálculo estão no capítulo III. Após êste está gio obtem-se a dose absorvida por ano, pelo quartzo, em rad/ano;
- 3. a terceira parte é a leitura do "relógio termoluminescente", que consiste na leitura da dose total absorvida pela amostra. Para isto mede-se a TL emitida pelo quartzo e determi na-se a sensibilidade dêste, através de uma calibração no laboratório, o que possibilita a determinação da dose total absorvida pelo quartzo desde a sua fabricação. As técnicas de medidas da TL foram descritas no capítulo II.

Em seguida, será mostrada a aplicação dêstes três processos na datação das peças recolhidas em Itapeva, Grécia, Angatuba e Piraju. Sempre que possível, será mostrada a concordância entre as idades determinadas por esta técnica e por outras técnicas.

IV.1 - Datação das peças recolhidas em Itapeva

As peças apresentavam-se recobertas de terra, e foi necessário limpar a sua superfície. Durante êste processo foi retirada uma cama da de 1 mm da cerâmica, a fim de eliminar a parte que esteve exposta às radiações beta da terra.

As peças foram trituradas, peneiradas, com o fito de selecionar as partículas de 0,074 mm a 0,149 mm. Após a lavagem e a separação do quartzo, magnèticamente, a amostra obtida foi dividida em duas partes iguais. Uma parte foi encapsulada num recipiente de plástico e irradiada com uma dose de 300 rad (a 30 cm da fonte de ¹³⁷Cs). Esta amostra ficou com uma dose total absorvida correspondente a dose natural, recebida enquanto esteve enterrada, acrescida de uma dose artificial de 300 rad. A segunda parte da amostra de quartzo tem somente a dose correspondente a dose natural, absorvida enquanto esteve enterrada.

A dose natural total obtem-se determinando a TL emitida pelo quartzo natural (fração do quartzo que não foi irradiado no laboratório) e, em seguida, determina-se a TL devido a dose natural, acrescida de uma dose de 300 rad. As curvas de emissão destas duas amostras são mostradas na Figura 12. A curva <u>a</u> mostra a emissão do quartzo natural e a curva <u>b</u>, a emissão do quartzo natural, acrescida pela irradiação de 300 rad no la boratório. O quartzo irradiado no laboratório apresenta picos acentuados à temperatura baixa, enquanto que os naturais não apresentam êsses picos, devido ao decaimento térmico durante sua longa permanência na terra.

Assim, levou-se em consideração somente o pico de 270°C, nas determinações de idades. Vê-se na Figura 12 que a diferença entre as alturas dos picos de 270°C referentes as duas amostras corresponde a dose de 300 rad.

Denomine-se de <u>A</u> a altura do pico de 270° C da curva de emissão do quartzo natural, e de <u>B</u> a altura do pico da mesma temperatura do quartzo natural, que recebeu a dose de 300 rad. Portanto, a diferença de altura B-A deve-se a dose de 300 rad. Então, a dose total absorvida pelo quartzo natural, enquanto esteve enterrado, será dada por:

$$D = \frac{A \times 300}{B - A} \text{ rad}$$

Vê-se pela Figura 12 que A = 4,1 unidades e B = 8,9 unidades, resultando uma dose total, neste caso, de 253 rad.

Para obter-se uma precisão maior do que aquela obtida com uma só leitura foram efetuadas, para cada peça, 20 leituras de TL natural e 20 leituras dos quartzos que receberam dose de 300 rad, sendo o resultado final uma média. Também para melhorar a precisão, tôdas as leituras foram feitas em ambiente de nitrogênio gasoso, para tornarem-se desprezí veis os efeitos de triboluminescência e evitar-se a queima de alguma matéria orgânica, possível de emitir luz espúria. Tomadas tôdas essas precauções, o desvio padrão da média das 20 leituras foi de 3% aproximada-

FIGURA 14. Fotografia das peças de Itapeva e Angatuba.

NQ	Altura do pico de 270ºC	(Unidades arbitrárias)	Dose total(rad)
	А	В	
1	4,1	8,9	253
2	4,3	9,0	270
3	3,9	8,3	262
4	4,5	9,3	280
5	4,8	10,2	264

mente. Os valores médios da dose absorvida pelas peças de Itapeva estão na tabela abaixo:

Na tabela, pode-se observar que pràticamente tôdas as peças receberam a mesma dose. A diferença de dose absorvida entre a peça de do se maior e a de dose menor é de ~2% apenas, mostrando que as peças foram fabricadas ao mesmo tempo. Isto seria uma constatação relativa das idades, sendo êste fato por si so interessante. A idade absoluta pode ser determinada conhecendo-se a taxa de dose absorvida pelas peças.

Como já foi visto que a dose total no quartzo, é devido às partículas beta da cerâmica e à radiação gama da terra, temos que para a determinação da taxa de dose devido a estas radiações, é necessária a determinação do teor dos emissores (lembrando-se que foram escolhidos grãos de quartzo de tamanho tal que a ação das partículas alfa não se torna importante na dose total absorvida pelo quartzo).

Para determinar o teor dos emissores foram feitas leituras, tanto com o po fino da cerâmica triturada, quanço com uma amostra de ter ra da vizinhança onde a peça esteve enterrada. Depositou-se uma camada de 3 mm dêste material sobre a tela de ZnS. Esta espessura pode ser considerada infinita para as partículas alfa. Em primeiro lugar, realizaram -se as contagens simples totais das partículas alfa. Estas contagens foram efetuadas num período de 48 horas, resultando numa contagem total de ~5.000 c, em média (para as peças de Itapeva). Neste caso, o desvio é de ordem de grandeza de 1%.

As contagens dos pares foram feitas num período de 72 horas, resultando em geral, uma contagem total de ~120 c, que envolve neste caso um desvio de 10%, aproximadamente. Com a relação destas duas contagens, determina-se o teor do Th (ver capítulo II) e em seguida do U. Conhecendo-se o teor dêsses elementos e de suas famílias (em ppm), usando -se a relação aqui deduzida (capítulo III) entre a dose anual absorvida e a concentração dos emissores U, Th e K, e ainda acrescentando-se 15 m rad/ano devido ãs radiações cósmicas (10), determina-se a dose anual absorvida pelo quartzo.

Encontra-se na tabela abaixo o resultado das doses anuais pro venientes das radiações beta da cerâmica, radiações gama da terra e dos raios cósmicos, e o resultado total.

Nọ	Dose anual (m rad/ano)		
	gama (terra)	beta (cerâmica)	total
l	115	160	275
2	120	125	245
3	110	125	235
4	95	140	235
5	112	148	260

Outra forma de determinação da dose gama anual da terra, por exemplo, envolve o processo de dosímetros termoluminescentes enterrados no local da escavação, donde a peça foi retirada. Foram enterrados alguns dosímetros no local, por alguns meses, e depois fêz-se a leitura da TL acumulada. O dosímetro utilizado foi o TLD-100, da companhia Harshaw, e ficou enterrado por 132 dias. Conhecendo-se a sensibilidade dêste dosíme tro, ao determinar-se a TL, pode-se saber a dose que êle recebeu durante o período em que esteve enterrado. Com êste método foi possível obter a dose gama absorvida. O resultado foi de 106 m rad/ano. Pode-se observar que o desvio no valor da média (110 m rad/ano), com relação a dose deter minada com o dosímetro, é de 3,8%, fato que aumenta a confiança na técni ca de contagem alfa.

O desvio na determinação de cada um dos valores, da dose absorvida, é devido ao desvio na determinação do Th, U e do K. Sabe-se que o desvio na determinação do teor do Th (pulsos duplos) é de 00% e a determinação dos pulsos simples totais de 1%. Mas, o êrro na taxa de dose não contém uma imprecisão tão grande (~10%), pois o total é conhecido com uma precisão de 1%, e uma mudança de 10% na razão Th/U não muda o t<u>e</u> or total dos emissores. Pode-se, enfim, considerar um desvio de aproxima damente 5% no caso da quantidade de U ser aproximadamente igual a do Th, o que acontece na maioria dos casos (21).

Para a determinação da idade considera-se que a dose anual re cebida pela peça seja constante durante o período em que a peça esteve enterrada. Neste caso, a idade serã dada pela relação:

 $I = \frac{D_{total}}{D_{anual}}$

No exemplo da urna nº 1 de Itapeva (Figura 12) a idade é de 253/0,275 = 970 anos. Resumindo, para tôdas as urnas de Itapeva, obteve -se:

NQ	Dose anual (m rad/ano)	Dose total (rad)	Idade (anos)
1	275	253	970
2	245	270	1100
3	235	262	1110 %
4	235	280	1190
5	260	264	1010
Média		Territorio Concencia de la conc el concencia de la concenci	1076

A idade das peças aqui datadas, ja havia sofrido uma constata ção arqueológica auxiliada pelo método C-14, e seu valor estava definido em 1000 anos*. Esta coincidência possibilitou a verificação da validade do método usado neste trabalho.

IV.2 - Datação da peça da Grécia

A peça da Grécia foi retirada da coleção do Museu de Arqueolo gia e Etnologia da USP** e portanto a peça jã estava limpa na sua superfície externa. Ela apresentava um aspecto mais compacto, e era mais bem

* Tese de Doutoramento da Dra. Luciana Pallestrini, apresentada na Universidade de Sorbonne.

**Por doação do Prof. Dr. Ulpiano Bezerra de Menezes, a quem agradecemos.

queimada do que as peças do Brasil. Quebrou-se a peça em dois fragmentos e efetuou-se a datação nas duas partes, em separado. Denominaremos de G_a e G_b as duas partes da peça da Grécia.

Efetuou-se o processo preparativo para cada uma das partes da peça, G_a e G_b : retirar uma parte de 1 mm de espessura de superfície externa, selecionar os grãos pelo tamanho, realizar a lavagem e a separação magnética. Após a separação, irradiou-se uma parte do quartzo de G_a com uma dose de 200 rad, e outra parte de G_a com 300 rad, restando uma terceira parte de G_a que não foi irradiada. O mesmo processo foi realiza do com G_b .

O quartzo da peça grega tinha um aspecto bem diferente em com paração com os quartzos brasileiros, apresentando uma superfície mais límpida e transparente. Também quanto a forma foi observada uma diferença: a não existência de superfícies arredondadas. Apesar da procedência da amostra ser bastante diferente, as curvas de emissão são essencialmen te as mesmas que as curvas das peças brasileiras. Entretanto, o quartzo grego apresentava uma sensibilidade significantemente maior, emitindo mais luz por R de exposição no laboratório, possívelmente pelo fato de ser mais transparente. Foi observada, neste caso também, a linearidade da altura do pico da região de 270°C com a dose.

Determinou-se as alturas dos picos de 270°C da curva de emis são do quartzo. A média destas alturas para o quartzo natural foi 2,5 unidades para a peça G_a e 2,0 unidades para a peça G_b . Em seguida, determinou-se a altura dêstes picos para o quartzo irradiado, com doses de 200 rad e 300 rad respectivamente. Os resultados obtidos foram:

Amostra	Altura dos	s picos (unio	l. arbitrárias)
	А	B ₂₀₀	B ₃₀₀
G _a	2,5	3,3	3,7
Gb	2,0	2,9	3,2

Pôde-se observar a diferença nas alturas dos picos nas duas <u>a</u> mostras e ainda uma diferença de sensibilidade para a irradiação no laboratório. Ambas as amostras responderam linearmente à dose e,devido às suas diferentes sensibilidades, foi levado em conta a dose total absorv<u>i</u> da:

Amostra	D _{total} (rad)
G _a	600
Gb	500

Constatou-se que pode existir uma variação nas amostras de uma mesma peça, devido ao método de preparação e separação, mas êste êrro pode ser diminuido efetuando-se medidas para a mesma peça, várias vêzes.

Para a peça da Grécia, infelizmente, não foi possível a deter minação da dose gama local, pelo fato de não se ter uma amostra da terra onde a peça esteve enterrada. Por êste fato, foi colhida a informação (22) do valor médio da dose gama em sítios arqueológicos: 80 m rad/ano,e em geral os valores variam em 20% em tôrno desta média (20), (21). Consi

derando êste valor repesentativo, assumiu-se de 80 m rad/ano a dose gama local para esta peça. Como êste valor corresponde aproximadamente à 40% da dose total, qualquer desvio X neste valor acarretará um desvio de sòmente X × 0,4 no valor total da dose.

Foi efetuada a contagem das partículas alfa emitidas pelo po fino da cerâmica, através do qual determinou-se o teor dos emissores beta. O teor de K foi determinado no Instituto de Pesquisas Tecnológicas (IPT) e com êstes dados calculou-se a dose anual devido as particulas be ta. O resultado para a dose total foi:

Dose (m rad/ano)			
Beta	Gama	Total	
112	80	190	

Esta operação foi efetuada somente uma vez, misturando-se os pos finos da amostra G_a e G_b .

Finalmente, para determinar a idade dividiu-se o valor da dose total pela dose anual e obteve-se, para as duas amostras, a idade de 3150 anos e 2540 anos. Sendo a média de 2850 anos. Esta peça já havia <u>si</u> do datada por outros processos e indicava procedência de 700 a 1000 anos A.C. (2700 a 3000 anos)*.

Pode-se observar que nestas duas séries de datação, a de peças de Itapeva e da peça da Grécia, há uma boa concordância entre os re-

^{*} Esta datação so nos foi especificada,quando o resultado de 2850 anos, obtido pelo método da TL, foi por nos apresentado.

sultados obtidos, através do método aqui descrito e de outros métodos.

Sendo assim, efetuou-se as datações das outras peças de idades desconhecidas, mas provenientes da mesma região onde foram encontradas as peças de Itapeva.

IV.3 - Datação das peças de Piraju e Angatuba

O aspecto exterior destas peças era muito semelhante às de Itapeva (Figura 14). Tôdas muito mal queimadas, fàcilmente quebráveis e a quantidade de quartzo e a aparência muito se assemelhavam. Convém ressal tar que, em tôdas as amostras brasileiras (Itapeva, Piraju e Angatuba), os grãos de quartzo apresentavam superfícies arredondadas.

A observação através da lupa demonstrou semelhanças na colora ção dos grãos de quartzo em tôdas as amostras, bem diferenciadas porém, da amostra grega ou outras amostras de quartzo natural utilizadas para esta: comparação.

O processo de datação foi similar ao da peça de Itapeva. O re sultado das doses totais obtido para estas amostras, foram:

Amostra nº	Altura dos picos d	Dose to-	Média	
	Α	B B	tal(rad)	(rad)
Piraju - 1	3,9	7,8	300	
Piraju - 2	4,7	10,3	250	260
Piraju - 3	4,3	9,9	230	
Angatuba - 1	4,2	7,8	350	280
Angatuba - 2	4,0	9,7	210	200

Observa-se, na tabela da página anterior, que a média da dose total absorvida para as peças de Piraju é de 260 rad, e para as de Angatuba é de 280 rad, e a diferença observada de 20 rad está dentro da faixa de êrro experimental.

A dose total anual absorvida por estas peças, foi determinada através da contagem alfa da cerâmica e da terra, resultando em:

Amostra nº	Dose total (m rad/ano)			
	Beta	Gama	Total	
Piraju - l	130	150	280	
Piraju - 2	160	100	260	
Piraju - 3	140	100	240	
Angatuba - 1	110	130	240	
Angatuba - 2	115	100	215	

Finalmente, a idade da peça é calculada de modo similar às ou tras peças, obtendo-se os resultados:

Amostra n?	Dose total (rad)	Dose anual (m rad/ano)	Idade (anos)	Média (anos)
Piraju - 1	300	280	1150	and the second second second second
Piraju - 2	250	260	960	1020
Piraju - 3	230	240	955	en la en constant à la constant e des
Angatuba - 1	350	240	1450	1210
Angatuba - 2	210	215	980	

Considerando a semelhança no aspecto das peças (Figura 14), a localização dos sítios arqueológicos, aspectos do quartzo, e as idades obtidas, conclue-se que tôdas as peças do Brasil (Itapeva, Piraju e Ang<u>a</u> tuba) são provenientes da mesma regi**ão** e da mesma época.

CONCLUSÃO E SUGESTÕES

Neste trabalho foi encontrada uma estreita concordância entre os resultados obtidos pelo método da termoluminescência e aquêles obtidos através de outros métodos. Esta concordância se de u em dois níveis: para peças das quais se tinha um conhecimento prévio de sua idade e para peças, como no caso da peça grega, em que a idade já determinada por outros método, so foi especificada quando apresentou-se o resultado obt<u>i</u> do pelo método da termoluminescência.

Os resultados obtidos com o contador alfa indicam que pelo mé todo das contagens, e com esta aparelhagem, podem-se determinar satisfatòriamente concentrações de até 1 ppm de Urânio e de Tório, com um desvio padrão de aproximadamente 5%. A concordância entre êste método e o de dosímetro termoluminescente é bastante satisfatório.

Durante as experiências, uma dificuldade foi constatada: observou-se a influência da luz nas alturas dos picos, ocorrendo uma diminuição nas alturas dos picos de 270°C e 220°C e um aumento na altura do pico de 90°C. Por êste fato, em tôdas as etapas do processo de datação, recomenda-se que seja evitado o contato, do material triturado, com a luz.

Na obtenção de idades precisas devem ser consideradas algumas possíveis fontes de êrro, tais como:

 a concentração de U e Th pode não ser constante durante o período em que a peça esteve enterrada;

- a linearidade apresentada pela relação altura do pico com dose recebida, pode não ter existido desde que a peça foi enterrada;
- 3. o desconhecimento da história anterior da peça, que muitas vêzes impossibilita ao pesquisador saber se ela foi deslocada de seu lugar de origem ou aquecida em alguma época.

Estas fontes de erro, embora relevantes, tiveram uma influencia insignificante nos resultados obtidos até agora, seja neste trabalho, seja em outros trabalhos ja feitos sobre o mesmo assunto.

Como consequência de todo êste trabalho, algumas sugestões de estudo ou trabalhos futuros ocorreram ao pesquisador e, seria conveniente citá-las:

- 1. aperfeiçoamento do contador alfa, utilizando um conjunto <u>e</u> letrônico de ruído baixo. Com um bom conjunto eletrônico é possível obter-se uma contagem de fundo de até 2 c/h (18). Neste caso, poder-se-ia determinar teores de U e Th da ordem de 0,01 ppm;
- um estudo quantitativo da influência da luz na determinação da idade de peças arqueológicas;
- 3. desenvolvimento de um método de microdosimetria alfa, beta e gama que possibilite a determinação da dose através de dosimetria termoluminescente;

- 4. levantamento de doses locais através do enterramento de do símetros termoluminescentes em várias regiões, principalmente nos sítios arqueológicos.
- 64

APÊNDICE

CÁLCULO DOS PARES ESPÚRIOS (18)

Para contagens realizadas durante longos períodos de tempo, a probabilidade de que a emissão de <u>n</u> partículas alfa ocorra num dado intervalo de tempo é dada por:

$$\frac{x^{n}}{n!} e^{-x}$$
(1)

onde: x é a média do número de contagens durante o intervalo; <u>n</u> pode ter qualquer valor positivo de 0 a ∞ .

Seja S a taxa de contagem observada. No intervalo de tempo É:

$$x = St$$
 (2)

Seja t = 0,32 seg e S a contagem em c/seg. A probabilidade de ocorrência de duas particulas (n = 2) no intervalo de tempo t é:

$$P = \frac{S^2 t^2}{2} \times e^{-S^2 t} = \frac{S^2}{2} (0,109) e^{-0,32 \times S} = S^2 \times 5,45 \times 10^{-2} \times e^{-0,32 \times S}$$
(3)

Para valores de S < 0,1, os valores de P são pràticamente proporcionais a S².

Seja S' = c/win. A probabilidade:

$$P' = \left(\frac{S'}{2}\right)^2 (5, 3 \times 10^{-3})^2 \times e^{-S'(5, 3 \times 10^{-3})}$$
(4)

Para pequenos valores de S', temos:

$$P = (S^*)^2 \frac{28,09 \times 10^{-6}}{2}$$
(5)

E o número de pares espúrios em 1000 min:

$$= \frac{14.04 \times 10^{-6} \times 10^{3}}{5.3 \times 10^{-3}} \times (S')^{2} = 2.64 \times (S')^{2}$$
(6)

Êste cálculo ainda não é perfeitamente exato por duas razões:

- a) o decaimento das duas séries não segue perfeitamente a distribuição de Poisson;
- b) existe a possibilidade de ocorrência da coincidência de or dem maior.

Bibliografia

- (1) DANIELS, F.-Thermoluminescence and related properties of crystals. Report of Symposium IV, Chemistry and Physics of Radiation Dosimetry; Technical Command, Army Chemical Center, Maryland, Part I, 148 (1950)
- (2) GROGLER, N., HOUTERMANS, F.G., and Stauffer, H. Helv. Phys. Acta, 33, 595 (1960)
- (3) FREMLIN, J.H., and SRIRATH,S., Archaeometry, 7, 58 (1964).
- (4) KENNEDY, G.C. and KNOPFF; L., Archaeology, 13, 147 (1860)
- (5) ICHIKAWA, Y., Bull.Inst.Chem.Res. Kyoto Univ., 43(1),1(1965)
- (6) AITKEN, M.J., TITE, M.S., and REID, J. Archaeometry, 6, 11(1963)
 (7) RALPH, E.K., and MICHAEL, H.N.,
 - Archaeometry, 10, 3(1967)
- (8) MAZESS,R.B., ZIMMERMAN,D.W., Science, 152,347 (1966)
- (9) AITKEN, M.J., REID, J., TITE, M.S., and FLEMING, S.J., Luminescence Dosimetry (edit. by Attix, F.H), 236 (US Atomic Energy Comission, 1967)
- (10)AITKEN,M.J., ZIMMERMAN,D.W., and FLEMING,S.J., Nature, 219,442 (1968)

(11) PALLESTRINI,L., Sítio Arqueológico FonsecaMuseu Paulista,Universidade de S. Paulo (1969)

(12) CAMERON, J.R., SUNTHARALINGAM, N. and KENNEDY, G.N., Thermoluminescent Dosimetry-The University of Wisconsin Press, Madison (1968)

(13) KONONENKO,A.M., Biofizika 2, 98 (1959)

(14) GLASSON, J.L.,

Phil. Mag., xIiii, 477(1922)

(15) HINE, G.J., and BROWNELL, G.L., Radiation Dosimetry Academic Press Inc., New York (1956)

(16) DANIELS,F., BOYD,C.A.,SAUNDERS,D.F., Science, 117, 343 (1953)

(17) ROCKWELL III, T. Reactor Shielding Design ManualD.Van Nostrand Company, Inc., Princeton, NJ (1956)

(18) TURNER, R.C., RADLEY, J.M., and MAYNEORD, W.V., The British Journal of Radiology, 31,397 (1958)

(19) PANNETIER, R., Vade-Mecum du Technicien Maisonneuve, S.A., Imprimeur-Editeur Sainte-Ruffine(1965)

(20) KAPLAN, I., Nuclear Physics Addison-Wesley Publis. Co., Inc., Massachusetts (1964)

(21) ZIMMERMAN, D.W.-Dating of Ancient Pottery by Thermoluminescence Second Int. Conf. on Luminescence Dosimetry, Catlinburg, Tenessee, USA (1968) pg.858

(22) MEJDAHL, V. -Dosimetry problems related to the Thermoluminescence dating of ancient ceramics-Second Int. Conf. on Luminescence Dosimetry, Gatlinburg, Tenessee, USA (1968)pg.868