LAURA SORDI

Orientador: Luiz guimaraes Ferreira

ESTUDO DA TRANSIÇÃO ORDEM-DESORDEM EM LIGAS DE Feni COM IMPUREZAS

Tese apresentada no Departamento de Física da Faculdade de Filosofia Ciências e L<u>e</u> tras da Universidade de São Paulo para a obtenção do título de "Mestre em Ciências "

l

a minha mãe a quem devo tudo que consegui real<u>i</u> zar

a meu marido pela magní fica colaboração que sempre me presta

a minha filha que veio completar minha ja imen sa felicidade

AGRADECIMENTOS

A realização dêste trabalho é fruto do acôrdo de colabor<u>a</u> ção científica estabelecido entre o Instituto de Energia Atômica, o Laboratório de Estado Sólido e Baixas Temperaturas do Departamento de Física da Faculdade de Filosofia e Ciências e Letras da Universidade São Paulo e o Laboratório de Física do Sólido do Ce<u>n</u> tro de Estudos Nucleares de Grenoble. Essa colaboração não teria sido possível se não fossem os esforços do Prof. Dr. Rômulo Rib<u>ei</u> ro Pieroni, do Prof. Dr. Luiz Guimarães Ferreira e do Dr. Daniel Dautreppe, que muito fizeram para estabelecê-la e mantê-la, não esquecendo dos Srs. Gérard Kuhn e Raphael Tiberghien, fundadores do grupo de trabalho que por êle muito batalharam.

Agradecemos ao Prof. Dr. Luiz Guimarães Ferreira e ao Sr. François Valla pelas valiosas discussões que nos foram muito pr<u>o</u>veitosas.

Apresentamos nossos profundos agradecimentos ao Sr. François Barruel pelas importantes sugestões que nos deu, pela dicus são do manuscrito e pela efetiva colaboração prestada na realiza ção das experiências; ao Sr. Philippe Brosson pelos conselhos da dos e ao Sr. George Lucki pela colaboração prestada em grande par te das experiências que constituem êsse trabalho.

Agradecemos ao técnico Roger Argoud pela eficiente dedica ção na realização dêsse trabalho e pelas muitas modificações introduzidas para melhorar o dispositivo.

Agradecemos ainda ao pessoal da Divisão de Operação e Manu tenção de Reatores, da Oficina Mecânica e do Serviço de Impres são por tôdas as ajudas prestadas.

ÍNDICE

		pág.
introdução		1
Capítulo I	CONSIDERAÇÕES GERAIS E OBJETIVO :::	3
	1.1- Estrutura de uma liga binária	3
	1.2- Parâmetros de ordem	
	1.3- Sumário histórico	
	1.4- Sistema FeNi	
	1.5- Objetivo	
Capítulo II	RESISTIVIDADE DE LIGAS	
	2.1- Considerações gerais	
	2.2- Resistividade de metais de transição e	
	de suas lígas	
	2.3- Estudo das diferentes contribuições à	
	resistividade	
CapítuloIII	CINÉTICA DO PROCESSO DE ORDENAÇÃO	19
	3.1- Ordem a longo alcance	19
	3.2- Ordem a curto alcance	23
Capítulo IV	MÉTODO EXPERIMENTAL	25
	4.1- Introdução	25
	4.2- Princípio de medida	26
	4.3- Dispositivo de irradiação	28
	4.4- Circuito de cotrôle de temperatura	31
	4.5- Circuito de medida	32
	4.6- Amostras	34
Capítulo V	RESULTADOS OBTIDOS	36
Capítulo VI	DISCUSSÃO DOS RESULTADOS	41
	6.1- Ligas FeNiSi	41
	A- Influência da impureza	41
	B- Determinação de T _c	56
	6.2- Ligas FeNiMo	60
	A- Determinação de T _c	60

,

B- Determinação do tempo de relaxação .	61
6.3- Análise da resistividade	63
6.4- Problemas experimentais	65
CapítuloVII CONCLUSÕES	69
SUGESTÕES PARA FUTUROS TRABALHOS	71
BIBLIOGRAFIA	73
ÍNDICE DAS FIGURAS	77

INTRODUÇÃO

O presente trabalho visa trazer uma contribuição ao estudo da transição ordem-desordem em ligas. Estudamos a liga <u>e</u> quiatômica ferro-niquel (FeNi) dopada com impurezas de Si e Mo (2% e 4%) e pretendemos estudar algumas grandezas físicas do pr<u>o</u> cesso de estabelecimento de ordem como a temperatura crítica, <u>e</u> nergia de ativação e tempo de relaxação.

A interpretação do trabalho fois feita comparando nos sos resultados com aquêles obtidos no laboratório de Física do Sólido do Centro de Estudos Nucleares de Grenoble onde a liga FeNi pura (50%-50%) foi extensamente estudada.

Devido ao comportamento anômalo apresentado pela $l\underline{i}$ ga com Si não foi possível determinar as grandezas que nos $t\overline{i}$ nhamos proposto, dirigimos então, esta pesquisa no sentido de <u>a</u> nalisar e compreender o fenômeno intimo da ordenação.

Se bem que tenhamos sugerido uma explicação para os resultados encontrados, ulteriores experiências serão necessárias para confirmar as nossas suposições.

É exatamente nesse fato que se resume a importância dêste trabalho; que abre um vasto campo de estudo, quer experimental, quer teórico.

A técnica utilizada foi a de medir a resistividade elétrica de amostras filiformes durante recosimentos isotérmicos sob irradiação com neutrons rápidos. É necessário ressaltar que essa técnica não é de grande eficiência para ligas dopadas pois os resultados obtidos são de difícil interpretação.

. 1 .

A velocidade de ordenação de nossas ligas é relativamente baixa mesmo sob irradiação de neutrons, o que torna êste estudo muito lento. Além disso temos outro obstáculo para o bom rendimento do trabalho que é o curto tempo de funcionamento do reator, em média 36 horas semanais.

O primeiro capítulo além de expor o objetivo dêste trabalho dá alguns conceitos básicos, descreve o sistema FeNi e apresenta a evolução histórica da transformação ordem-desordem.

No segundo capítulo analisamos as diversas contri buições para a resistividade de uma liga de metais de transição dopada com impurezas e no terceiro, descrevemos as relações entre a resistividade e os parâmetros de ordem, bem como, a lei que rege sua variação no tempo durante tratamentos térmicos.

Descreveremos o método experimental no quarto capítulo e apresentaremos os resultados no quinto. O sexto será de dicado às discussões.

CAPÍTULO I

CONSIDERAÇÕES GERAIS E OBJETIVO

Teceremos considerações teóricas fundamentais a respeito de ligas binárias pois suporemos que as ligas por nos est<u>u</u> dadas (FeNi com impurezas de Si e Mo) tem, em primeira aproximação, um comportamento análogo ao dessas ligas.

1.1 ESTRUTURA DE UMA LIGA BINÁRIA

.) Uma liga formada de atomos A e B esta <u>desordena-</u> <u>da</u> quando os atomos dos dois tipos estão distribuidos casualmente pelos pontos da rêde cristalina.

.) A liga estará <u>ordenada</u> se os átomos de um certo tipo estiverem distribuidos de modo preferencial formando uma sub-rêde periódica.

.)Geralmente, porém, a liga está num estado interme diário e caracteriza-se então seu grau de ordem definindo os parâmetros de ordem a longo alcance (O.L.A.) e de ordem a curto al cance (O.C.A.). A seguir descreveremos as teorias clássicas sôbre êsses dois tipos de ordem.

1.2 PARÂMETROS DE ORDEM

.) Afim de especificar o grau de ordem do arranjo dos átomos da liga, Bragg e Williams⁽¹⁾ introduziram, em 1934, o conceito de parâmetro de ordem a longo alcance S, definindo-o c<u>o</u> mo:

$$S = \frac{r_{\alpha} - F_A}{1 - F_A} = \frac{r_{\beta} - F_B}{1 - F_B}$$

onde :

- F_A porcentagem de átomos do tipo A F_B - porcentagem de átomos do tipo B r_α - porcentagem de lugares α ocupados por
 - atomos Α r - porceptagem de lugares β ocupados po
 - r_{β} porcentagem de lugares β ocupados por átomos B

lugares α são os pontos da rêde ocupados por atomos A quando o arranjo é perfeitamente ordenado. Defin<u>t</u> ção análoga vale para lugares β_{\circ}

Quando a liga estiver perfeitamente ordenada $r_{\alpha} = r_{\beta} = 1 e S = 1$; quando a distribuição de átomos for totalmente aleatória $r_{\alpha} = F_{A}$; $r_{\beta} = F_{B} e S=0$.

.) Considerando a existência de fôrças somente entre vizinhos mais próximos Bethe $^{(2)}$ definiu, em 1935, o parâmetro de ordem a curto alcance σ

$$\sigma = \frac{q - q_{desord}}{q_{max} - q_{desord}}$$

onde : $q = \frac{Q_{AB}}{Q}$ - fração de pares AB de atomos dif<u>e</u> rentes

> $Q = Q_{AA} + Q_{BB} + Q_{AB} - número total de pares$ q_{max} - valor máximo de q (liga ordenada)q_{desord} - valor mínimo de q (liga desorden<u>a</u>

O intervalo de variação de o também é de O a 1.

Êstes dois parâmetros especificam a ordem analisan-

do-a de dois pontos de vista diferentes, enquanto S a mede pela quantidade de lugares α e β ocupados corretamente, σ da em média, o modo como cada atomo é cercado por seus vizinhos.

0 valor de σ não é determinado unicamente pelo de S; de fato; quando S = 1, σ será 1 mas quando S = 0 σ pode ou não ser nulo, como pode ser visto pela figura 1⁽³⁾ que nos dá a variação de S e σ em função da temperatura T.

Analisando o gráfico de S e σ percebe-se a existência de uma temperatura característica acima da qual não existe ordem a longo alcance; é a <u>temperatura crítica</u> T_c da transição ordem-desordem.

⁴Acima de T_c o único valor estável para S é zero ap<u>e</u> zar que o número médio de pares vizinhos AB, de átomos diferen: tes, pode ser maior que o esperado numa distribuição casual; situação esta, em que se terá ordem a curto alcance.

1.3 SUMÁRIO HISTÓRICO

A primeira previsão da existência de um arranjo ordenado em ligas foi feita por Tammann⁽⁴⁾ em 1919 baseando-se em experiências químicas.

Em 1925, Johansson e Linde⁽⁵⁾ provaram a existência de superestrutura na liga AuCu através de análise com Raios-X.

As teorias expostas em 1.2 são muito simplificadas, uma descrição mais completa do estado de ordem deve envolver parâmetros mais complexos que descrevam, por exemplo, os estados de ordem intermediária. Estudos dêsse tipo foram feitos por Zernike⁽⁶⁾, Cowley⁽⁷⁾, Onsager⁽⁸⁾ que desenvolveram a teoria de Bethe e propuseram métodos rigorosos para a solução teórica dos f<u>e</u> nômenos cooperativos.

. 5.

Fig. 1 - Variação dos parâmetros de ordem em função da temperatura. (conforme Nix e Schockley) Antes de iniciarmos a apresentação de nosso trabalho descreveremos o sistema da liga FeNi pura.

。) A figura 2a é a representação da liga FeNi desor denada onde os pontos da rêde são ocupados indiferentemente por atomos de Fe ou de Ni。

») O estado ordenado da liga equiatômica é do tipo
 AuCu (L 1₀) apresentando-se como uma sucessão de planos paralé los alternados de átomos de Fe e de Ni (fig. 2b).

 Oualquer que seja o estado de ordem a estrutura cristalina será cúbica face centrada com o parâmetro da rêde de 3,5 Å.

。) Pode-se também, no caso da composição FeNi₃, observar outro tipo de estado ordenado (fig. 2c) onde um átomo de Fe é rodeado de átomos de Ni.

.) Uma particularidade desta liga (FeNi 50% -50%) é que sendo a temperatura crítica, T_c, da transformação ordem-desordem muito baixa (321°C) a difusão térmica a essa temperatura é extremamente lenta e então não é possível, por tratamento térmico, obter o estado ordenado.

Pauléve et al.⁽⁹⁾ acelerando a difusão térmica por bombardeamento com neutrons puderam obter aquêle estado ordenado do tipo FeNi.

Êsse estudo foi prosseguido pelos pesquisadores do Laboratório de Fisica do Sólido do Centro de Estudos Nucleares de Grenoble utilizando diversos métodos de medida:

.) Laughier e Pauléve $^{(10)}$ através de difração de r<u>a</u>

. 8 .

Fig. 2 - Estrutura da liga binária c.f.c. FeNi

ios-X, fazendo uso do espalhamento anormal no Fe e no Ni da raia K_{α} do Co, puderam determinar o tamanho médio dos domínios ordenados e o grau de ordem a longo alcance.

Marchand⁽¹¹⁾ e Brosson⁽¹²⁾ por meio de medidas de resistividade obtiveram um grande número de dados sobre a transformação ordem-desordem em ligas de FeNi em várias porcentagens.

.) Chamberod⁽¹³⁾ através de medidas das propriedades magnéticas, em particular de anisotropia magnética e de ima<u>n</u> tação, pôde examinar os defeitos criados pelas irradiações e sua influência no processo de ordenação nas ligas FeNi.

.) A teoria sobre a ordem FeNi foi, em seguida, desenvolvida por Neel⁽¹⁴⁾.

Além das técnicas experimentais acima expostas o grupo de trabalho do C.E.N.G. fez também medidas de: calor específico, permeabilidade magnética, energia estocada, variação de comprimento, fricção interna e desenvolveu a difração neutronica e a microscopia eletrônica.

Assim são diversas e complementares as técnicas uti lizadas nesses estudos.

O presente trabalho, para o qual se utilizou a técnica de <u>medida de resistividade</u>, virá complementar os trabalhos realizados por êsse grupo.

1.5 OBJETIVO

O nosso objetivo e de estudar o processo de transição ordem-desordem da liga FeNi quando são introduzidas algumas impurezas. Em princípio, a presença de impurezas deve alterar o potencial cristalino e e de se esperar que altere o processo de ordenação e o parâmetro por nos medido, a resistividade. Os resultados serão comparados com os de Marchand⁽¹¹⁾ obtidos para as ligas puras de FeNi, o que nos conduzira as discussões finais e conclusões do presente trabalho.

Se as porcentagens de impurezas fossem elevadas, a utilização da difração de Raios-X permitir-nos-ia investigar a distribuição das mesmas na rêde cristalina. Mas como, no nosso caso, as porcentagens são muito pequenas (2% ou 4%) pudemos concluir. a priori, que seria impossível obter dados concretos, razão pela qual essa técnica não foi utilizada.

A medida das variações de resistividade com relação ao tempo durante tratamentos térmicos sob irradiação com neutrons rápidos fornece bons resultados para a liga FeNi pois essas variações são grandes com a ordenação ^(11,12).

Vamos ver, porém, que a introdução de impurezas altera essas variações diminuindo a eficiência da técnica.

Apesar das sérias dificuldades encontradas, cintinuamos a fazer o mesmo tipo de medidas para que as « comparações com os resultados de Marchand (ob. cit.) pudessem ser diretas e conclusivas.

CAPÍTULO II

RESISTIVIDADE DE LIGAS

2.1 CONSIDERAÇÕES GERAIS

Houston⁽¹⁵⁾ e Bloch⁽¹⁶⁾ (1928) foram os prime<u>i</u> ros a examinar a condutividade em metais à luz da mecânica quântica investigando as interações dos eletrons com a rêde cristalina.

Houston afirmou que o caminho livre médio de um el<u>e</u> tron numa rêde perfeita e estática é infinito, como podesser vi<u>s</u> to fàcilmente utilizando o esquema de Bloch⁽¹⁷⁾.

Quando a periodicidade no cristal é quebrada, a liberdade de movimento dos eletrons de condução diminue causando o espalhamento dos eletrons para novos estados. Esses espalhamentos cujas causas podem ser⁽¹⁸⁾:

- a) interação com fonons
- b) interação com outros eletrons
- c) interação com impurezas ou defeitos

dão origem a uma resistividade elétrica.

Na seção 2.3 estas interações serão examinadas de modo mais detalhado e com vistas ao objetivo do presente trabalho.

2.2 RESISTIVIDADE DE METAIS DE TRANSIÇÃO E DE SUAS LIGAS

Os metais de transição caracterizam-se por terem átomos com uma camada d'incompleta e apresentarem no estado sólido grande resistividade elétrica.

No caso do Fe e do Ni o nível de Fermi situa-se na região comum às bandas 3d e 4s que estão superpostas. Sua grande resistividade e, de um modo geral , a dos metais em transição pode ser explicada pela grande probabilidade de haver transições s d admitindo que os elétrons condutores são os da banda s próximos ao nível de Fermi. Isto prende-se ao fato que o número de estados por átomo na banda d é igual a dez e na banda s igual a dois; como a banda d é estreita a densidade de estados nessa ban da é muito maior que na s⁽¹⁹⁾.

Uma liga de metais de transição , que estejam próx<u>i</u> mos na tabela de Mendeleiev e que tenham as bandas 3d e 4s supe<u>r</u> postas , também pode ser descrita , dentro de boa aproximação,<u>pe</u> lo mesmo espectro de bandas ⁽¹²⁾.Dêsse modo, a liga FeNi poderá ser considerada como um metal de transição.

A tabela I fornece os valores relativos do número <u>e</u> fetivo de elétrons livres ,n_{ef}, por unidade de volume para os m<u>e</u> tais usados no nosso trabalho.

Metal n * ef		Referências				
Fe	1,14	(19 e 20)				
Ni	1,9	(19 e 20)				
Мо	1,7	(19 e 20)				
Si	0,01≈0					
$n_{ef} \sim 10^2 \frac{\sigma}{M\Theta_D^2}$ onde σ é a condutividade Θ_D^- temperatura de Debey M- massa atômica						

ΤA	BI	ΞL	Α	I

Com esta tabela podemos analisar a alteração no número de elétrons de condução da liga FeNi, causada pela introdução de impurezas polivalentes. Vemos que:

a) O n_{ef} do Si é muito menor que o do "nosso metal"

que foi suposto ser proporcional a 1,5, portanto sua presença não alterará o número de elétrons de cond<u>u</u> ção .

b)o n_{ef} do Mo é da mesma ordem de grandeza que o do "nosso metal",porém se estiver presente em pequenasporcentagens sua contribuição poderá ser desprezada como é o caso .

2.3 ESTUDO DAS DIFERENTES CONTRIBUIÇÕES À RESISTIVIDADE

Numa primeira tentativa de análise da resistividade separaremos as contribuições dependentes da temperatura ρ_{dT} , daquelas independentes , ρ_{iT} , conforme a regra de Mathiessen (21).

 $\rho = \rho_{dT} + \rho_{iT}$

o termo independente da temperatura provém do espalhamento devido à impurezas e defeitos do cristal.

A regra de Mathiessen é satisfeita se ⁽²¹⁾:

 1) O número efetivo de elétrons livres não é altera do pela adição de átomos estranhos,

2)as vibrações térmicas dos átomos estranhos dão o mesmo espalhamento que os átomos do metal solvente, ou seja, ρ_{dT} não é muito alterado pelo acréscimo de impurezas.

As considerações da seção 2.2 mostram -nos que a primeira condição é obedecida com razoável aproximação. Quanto à segunda, vê-se que também é obedecida utilizando um raciocínio de Mott e Jones ⁽²¹⁾. Esses autores assim analisaram o problema : a adição de uma impureza , digamos 2% para fixar idéias , altera ρ_{dT} em 2%, mas a alteração em ρ_{iT} é muito maior. Dêsse modo, a variação de ρ_{dT} é desprezível , o que torna possível a aplicação da regra de Mathiessen .

Continuando nossa análise associaremos à cada tipo de interação dos elétrons de condução com a rêde, tempos de rel<u>a</u> xação independentes.Isto nos permitirá descrever a resistividade como:uma soma de termos, cada um provocado por um tipo de espalhamento.

Assim:

 ρ_{dT} será a soma das contribuições à resistidade d<u>e</u> vido às interações elétron-fonon (ρ_{e-f}), elétron-elétron (ρ_{e-e}) e elétron-spin(ρ_{e-s}).

$${}^{\rho}dT = {}^{\rho}e-f + {}^{\rho}e-e + {}^{\rho}e-s$$
 (2.1)

do mesmo modo ρ_{iT} será a soma de três termos, $\rho'ca\underline{u}$ sada p^felos defeitos do cristal, ρ_i pelas suas impurezas e ρ_d p<u>e</u> lo grau de ordem imperfeita

 $\rho_{iT} = \rho' + \rho_i + \rho_d$ (2.2)

A seguir analisaremos cada termo separadamente.

 ho_{e-f} - é o termo de interação entre os elétrons de condução e as vibrações térmicas dos átomos da rede em tôrno de sua posição de equilíbrio. A probabilidade de espalhamento é pro porcional ao quadrado da amplitude das vibrações atômicas e, portanto, diretamente proporcional à temperatura absoluta acima da temperatura de Debey (Θ_{p}).

e-e é a contribuição à resistividade causada pelos choques en
 tre elétrons. Segundo Goodings(22) êsse termo depende de

T² a baixas temperaturas . Nos o desprezaremos por ser muito pequeno⁽¹²⁾.

 ρ – nos metais ferro ou antiferromagnéticos há um termo adicional que provém da interação de troca (exchange intera ction) entre os elétrons de condução e os elétrons magné ticos localizados.

> Essa contribuição chamada, em geral, de resistivida de de desordem de spin independente da temperatura, quan do esta é maior que a de Curie (Θ_{c}) porque daí em dia<u>n</u> te a desordem de spin é máxima. À temperaturas muito bai xas , entre 109K e 209K a dependência com T, como foi de monstrado pela primeira vez por Turov⁽²³⁾ (1955), é quadrática e entre êsses dois extremos o comportamento pode ser considerado, em primeira aproximação, linear⁽¹⁸⁾

> A ordem de spin, e portanto, o termo que estamos considerando, aumenta quando os spins são alinhados numa direção preferencial, o que é obtido fazendo um tratamen to térmico da amostra sob campo magnético.

> No presente trabalho, fizemos experiências sem a а plicação de campo magnético, portanto não modificamos а ordem de spin de nossas amostras , então, a variação de $p \stackrel{\text{def}}{=} s$ que teremos que considerar será unicamente com а temperatura .

> $\rho_{e-s} \in \rho_{e-f}$ dependem ambos linearmente de T Como serão agrupados e considerados como um único termo nas discussoes posteriores.

- é o termo de resistividade residual da liga perfeitamen-۵' te ordenada e sem impurezas. Se o cristal é perfeito esta contribuição é nula.

 $\rho_{\rm d}$ - a alternação desordenada de diferentes tipos de átomos <u>o</u> rigina uma quebra de periodicidade que causa o apareci mento desta contribuição.Se o estado é desordenado, $\rho_{\rm d}$ é então, máximo, e à medida que avançamos no processo de ordenação, a regularidade do potencial cristalino aumen ta e, portanto, $\rho_{\rm d}$ diminui.⁽²¹⁾

Para a liga binária podemos descrever a dependência dêsse termo com os parâmetros de ordem através das expres soês que daremos a seguir⁽²⁴⁾. No caso de ligas com certa ordenação, a dependência de ρ_d com a concentração(c_A) de átomos A é da forma:

$$\rho_{d} = A' \{ c_{A}(1-c_{A}) - \frac{1}{4}S^{2} - \frac{z}{4}(\sigma - S^{2}) \} 0.L.A. + 0.C.A.$$
 (2.3)

onde A' é uma constante positiva independente da compos<u>i</u> ção e dos parâmetros de ordem S e σ e z é o número de c<u>o</u> ordenação da primeira esfera de coordenação.

Na liga estequiométrica ($c_A = \frac{1}{2}$) para temperaturas maiores que T_c(S=O) vemos que a expressão de ρ_d se reduz a: $\rho_d = \Delta \frac{A'}{4}(1 - z\sigma)$ O.C.A. T > T_c (2.4)

Para temperaturas inferiores à temperatura crítica, Smi<u>r</u> nov⁽²⁵⁾usando a aproximação do elétron único (one-eletron) deduziu uma expressão onde só é importante a contribui ção da ordem a longo alcance, esta é:

$$\beta_{d} = A' \{c_A(1-c_A) - c_A(1-c_A)S^2\} \quad 0.L.A. \quad T < T_c \quad (2.5)$$

Quando S=0 a dependência de ρ_d com c_A é parabólica e ρ_d

: 17 :

será máximo quando c_A for igual a $\frac{1}{2}$.

As expressões (2.3), (2.4) e (2.5) mostram que a r<u>e</u> sistividade elétrica de desordem (ρ_d) de uma liga com uma dada composição diminui com o aumento do grau de ordem seja a longo, seja a curto alcance. No caso particular de uma liga 50%-50%, perfeitamente ordenada ($\sigma = 1$; S=1; c_A = $\frac{1}{2}$), ρ_d é igual a zero.

Pode-se dizer, portanto, que a ordenação da liga d<u>u</u> rante um tratamento térmico a temperatura constante, maior que T_c, causa uma variação da resistividade $\Delta \rho$ igual a:

$$\Delta \rho (\sigma) = \rho_d (\sigma) - \rho_o = -K\sigma \qquad (2.6)$$

onde: $\rho_{o} = \rho_{d}(\sigma) |_{\sigma=0}$ e K é um fator complexo que depende da superfície de

Fermi, do preenchimento das bandas e das zonas de Brilllouin. As variações do grau de ordem que consideraremosserão pequenas admitiremos, então, que K varia pouco ne<u>s</u> se domínio⁽¹¹⁾.

A expressão de $\dot{\rho}_{d}$ foi obtida considerando-se só os primeiros vizinhos para a ordem a curto alcance. Nas ligas com grande número de elétrons de condução isto não é totalmente verdadeiro, o coeficiente de σ podendo até tornar-se positivo donde ρ_{d} poderá ter uma variação positiva ou negativa durante o estabelecimento da ordem a curto alcance.

 ρ_i - O potencial cristalino é modificado pela introdução de im purezas assim como as funções de onda dos eletrons de con dução os quais passarão a ser espalhados de modo diferen te.

Nordheim, introduzindo um potencial médio fictício,

para descrever as interações numa liga e utilizando o método do eletron único obteve a expressão da resistividade elétrica para ligas de composição arbitrária. A me<u>s</u> ma expressão foi obtida, sem utilizar as hipóteses de Nordheim, por Krivoglaz e Smirnov⁽²⁴⁾ para pequenas concentrações c_c de átomos C numa liga binária AB.

Utilizando essas expressões podemos calcular a variação da resistividade, ou seja, os valores assumidos pelo termo p_i com a introdução de pequenas quntidades de impureza.

$$\Delta \rho = \rho_{i} = \{ A'_{3} (c_{B} + c_{C}) - (A'_{1} - A'_{2})c_{A} \} c_{C}$$
(2.7)

onde as constantes A'_1 , A'_2 e A'_3 são do mesmo tipo daquela (A') definida precedentemente.

No caso das ligas com que ptrabalhamos, $c_A = c_B^{}$, temos:

$$\tilde{\rho}_{i} = \{ A_{2}' - A_{1}' - 3A_{3}' \} c_{A} c_{C}$$
 (2.8)

então ρ_1 poderá ser positivo ou negativo conforme os valores assumidos por A', A', e A'.

Essas considerações teóricas serão utilizadas na i<u>n</u> terpretação dos resultados obtidos.

CAPÍTULO III

CINÉTICA DO PROCESSO DE ORDENAÇÃO

Admite-se que o principal mecanismo da ordenação nu ma liga é a difusão dos átomos por intermédio de lacunas, desde que a troca direta entre os átomos ou por intermédio de intersti ciais é desprezível⁽²⁵⁾. O tempo gasto no estabelecimento da ordem dependerá, portanto, da velocidade de difusão na liga e variará com a temperatura e com o material. Esse tempo poderá ser de alguns segundos (CuPd)⁽²⁶⁾ou pràticamente infinito (FeNi)⁽¹¹⁾. É importante, então, conhecer a evolução do estado de ordem em função do tempo a uma temperatura de tratamento dada.

3.1 ORDEM A LONGO ALCANCE

Diversos autores, entre os quais Bragg e Williams⁽¹⁾, Dienes⁽²⁷⁾ e Vineyard⁽²⁸⁾ desenvolveram teorias da cinética de ordenação que permitem calcular o tempo de relaxação e energia de ativação do processo. Êsses calculos são aproximados porque consideram a difusão homogênea e desprezam os processos de nucl<u>e</u> ação e crescimento de domínios. Para o caso específico de uma l<u>i</u> ga binária AB c.f.c. Mayanard⁽²⁹⁾ seguindo a teoria de Vineyard calculou a derivada, em relação ao tempo, do parâmetro de ordem S (velocidade de ordenação), e obteve a seguinte expressão, vál<u>i</u> da para um grau de ordem bastante elevado:

$$\frac{dS}{dt} = 2 c_L v_L \exp \left(-\frac{U}{kT}\right) \left(sh \frac{3vS}{2kT} - S ch \frac{3vS}{2kT}\right) \quad (3.1)$$

 v_L - frequência do modo de vibração associada à per mutação de uma lacuna com um átomo. Supôs-se $v_A = v_B = v_L$ c_L - concentração de lacunas. U - energia correspondente à permutação de um átomo e de uma lacuna. Supôs-se $U_A = U_B = U$. $v = V_{AB} - \frac{1}{2}(V_{AA} + V_{BB})$ - energia de interação onde $V_{AA}, V_{BB} e V_{AB}$ são as ener gias de interação de pares de vizinhos próximos AA, BB e AB.

A fig. (3) é a representação de $\frac{dS}{dt}$ em função de S para a liga FeNi, a diversas temperaturas, supondo como modêlo de estabelecimento da ordem o simples deslocamento de lacunas com energia de migração 1,1 ev.Observando-se êsse gráfico percebe-se a existência de uma temperatura crítica (T_c) acima da qual a velocidade $\frac{dS}{dt}$ é sempre negativa; pode ser definida pela segui<u>n</u> te relação:

$$\left\{\frac{d}{dS}\left(\frac{dS}{dt}\right)\right\}_{T=T_{c}} = 0$$

$$S=0$$

$$(3.2)$$

Para T < T_c a ordem pode se estabelecer e o seu valor de equilíbrio é definido por:

$$\left\{\frac{\mathrm{dS}}{\mathrm{dt}}\right\}_{\mathrm{S}=\mathrm{S}_{\infty}} = 0 \tag{3.3}$$

donde se chega a:

$$S_{\infty} = th \left(\frac{T_c}{T} S_{\infty}\right)$$

^{. 21 .}

expressão esta, obtida também por Bragg e Williams pois as duas teorias utilizam a mesma aproximação.

Para valores de S próximos do equilíbrio é lícito linearizar $\frac{dS}{dt}$, então:

$$\left\{\frac{d}{dS} \left(\frac{dS}{dt}\right)\right\}_{S=S_{\infty}} = -\frac{1}{\tau(t)}$$
(3.4)

onde τ é a constante de tempo de estabelecimento da ordem e depende de T e U.

A solução dessa equação, que nos dá o parâmetro de ordem nas proximidades do equilíbrio (final da cinética) é da forma exponencial:

$$S - S_{\infty} = -A \exp\left(-\frac{t}{\tau}\right)$$
 (3.5)

Voltando a fig. 3 constata-se que a velocidade de ordenação é máxima a uma temperatura um pouco abaixo de T_c; para aquela temperatura o tempo de relaxação será mínimo.

Nagy et al.⁽³⁰⁾ para analisar curvas experimentais de variação de resistividade da liga AuCu₃ consideraram duas fases na cinética de ordenação, a uma primeira associaram um pro cesso complexo, provâvelmente superposição de fenômenos distintos como a nucleação e crescimento de domínios, e à segunda ass<u>o</u> ciaram um aumento de ordem dentro dos domínios.

As curvas de resistividade foram então descritas por uma expressão da forma:

$$\rho = \rho_{\infty} + A_1(t) + A_2 \exp(-\frac{t}{\tau})$$
 (3.6)

onde o termo $A_2 \exp(-\frac{L}{\tau})$ está relacionado ao aumento de ordem de<u>n</u> tro dos domínios e o termo $A_1(t)$ se anula no fim da primeira fase, isto é, após um tempo t_o só existe um processo ativo que pode ser descrito por uma simples lei exponencial:

$$\rho = \rho_{\infty} + A_2 \exp\left(-\frac{t}{\tau}\right) \quad \text{para } t \ge t_0 \quad (3.7)$$

Como a determinação experimental de ρ_{∞} é demorada é, às vêzes, até impossível, Nagy (ob. cit.) construiu um gráfico de log{ $\rho(t) - \rho(t + \Delta t)$ em função do tempo, com intervalo Δt qualquer, para a determinação das constantes da equação (3.7).

3.2 ORDEM A CURTO ALCANCE

Iida⁽³¹⁾ mostrou teòricamente que o retorno ao valor de equilíbrio para pequenos desvios da ordem a curto alcance é regido por uma lei exponencial do tipo:

$$\sigma - \sigma_{\infty} = B \exp\left(-\frac{t}{\tau}\right) \tag{3.8}$$

Como vimos na seção 2.3 durante a mudança da ordem na liga o único termo da resistividade que varia é ρ_d . Mas sabemos pela (2.5) que a dependência entre ρ_d e σ é linear, portanto a variação da resistividade causada pelo aumento da ordem a curto alcance é :

$$\rho(t) - \rho_{\infty} = C \exp(-\frac{t}{\tau})$$
 (3.9)

onde o tempo de relaxação τ obedece a uma equação do tipo Arrhenius⁽³²⁾.

> $\tau = \tau_{o} \exp(\frac{\Delta E}{kT})$ τ_{o} é uma constante que depende do material e ΔE é a energia de ativação do processo.

Damask⁽³²⁾ estudando o latão com 30% de Zn encontrou uma diminuição na resistividade que obedecia a equação 339. A essa diminuição atribuiu o estabelecimento de ordem a curto al cance.

No caso de cinéticas sob irradiação de neutrons, na expressão (3.9), substitue-se t por ϕ , que é o fluxo de neutrons integrado no tempo, e τ por ψ que é a constante de fluxo integrado.

Na interpretação das curvas construiremos um gráfico análogo àquele proposto por Nagy para ordenação a longo alcan ce pois as equações da resistividade (3.7) e (3.9) são matemàticamente iguais.

Foram propostos outros métodos para determinação de $\tau \in \Delta \mathbb{E}$ como por exemplo aquêle de Damask. Alguns dêsses são bastante empíricos.

O método de Damask não foi utilizado no nosso caso pois a sua aplicação exigiria experiências muito longas, acima de 500 horas para cada recosimento.

CAPÍTULO IV

METODO EXPERIMENTAL

4.1 INTRODUÇÃO

O estabelecimento da ordem em ligas implica na troca de posição entre os atomos, fenômeno êste controlado pelo mecanismo de difusão de lacunas, é de se esperar, então, que a introdução de um excesso das mesmas aumente a velocidade do proce<u>s</u> so.

Entre os métodos usuais de aumento do número de lacunas estão:

a) - deformações plásticas - "cold work"

- b) têmpera a partir de altas temperaturas "quen ching"
- c) irradiação com eletrons de alta energia, raios
 Y, neutrons etc.

As deformações plásticas além de lacunas introduzem também deslocações que são sorvedouros de lacunas; não utilizar<u>e</u> mos êsse método.

Sabe-se que a concentração de lacunas em equilíbrio termodinâmico cresce com a temperatura, uma têmpera rápida a par tir de altas temperaturas congelará, então, êsse estado elevando muito o número de lacunas presentes na amostra.

A irradiação com neutrons rápidos (E > 1 Mev) inicia colisões em cascata com a criação de lacunas e intersticiais, em número relativamente independente da temperatura, êsse número diminue bastante, no entanto, por causa da grande probabilidade de recombinação dêsses defeitos. Esse processo é importante para ligas que apresentam transição ordem-desordem porque há deslocamento de um razoavel número de atomos.

No caso da liga FeNi, a ordem do tipo FeNi tem uma temperatura crítica baixa (321°C)⁽¹¹⁾ e o estado ordenado não po de ser obtido senão sob irradiação com neutrons; contráriamente a ordem FeNi₃; (T_c = 503°C⁽³³⁾, difusão térmica bem mais importan te) é conseguida so com tratamento térmico.

A irradiação com neutrons é então uma técnica para acelerar o processo de ordenação em algumas ligas.

4.2 PRINCÍPIO DE MEDIDA

Como as impurezas são em pequenas porcentagens admi timos que as ligas, objeto de nosso estudo, tem um comportamento análogo ao FeNi quanto ao estabelecimento da ordem.

O princípio de medida em nossas experiências foi en tão o de seguir o estabelecimento da ordem medindo a resistivida de elétrica de amostras, durante recosimentos isotérmicos sob ir radiação neutrônica. Éssas medidas foram feitas em intervalos re gulares de tempo, em geral de 1/2 hora, à temperatura do recosimento.

Utilizamos o princípio da lei de Ohm para medida da resistividade.

Na seção 4.4 veremos que a nossa aparelhagem deverá obedecer a duas condições essenciais,

- ter uma grande sensibilidade

- e permitir trabalhar em condições extremamente r<u>e</u> produtíveis.

O aparato experimental composto do dispositivo de irradiação (seção 4.3), do circuito de contrôle de temperatura (seção 4.4) e do circuito de medida (seção 4.5) está esquematiza

•

do na figura 4.

<u>4.3 DISPOSITIVO DE IRRADIAÇÃO</u>

O nosso dispositivo é do mesmo tipo que aquêle usado por Rechenberg⁽²⁶⁾, razão pela qual daremos unicamente um sim ples esbôço.

Em sua essência (fig 5) é formado de:

- a) um tubo externo, estanque, de alumíninio comepro Longamento flexível (ϕ_{ext} = 32 mm, ϕ_{int} = 22 mm).
- b) um tubo interno de alumínio (suporte do forno) com uma extremidade de aço inoxidável em tôrno da qual está enrolada uma resistência de aquecimento do tipo Sodern (forno $\phi_{ext} = 16 \text{ mm}, \phi_{int} =$ 14 mm, comprimento do forno = 16 cm).
- c) uma haste de alumínio (extrator) na extremidade da qual está o suporte de amostra que fica intei ramente dentro do forno.
- A haste vai colocada dentro do tubo interno.

O suporte de amostra deve ser de um material tal que satisfaça às seguintes condições:

- ter meia vida radioativa curta pata evitar superexposição no seu manuseio,
- ser bom condutor térmico para garantir homogeneidade na temperatura ao longo da amostra,
- ser isolante elétrico pois a amostra, pela qual passa uma corrente, está em contacto com a superfí cie do mesmo (fig. 6).

Assim utilizamos suportes de alumínio em cuja superfície foi depositada anodicamente uma camada isolante de óxido.

Êste dispositivo é preenchido com gás hélio (a 1,5 atmosferas de pressão) para evitar a oxidação da amostra e do

Fig. 5 - Esquema do dispositivo para irradiação

. 29 .

Fig. 6 - Disposição da amostra no suporte

forno; além disso o gás, sendo bom condutor térmico, facilita trocas de calor entre o forno e meio ambiente.

Para realização de cinéticas com neutrons o conjunto é colocado diretamente no caroço do reator IEAR-1 na posição 37, como indica a fig. 5.

4.4 CIRCUITO DE CONTRÔLE DE TEMPERATURA

Rechenberg ordenando o CuPd encontrou variações na resistividade da ordem de metade da resistividade inicial; para nossas ligas a variação correspondente é menor que 1%. Tornou-se então, necessário introduzir alguns aperfeiçoamentos, no dispos<u>i</u> tivo de Rechenberg, tendo em vista:

- 1?) diminuir a amplitude de oscilação da temperatura da amostra que provem do sistema de regulação do aquecimento cujo princípio baseia-se na variação periódica da corrente do forno. Efetivamente uma oscilação de aproximadamente 0,5°°C causa uma variação no valor da resistividade da mesma ordem de grandeza que o fenômeno estudado.
- 2°) conseguir medir a resistividade no instante pre ciso em que a temperatura do forno é exatamente aquela desejada.

Vejamos, em seguida, qual é o funcionamento deste sistema.

Acrescentamos mais um termo-par em contacto com a resistência de aquecimento do forno além daquêle já existente no suporte da amostra.

Envia-se a tensão do termo-par da amostra a uma pon te potenciométrica "MECI" e fixa-se nessa ponte o valor da tensão correspondente à temperatura desejada na amostra; o indica-
dor do galvanômetro da ponte é comandado pela diferença entre es sas duas ten_sões e move-se refletindo as variações de temperatura da amostra. O indicador passara pelo zero do galvanômetro que do a temperatura da amostra tiver o valor fixado na ponte e um sistema óptico (utilizando duas células fotoresistentes aciona das pela luz do indicador) determinara o instante conveniente pa ra a execução da medida.

A temperatura de referêcia do termo-par do forno é mantida a 35°C por uma caixa termostática "MECI" enquanto que a do termo-par da amostra que necessita de maior precisão, é mant<u>i</u> da a 0°C por gêlo em fusão.

A tensão do termo-par do forno é enviada a um regis trador "MECI", do tipo Minipont (essa tensão é sempre reduzida a um valor inferior a 2 mV, fundo de escala do registrador, por um sistema de oposição). Êsse registrador tem dois cursores, um que pode ser fixado num valor qualquer e outro móvel, que é comandado pela tensão do termo-par. Quando o cursor móvel passar em frente ao fixo acionará um microconector que aumentará ou diminuirá a tensão do forno dependendo do seu sentido de movimento.

Dêsse modo a tensão do forno e portanto sua temper<u>a</u> tura oscilará em torno do valor desejado que é escolhido de maneira a lermos zero no galvanômetro da ponte potenciométrica.

4.5 CIRCUITO DE MEDIDA

Mede-se a tensão aplicada nos extremos de uma amostra, de secção e comprimento conhecidos, e a corrente que passa por ela. Com êsses valores calcula-se a resistividade.

A figura 7 mostra o esquema dêsse circuito.

À amostra filiforme, colocada em forma de U no suporte₂ (fig. 6), são soldados quatro fios; dois para a condução

Fig. 7 - Circuito de medida

.

da corrente e dois para a medida da tensão. A medida da corrente é dada diretamente pela queda de tensão existente nos extremos de uma resistência padrão de $l\Omega$ colocada no circuito. A medida da tensão reflete as variações da resistividade.

Afim de eliminar eventuais tensões parasitas que po<u>s</u> sam existir fazemos passar a corrente pela amostra nos dois sentidos, invertendo a polaridade da bateria. Tomam-se para a dete<u>r</u> minação da resistividade os valores da tensão e corrente dados pela média das medidas nos dois sentidos.

4.6 AMOSTRAS

Usamos ligas Johnson-Mattey, preparadas no laborat<u>ó</u> rio do Centro de Estudos Nucleares de Grenoble, em forma de fio com 0,3 mm de diâmetro. Análises feitas no I.E.A. deram os seguintes resultados:

valor nominal

FeNiMo	(48,43%,	48,65%,	1,95%)	FeNiMo	(49%,	49%,	2%)
FeNiSi	(48,96%,	48,81%,	2,22%)	FeNiSi	(49%,	49%,	2%)
FeNiSi	(48,10%,	45,96%,	5,93%)	FeNiSi	(48%,	48%,	4%)

Tôdas as nossas amostras foram submetidas a um trat<u>a</u> mento prévio que consiste num recosimento de uma hora, a 1100° C, sob atmosfera de hidrogênio seguido de uma têmpera à temperatura ambiente.

O aquecimento da amostra é feito pela passagem de uma corrente elétrica pela mesma, e a têmpera, pela interrupção da corrente e aumento do fluxo de gás frio. As finalidades dêsse tratamento podem ser resumidas em:

> 1? - levar, por difusão térmica, as amostras a um est<u>a</u> do de desordem <u>máxima e homogênea</u>.

> 2º - tornar equivalentes os estados iniciais das diver-

. 34 .

sas amostras

39 - congelar na temperatura ambiente um grande número de lacunas para favorecer a difusão térmi ca

49 - aliviar as tensões causadas pela trefilação.

Chamaremos de ligas virgens aquelas que ainda não foram usadas mas que ja foram submetidas a esse tratamento prévio.

A preparação da amostra para a experiência compree<u>n</u> de os seguintes passos:

- 19 solda dos quatro fios de medida à amostra virgem
- 29 medida do seu comprimento
- 3º colocação desta no suporte de amostra
- 49 inserção do conjunto no forno
- 5º colocação do forno no caroço do reator.

Utilizando cerca de trinta amostras assim preparadas realizamos muitas experiências cujos resultados serão apresentados e discutidos nos capítulos seguintes.

CAPÍTULO V

RESULTADOS OBTIDOS

Para possibilitar uma melhor visão de conjunto do trabalho realizado apresentaremos as experiências efetuadas sob forma de quadro sinóptico paraem seguida explicá-lo e dar os resultados obtidos.

TABELA	III

ť

	FeNiMo			FeNiSi		Fenisi		Ø \	FeNi	
	(49%49%2%)		(49%49%2%)		(48)	%48%4	%)			
Determinação	370°C-280°C		370°C-340°C							
de T _c	fig. 9		335°C-240°C							
		·		fig.	<u>11 a</u> ,	b				
Recosimentos										h
isotérmicos	460ºC 1	Eig,	10	400°C	fig.	12				
s/irradiação										
Recosimentos	433°C f	Eig.	10							
	410 "	11	11	410ºC	fig.	12	4100	C fig	. 13	
isotérmicos	390 "	11	TI .	390 "	"	11	390	ų s h	и М .)	Marchand
	360 "	11	**	370 "	11	11	380	ų n	11	fig.14
	350 "	**	88	350 "	11	11	360	11 11	11	
c/irradiação	330 !!	11	**	330 "	11	**	1			

Cada um dos recosimentos, com e sem irradiação foram feitos com ligas virgens.

Os resultados das medidas são apresentados em forma de gráficos $\rho \times t$ para recosimentos sem irradiação e $\rho \times \Phi$ para recosimentos com irradiação onde Φ é o fluxo de neutrons integr<u>a</u> do no tempo.

O fluxo de neutrons a que as amostras foram submet<u>i</u> das era de 5.10¹² N/cm².seg na potência de 2 MW.

Exporemos, a seguir, o método utilizado na determinação da temperatura crítica.

Numa liga, em geral, a variação de p causada pelo estabelecimento da ordem a curto alcance é muito menor que aquela causada pelo estabelecimento de ordem a longo alcance (fig.8). Essa característica é utilizada na determinação da temperatura crítica⁽¹¹⁾. Faz-se um recosimento sob irradiação a uma temperatura $T_1 > T_c$ com uma amostra virgem até que a resistividade se estabilize o que significa que a ordem a curto alcance chegou a seu valor de equilíbrio. Abaixa-se, então, a temperatura até T, se a resistividade não chegar a um valor constante num tempo razoável em relação ao do tratamento anterior é sinal de que está se formando ordem a longo alcance, processo esse muito mais lento. Nesse caso a temperatura crítica estará entre T₁ e T₂. Se, porém, a T₂ a liga se saturar rapidamente, abaixa-se novamente a temperatura repetindo a operação até encontrar T_.

Para a liga FeNiMo a temperatura foi baixada de 10° C em 10°C desde 370° até 280°C o que nos forneceu T_c com uma inprecisão de $\pm 5°$; assim, T_c para essa liga é 315° \pm 5°C.

Para o FeNiSi (2%) irradiou-se uma amostra nas seguintes temperaturas: 370°, 360°, 350° e 340°C. Uma nova amostra foi utilizada a partir de 335°C, nessa segunda experiência os d<u>e</u> graus de temperatura variaram conforme as conveniências do momen to, trabalhou-se nas seguintes temperaturas: 335°, 330°, 325°, 322°, 319°, 316°, 313°, 310°, 307°, 304°, 301°, 298°, 295°, 290°, 285°, 270°, 260°, 240°C.

Abaixo de 270°C a ordenação era muito lenta e foi preciso fazer recosimentos com uma duração mínima de 40 horas em

Fig. 8 - Resistividade elétrica em função da temperatura

cada temperatura; abaixo de 240°C as cinéticas são impraticáveis porque a não reprodutibilidade das condições de utilização (aqu<u>e</u> cimento gama, fluxo de neutrons...) juntamente com a pequenez da amplitude da variação de ρ tornam os resultados não significativos.

O método utilizado não nos permitiu determinar T_c da liga FeNiSi (2%), êste aspecto do problema será discutido no cap. VI.

A isoterma sem irradiação, a 460°C, com FeNiMo permitiu-nos confirmar que é preciso utilizar irradiação com neutrons para poder tornar observável o processo de ordenação dessas ligas (fig. 11).

A comparação entre as figuras 11 e 15 nos mostra que a variação de ρ na liga com impurezas de Mo é análoga, porém menor, que aquela encontrada na liga FeNi. O mesmo não se dá com as ligas de FeNiSi (2% e 4%), que como pode ser constatado pelas figuras 13 e 14, apresentam um comportamento anômalo no início dos recosimentos. Esse comportamento foi encontrado também em re cosimentos da liga FeNiSi (2%) a 400°C, sem irradiação (fig.11)

Tentaremos analisar e discutir esses resultados no capítulo seguinte.

Como o número de experiências realizadas com a liga FeNiSi (4%) não é muito grande so faremos apreciações qualitativas dos resultados sem analisar quantitativamente a relação entre a variação de ρ e a porcentagem de Si.

Para finalizar, precisamos dizer que uma das difi culdades encontradas no estudo da ordenação vem do fato que exp<u>e</u> riências idênticas não dão exatamente as mesmas curvas por causa do grande número de fatores dos quais depende o fenômeno estudado.

CAPÍTULO VI

DISCUSSÃO DOS RESULTADOS

Nossas experiências mostraram que a liga FeNiMo(2%) comporta-se de modo análogo à liga FeNi com relação à transição ordem-desordem enquanto que a liga com impurezas de Si apresenta um comportamento anômalo.

Neste capítulo apresentaremos e discutiremos algumas hipóteses a respeito do comportamento da impureza Si na liga com a finalidade de preencher o objetivo a que nos propusemos já descrito na seção 1.2. Esta parte do trabalho é de fundamental im portância por ser uma tentativa de explicação dos resultados encontrados.

Calcularemos ainda dois parâmetros para a liga FeN<u>i</u> Mo ,a saber: tempo de relaxação e energia de ativação; êsses resultados serão comparados com aquêles obtidos por Marchand para a liga FeNi.

Analisaremos tembém, a luz do que foi exposto em 2.3, o comportamento da resistividade, face a ordenação, quando são adicionadas impurezas à liga.

Discutiremos finalmente alguns problemas técnicos <u>en</u> contrados na realização das experiências e sua importância na i<u>n</u> terpretação dos resultados obtidos.

6.1 LIGAS FeNiSi

A - Influência da impureza

A comparação entre os gráficos das figuras 10,12,13

Fig. 10 - Ordenação de FeNiMo (49% 49% 2%) com e sem irradiação de neutrons (resistividade X fluxo de neutrons)

. 42 .

Fig 11a - Determinação da temperatura crítica da liga FeNiSi

• •

Fig. 12 - Ordenação de FeNiSi (49% 49% 2%) com e sem irradia ção de neutrons (resistividade X fluxo de neutrons)

.

Fig. 13 - Ordenação de EeNiSi com irradiação de neutrons

e 14 nos mostram, como já foi ressaltado no capítulo anterior,que a resistividade tem um comportamento crescente com o estabelecimento da ordem nas ligas com silício contrariamente ao comportamento decrescente que aparece nas ligas FeNi e FeNiMo.

Em muitos trabalhos análogos a êste, efetuados com as ligas $CuPd^{(26)}$, $Cu_3Au^{(34)}$ e $Fe_3A1^{(35)}$, foi observado que a v<u>a</u> riação inicial da resistividade era lenta e que para as temperaturas mais baixas chegava a haver um pequeno aumento. A êsse te<u>m</u> po inicial, chamado tempo de incubação, foi associado um primeiro estágio, ainda não totalmente claro, do processo de ordenação. Supõe-se que êsse primeiro estágio se relacione à nucleação de d<u>o</u> mínios ordenados.

Essa explicação não nos parece correta no nosso caso pois:

l?-nos trabalhos com as ligas CuPd, Cu₃Au e Fe₃Al o aumento de ρ aparece principalmente a temperaturas baixas, enquanto que, para a nossa liga com 2% de Si êsse aumento só se dá a temperaturas superiores a 350°C.

2Q-enquanto o aumento de β , nos trabalhos citados, é pequeno comparado com sua variação total, nas nossas amostras, êsse aumento é apreciável, por exemplo, o aumento de resistivid<u>a</u> de a 390[°]C é da mesma ordem de sua variação total a 330[°]C.

3?-a ordem a curto alcance se estabelece em todo o cristal aumentando a ordem média local em diversos pontos que <u>se</u> rão os núcleos dos domínios ordenados quando, com o abaixamento da temperatura, houver a formação de ordem a longo alcance; porém para T > T_c essas regiões de maior ordem não são estáveis e car<u>e</u> ce de sentido físico falar-se em nucleação de domínios ordenados para ordem a curto alcance.

Com a finalidade de obter dados numéricos que apoiem nossas hipóteses sôbre a explicação da anomalia observada c<u>al</u> cularemos os diferentes coeficientes de difusão e deslocamentos médios do Si, Ni e Mo na liga FeNi.

O estudo da difusão em ligas é muito complexo e não pode ser tratado rigorosamente pela teoria moderna do estado sólido⁽²⁴⁾. A teoria cinética da difusão em metais puros nos leva a seguinte fórmula pa**ra** a variação do coeficiente de difusão D com a temperatura absoluta T

$$D = D_{o} \exp(-\frac{Q}{kT})$$
 (6.1)

onde D é um coeficiente constante e Q é a energia de ativação.

No caso de ligas,o átomo difusor encontra condições diversas que no metal puro pois sendo a rêde constituida de átomos de diferentes espécies êsse deve vencer barreiras de potencial de diferentes alturas que dependem da natureza dos átomos <u>a</u>d jacentes; nada garante pois, que a relação (6.1) seja válida para ligas.

Como, porém, uma teoria adequada ainda não está definitivamente estabelecida e como só estamos interessados na ordem de grandeza dos parâmetros envolvidos seguiremos a sugestão de Smoluchowski⁽³⁶⁾ de obter os coeficientes de difusão na liga FeNi (50% 50%) calculando-os no Fe puro e supondo que devam ser aproximadamente iguais que na liga, o que significa que desprez<u>a</u> remos a pequena diferença de comportamento entre o Fe e o Ni.

Utilizando a formula (6.1) e dados tabelados (37) calculamos os valores de D a diversas temperaturas, e, a partir dêsses valores, com uma expressão do tipo daquela demonstrada por Einstein, para o movimento browniano:

$$x^2 = 2Dt$$
 (6.2)

determinamos o deslocamento médio do Si, Ni e Mo no Fe (ou seja, na liga FeNi).

Os resultados calculados para tempos interessantes em nossas considerações estão resumidos na seguinte tabela:

t (seg)	т (°С)	Ni	Si	Мо
$10^4 \approx 3h$	300	$x = 2.10^{-18} \text{ Å}$	10 ⁻⁹ Å	5.10 ⁻¹⁵ Å
$10^4 \stackrel{\text{\tiny ex}}{\simeq} 3h$	400	3.10 ⁻¹¹	4,10 ⁻⁵	3.10 ⁻⁸
$10^4 \approx 3h$	500	6.10 ⁻⁷	2.10^{-3}	7.10 ⁻⁵
$10^4 \approx 3h$	520		2	
3600≔ 1h	1100		2.104	

TABELA III

Kernohan e Wescheler⁽³⁸⁾ estudaram o efeito da irr<u>a</u> diação com neutrons e subsequentes tratamentos térmicos na resi<u>s</u> tividade da fase α da liga CuAl. Para explicar os resultados encontrados (diminuição inicial e posterior aumento de ρ) separaram as curvas observadas em dois processos.

A exemplo dêsses autores nós também separaremos a variação da resistividade elétrica em dois processos. Ao analisarmos as contribuições à resistividade (seção 2.3) vimos que os únicos termos suscetíveis de variação, durante um tratamento tér mico a temperatura constante, são $\rho_i \in \rho_d$; associaremos, então um processo A à variação de ρ_i e um processo B à variação de ρ_d . Es sa associação nos parece bastante razoável e através dela pode remos explicar os resultados encontrados.

Apresentaremos nossa proposição subdividida em diversos Ítens.

> 1? - A variação de ρ_d seria decrescente enquanto a de ρ₁, crescente. A figura 15 esquematiza a s<u>e</u> paração nos dois processos que sugerimos.

Fig. 15 - Esquema da separação nos dois processos A e B

29 - O processo B corresponderia a um aumento da or dem a curto alcance na liga, causado pela difu são do Ni no Fe; o processo originar-se-ia pela difusão do Si dentro da liga que passando de um tipo de posição para outro modificaria o es palhamento dos eletrons de condução aumentando a resistividade.

Para justificar essa difusão supusemos que a posição estável para o Si, na rêde, depende da temperatura. Assim, poderia ser explicado doseguinte modo o que advém com a amostra durante os tratamentos a que ela é submetida:

- -durante o recosimento prévio a 1100°C o Si passaria para a posição de equilíbrio que torna mínima a energia livre do sistema; para fixar idéias supo remos que essa posição seja a intersticial,
 -com a têmpera êsse estado seria congelado,
 -durante o recosimento subsequente, se a energia for necida à amostra fôsse suficiente, haveria difusão
- do Si que passaria para a nova posição de equilíbrio, por exemplo, substitucional.
- 3º O processo B precisaria ser acelerado com irra diação de neutrons para tornar-se perceptível enquanto o processo A seria essencialmente tér mico.

A seguir mostraremos que nossa proposição é coerente, com os dados obtidos experimentalmente e aquêles da tab. III, explicando cada ítem.

> 1º ítem - ρ_d varia com a mudança de ordem na liga, é l<u>ó</u>gico, portanto, que diminua com o aumento desta.

A expressão de ρ_i tem pela (2.8) a forma:

$$\rho_{i} = \{A_{2}' - A_{1}' - 3A_{3}'\} c_{A} c_{B}$$
(2.8)

onde:
$$A = \sum_{i=1}^{n} a_{si}$$
 $a_{ii} = \frac{1}{kT} \frac{\partial^2 \phi}{\partial p_{A_i}}$

$$a_{ij} = \frac{1}{z'kT} \frac{\partial^2 \phi}{\partial p_A} \sum_{j=1}^{z'} \cos \eta_{\zeta_{ij}} q$$

c _A ,c _B	- concentrações de atomos A e B
ф	- potencial termodinâmico
P _A .	- probabilidade de substituição de
-1	um lugar da sûb erêde i por um át <u>o</u>
	mo A
z'	- número total de lugares da sub-rê

η_ζ - vetor de um lugar da sub-rêde i a ij um dos lugares da sub-rêde j.

O fato da variação de ρ_i ser positiva ou negativa <u>de</u> dende essencialmente da relação{ $A'_2 - A'_1 - 3A'_3$ }. O deslocamento do Si de um tipo de posição a outro, durante um recosimento, pode a<u>l</u> terar o potencial termodinâmico e as outras grandezas que definem os A_i , havendo, então, a possibilidade que a alteração nos A_i torne ρ_i crescente durante a difusão do Si.

2º Ítem - Utilizando os dados da tabela verificamos in<u>i</u> cialmente que:

a) é efetivamente possível ao Si difundir-se para <u>o</u> cupar uma posição mais estável durante o recosimento de uma hora a 1100° C, pois o seu deslocamento médio após êsse tratamento éda ordem de 5500 parâmetros da rêde tomando êste de 3,5Å.

b) após três horas de recosimento a 520[°]C o Si se deslocará em média 2[°]A que pode ser considerada como a distância entre um intersticial e um substitucional se supusermos que as p<u>o</u> sições intersticiais possíveis para o Si na rêde são aquelas co<u>r</u> respondentes aos centros das arestas dos cubos formados pelos $\underline{\hat{a}}$ tomos de Ni ou de Fe.

Êste último fato poderia dar a impressão de incoerênciacom as experiências uma vez que o aumento de resistividade foi observado,a partir de 350°C (fig.12) e não de 530°C.

Lembremos, porém,que para obter os dados da tabela supôsose que a quantidade de lacunas f_v existente em equilíbrio termodinâmico na temperatura de recosimento T na amostra era aquela dada pela fórmula:

$$f_v = \exp \left(\frac{S_v}{k} - \frac{E_v}{kT}\right)$$
 (6.3)

onde: S_v = entropia de formação

 E_v = energia de formação.

Na realidade, nas ligas virgens tinhamos uma conce<u>n</u> tração muito maior de lacunas originadas de três modos diferen tes, a saber:

- lacunas causadas por vibração térmica dos ato mos, emuquantidadebdadarpelacexpressão (6.3)
- lacunas causadas por bombardeamento com neutrons
- lacunas congeladas pela têmpera a partir de 1100°C (tratamento prévio) que conforme (6.3) são em número elevado.

Durante o recosimento subsequente a concentração de lacunas provindas da têmpera diminue ràpidamente até que reste o número previsto pelos dois primeiros processos, ou seja, uma con centração estacionária que é a soma da concentração térmica dada pela expressão de f_v para a temperatura de recosimento escolhida mais a concentração provocada pelo bombardeamento com neutrons. Na fase inicial enquanto o número de lacunas for superior ao número de lacunas térmicas em equilíbrio a 520[°]C haverá possibilidade de difusão do Si mesmo em recosimentos a te<u>m</u> peraturas mais baixas.

É por essa razão que encontramos aumento da resist<u>i</u> vidade em tratamentos a 350⁰C.É também por êsse motivo que o aumento só é observado em ligas virgens (figs. 11a e 16).

3º Ítem - Como terminamos de ver o processo A deve darse mesmo sem irradiação e isto foi experimentalmente verificado, como sedpode constatar pela figura 12 (400° C sem neutrons), ou <u>se</u> ja, o processo A é essencialmente térmico.

No entanto, o processo B, como pode ser verificado pela curva de variação da resistividade durante o recosimento a 460°C sem irradiação (fig.10), não é observável se não for acel<u>e</u> rado por bombardeamento com neutrons.

Os dados da tabela III mostram que o deslocamento mé dio do Si a 400° C é 10^{6} vêzes maior que o do Ni; é lógico, então, que o processo B, relativo à difusão do Ni, deverá ser acelerado por bombardeamento neutrônico.

Terminando a análise de nossa proposição que consi<u>s</u> te em associar o processo A à difusão do Si e o processo B à difusão do Ni devemos observar que o Mo para se deslocar de um parâ metro da rêde necessita de um tempo 10^{11} vêzes mais longo que o Si tornando claro, portanto, a não existência de variação do te<u>r</u> mo ρ_{\star} nas ligas FeNiMo.

Devemos mencionar ainda que à medida que fazemos r<u>e</u> cosimentos à temperaturas mais baixas, o processo A que depende fortemente de T, diminue de intensidade e a curva $\Delta \rho_i + \Delta \rho_d$ passa de crescente à decrescente explicando desse modo o que foi o<u>b</u>

. 54 .

103- P(42cm) Fe Ni Si 48% 48% 4% 370° C 100 350°C . 340° C 95 90+ 0 150 \$ (10" "/cm") 50 IQO FLUXO DE NEUTRONS INTEGRADO

. 55 .

servado experimentalmente.

Para uma determinação mais exata das possíveis distribuições das impurezas na rêde cristalina seriam necessários cálculos das energias postas em jôgo nos processos de difusão e das perturbações introduzidas pela presença das impurezas na energia potencial e na estrutura de bandas do cristal.

B - Determinação de T_c

Utilizando o método descrito no capítulo V obtivemos as curvas $\rho \times \Phi$ que estão representadas na figura 11. Como pode ser observado não é possível determinar,a partir dêsses resultados, o valor da temperatura crítica.

Construimos, então, um novo gráfico de $\rho \times T$ da liga ordenada (fig. 17) tomando os valores de equilíbrio da resistividade nas diversas temperaturas de recosimento. Como foi exp<u>li</u> cado no capítulo V e é mostrado na figura 8 a curva deveria apr<u>e</u> sentar uma descontinuidade na inclinação para o valor de T = T_c. No intervalo de temperatura estudado, 370°C - 240°C, encontramos unicamente uma reta.

Em face desses resultados achamos que deve ocorrer uma das seguintes hipóteses:

- la- a impureza torna o parâmetro, resistividade da liga, pouco sensível à transição ordem-desordem.
- 2a- a temperatura crítica está fora do intervalo por nos estudado.
- 3a- com a presença da impureza não há mais formação de superestrutura.

Analisemos detalhadamente cada uma delas.

Fig. 17 - Resistividade da liga ordenada FeNiSi (49% 49% 2%) medida na temperatura de ordenação

,

la. hipótese- Existem ligas, como por exemplo FeCo ordenado, para as quais a curva da resistividade versus T não apresenta irregularidade em T = T_c. A figura 18 ilustra isto comparando os comportamentos do FeCo e do Cu₃Au^(24 e 39). Portanto, o fato da curva $\rho_{ord} \times T$ ser uma reta para a nossa liga não elimi na a existência de T_c.

Livshits et al.⁽⁴⁰⁾ estudaram o efeito da ordenação em ligas de composição próxima a Ni₃Mn dopadas compequenas quan tidades de Mo. Comparando as medidas de resistividade dessas ligas dopadas com diferentes porcentagens em pêso (0,6% a 4,1% de Mo), constataram que na liga pura a resistividade apresentava um mínimo relacionado ao estabelecimento do estado ordenado. Verifi caram ainda que êsse mínimo se tornava menos pronunciado com o <u>a</u> créscimo da impureza até o completo desaparecimento para uma con centração da ordem de 2,65% em pêso. A partir disso os autores concluiram que a adição da impureza mascarou o estabelecimento da ordem a longo alcance.

No nosso caso é razoável admitir que a presença da impureza torne o comportamento, da liga, que era semelhante ao do Cu₃Au, semelhante ao do FeCo, diminuindo então a sensibilidade da resistividade com a presença da ordem a longo alcance.

2a. hipótese- A rápida chegada da resistividade da valor de equilíbrio a 360° e 350° C (fig.lla) nos permite afirmar que para estas temperaturas não há formação de ordem a longo alcance, e que se T_c estiver fora do intervalo por nós estudado d<u>e</u> verá estar em temperaturas mais baixas e não mais altas.

O método por nós utilizado é, porém, impraticavel à temperaturas muito baixas porque o processo de ordenação é muito lento mesmo sob irradiação de neutrons.

Medidas de resistividade elétrica da liga AuCu₃ não revelaram a existência da fase ordenada e diagramas de Raios-X não evidenciaram linhas de superestrutura, porém Sykes e Jones

. 59 .

4

٩

Fig. 19 - Determinação da temperatura crítica (conforme Marchand)

⁽⁴¹⁾ através de medidas de calor específico, parâmetro muito sen sível a redistribuição de átomos em pequenos volumes de dimensões lineares da ordem de alguns parâmetros atômicos, conseguiram fazer um estudo do processo de ordenação.

A exemplo do que foi feito por Sykes e Jones só poderemos confirmar esta segunda hipótese com a utilização de um novo método de determinação da temperatura crítica.

3a. hipótese- Quanto a não existência de superestr<u>u</u> tura nos parece pouco provável que seja causada pelo acréscimo de uma porcentagem de impureza em tão pequena quantidade.

Se bem que não possamos escolher com certeza entre essas três hipóteses nos parece mais aceitável a de que a impur<u>e</u> za simplesmente mascare o aparecimento de superestrutura do que impeça êsse aparecimento.

6.2 LIGAS FeNiMo

A -Determinação de T_

Pela figura 9 pode-se notar que a temperatura crít<u>i</u> ca está entre 320° e 310° C o que nos leva a tomá-la como: $315^{\circ} \pm 5^{\circ}$ C.

Marchand determinou, para o FeNi, $T_c = 321^{\circ} \pm 1^{\circ}C$; como pode ser constatado pela figura 19 o aparecimento de ordem a longo alcance é bem mais nítido nessas experiências que nas n<u>o</u>s sas.

Levando-se em conta que:

 a) as amostras utilizadas por Marchand e por nos pro vêm de lotes diferentes e que portanto a relação entre as porcentagens de Fe e de Ni não é

. 60 .

exatamente a mesma

- b) a diferença entre as temperaturas críticas é pequena e mal definida
- c) a determinação de T_c para o FeNiMo é pouco prec<u>i</u>sa,

concluimos que não podemos fazer nenhuma afirmação categórica a respeito da influência da impureza na temperatura crítica datran sição ordem-desordem.

B - Determinação do tempo de relaxação

A partir dos pontos experimentais traçamos as curvas de $\rho \times \phi$ para as diferentes temperaturas de recosimento. A se guir as analisamos no computador IBM 1620 utilizando o programa: "Mínimos quadrados para combinação linear de exponenciais"⁽⁴²⁾.

Utilizando o método de Nagy, já descrito em 3.1,com a finalidade de interpretar as curvas de resistividade, construi mos os gráficos log { $\rho(t) - \rho(t+\Delta t)$ } contra t com $\Delta t = \frac{1}{2}$ hora utilizando os pontos da curva determinada no computador.

As experiências com FeNiMo foram feitas num dispos<u>i</u> tivo do tipo usado por Rechenberg⁽²⁶⁾ sem as modificações introd<u>u</u> zidas por nos posteriormente. Os pontos experimentais eram bastante dispersos tornando difícil o traçado da curva. Foi então preferível, em alguns casos, traçar duas curvas (analisar ambas no computador) e determinar dois valores de τ bem próximos.

Com os valores de τ nas diversas temperaturas de recosimento construimos o gráfico log $\rho \times \frac{1}{T}$ (fig.20). A localização dos pontos nesse gráfico era bastante dispersa evidenciando um êrro apreciável. Traçamos então uma curva que daria o valor máximo da energia ΔE e outra que daria o valor mínimo. Estas curvas foram utilizadas para avaliar o êrro cometido; a curva média nos deu o valor mais provável da energia de ativação.

Fig. 20 - Determinação da energia de ativação

$$\tau = 3,2 \cdot 10^{-7} \exp(\frac{8100}{T})$$

A energia de ativação ΔE resultou ser de 0,70±0,15 ev. Marchand (ob. cit. pag.61) estudando a liga FeNi en controu $\Delta E = 0,47 \pm 0,05$ ev. Explicou êsse resultado, baseado nas teorias de Dienes e Damask⁽⁴³⁾, admitindo que a energia de migra ção de lacunas simples é de 0,94 eV e supondo um processo de recosimento linear de defeitos por migração para sorvedouros fixos ao mesmo tempo que uma recombinação direta lacuna-intersticial.

Considerando que o Mo tem um raio atômico maior do que o Fe e o Ni é possível supor que o processo de migração para sorvedouros fixos ou o de recombinação lacuna-intersticial venha necessitar de uma maior energia de ativação explicando dêsse modo o valor superior achado por nós na liga FeNiMo em relação àque le da liga FeNi.

Pode dar-se também que essa diferença provenha do elevado êrro que temos em nosso resultado ou ainda, o que nos parece mais lógico, da soma dos dois fatos.

6.3 ANÁLISE DA RESISTIVIDADE

Para uma determinada temperatura, examinemos os valores iniciais da resistividade das diversas ligas por nos estudadas, comparando-os com os da liga FeNi. Para isto recorramos a figura 21 que nos mostra as curvas de resistividade a 390° C das ligas FeNiSi (2% e 4%) e FeNiMo (2%) e a 400° C da liga FeNi (50% 50%). A partir desta poderemos verificar a validade da lei de M<u>a</u>

Fig. 21 - Resistividade de diversas amostras

,.

. 64 .

thiessen e da separação dos termos ρ_i e ρ_d .

Na seção 2.3 havíamos separado as contribuições à resistividade em ρ_{dT} , ρ' , ρ_{i} , ρ_{d} , sabemos agora que a diferença en tre os valores iniciais provêm do termo ρ_{i} já que os outros são iguais para as diversas ligas na temperatura considerada; ρ_{dT} é o mesmo porque as temperaturas de recosimentos são iguais; ρ' , resistividade residual, pode ser suposta a mesma por ser um termo pequeno; e ρ_{d} é o mesmo porque tôdas foram igualmente desorde nadas através do tratamento prévio.

O recosimento para o FeNi foi feito a 400° C mas como ρ_{dT} varia linearmente com T, o valor inicial para o FeNi a 390°C será ainda menor.

Pelo gráfico vemos que:

$$\rho$$
(FeNi) < ρ (FeNiSi 2%) < ρ (FeNiSi 4%)
 ρ (FeNi) < ρ (FeNiMo 2%)

Vemos portanto que o termo ρ_i cresce com o aumento da porcentagem da impureza e o seu valor depende do tipo de imp<u>u</u> reza introduzido. No nosso caso notamos que ρ_i (FeNiMo) > ρ_i (FeNiSi) para uma mesma porcentagem.

604 PROBLEMAS EXPERIMENTAIS

Para finalizar essa discussão exporemos uma dificu<u>l</u> dade técnica, encontrada no desenvolvimento de nosso trabalho c<u>au</u> sada pela falta de continuidade no fluxo de neutrons.

O reator funcionava unicamente oito horas por dia três vêzes por semana e somente a algum tempo passou a funcionar cinco vêzes por semana. A interrupção provocada em cada oito horas de operação introduzia um degrau na **curva** da resistividade <u>co</u> mo pode ser constatado pela curva b da figura 22.

Pareceu-nos que duas poderiam ser as origens dêste fenômeno:

la.-alteração na liga durante a entrada em funcion<u>a</u> mento," start up", ou durante o desligamento, "shut down",do re<u>s</u> tor

2a.-alteração nas condições de fluxo de neutrons, de radiação gama ou de homogeneidade da temperatura.

Em princípio, durante a operação do reator as cond<u>i</u> ções de temperatura e fluxo variam pouco. Supondo que as alterações na amostra quando o reator é desligado ou ela é retirada do mesmo sejam equivalentes, idealizamos a seguinte experiência:

- a) irradiamos a amostra a 240[°]C com neutrons até que a resistividade se tornasse constante (saturação da ordem).
- b) retiramos a amostra do reator mantendo sua temperatura a 240°C e após uma hora a recolocamos em sua posição inicial.

Os resultados obtidos encontram-se na figura 23 que passaremos a examinar com maiores detalhes.

O valor de ρ é o mesmo no instante em que a amostra é retirada do reator (c) e no instante em que ela é recolocada (d).

Durante o intervalo de uma hora em que a amostraper manece fora do reator as condições dêste quanto ao fluxo e a tem peratura pràticamente não variam, portanto a amostra voltando ao reator encontra as mesmas condições iniciais; uma vez que apresen ta o mesmo valor da resistividade pode-se excluir a primeira alternativa como origem do fenômeno. Êsse fato permite-nos efetuar as correções das curvas por simples translação dos trechos desl<u>o</u> cados (fig.22).

O valor da resistividade quando a amostra se enconitra fora do reator \tilde{e} menor porque o fluxo de radiação gama, res-

. 67 .,

ponsável por parte do aquecimento, perfeitamente uniforme, não está presente;nesse caso o aquecimento provém unicamente do forno que introduz um pequeno gradiente de temperatura na amostra . Como a resistividade de nossa liga é fortemente dependente da temperatura êste efeito aparece claramente como se vê no gráfico da figura 23.

Esta dificuldade experimental que nos impediu a determinação da temperatura crítica no caso do FeNiSi(2%) seria eliminada se o reator funcionasse continuamente.

CAPÍTULO VII

CONCLUSÕES

Estudamos as cinéticas de ordenação da liga FeNi(50% 50%) com impurezas de Mo (2%) e Si(2% e 4%) a temperaturas acima da T_z.

Determinamos T_c e a energia de ativação do processo de ordenação a curto alcance para a liga FeNiMo.

Êsses valorés resultaram um pouco diferentes daqu<u>e</u> les encontrados por Marchand para a liga FeNi; não nos foi poss<u>í</u> vel no entanto, decidir com certeza se essa diferença provinha da presença do molibdênio, da margem de êrro dos resultados exp<u>e</u> rimentais ou de ambas.

Para a liga FeNiSi (2%) não conseguimos determinar - T_c e sugerimos para isso a utilização de um método diferente do nosso.

Observamos um aumento inicial da resistividade nas ligas com Si(2% e 4%), comportamento êsse inesperado face aos r<u>e</u> sultados obtidos com FeNi e FeNiMo; explicamos essa anomalia associando-a a um processo de difusão do Si dentro da liga. Examinamos detalhadamente os diversos aspectos dessa hipótese . Para uma verdadeira corroboração de nossa proposição, que nos pareceu plausível, seriam necessários cálculos mais aprofundados e outras experiências .

Fizemos ainda o exame das diversas contribuições à resistividade e tentamos associar a variação de duas delas a dois processos que ocorreriam na liga durante os recosimentos sob ir-radiação.

Devemos ressaltar que as condições de trabalho não foram as mais favoráveis pelo fato das irradiações com neutrons serem interrompidas cada oito horas, senão mais freqüentemente por corte de energia elétrica!

A fim de eliminar êsse obstáculo que torna muitas medidas sem significado sugerimos que nos trabalhos posteriores as medidas sejam feitas fora do reator com amostras previamente irradiadas a temperaturas em que é possível a estocagem de defei tos.

SUGESTÕES PARA FUTUROS TRABALHOS

Esta tese, que é o balanço do trabalho começado a quase três anos, dá lugar a uma série de experiências complementares com a finalidade de confirmar alguns resultados e nos permite elaborar um plano de pesquisa bem determinado.

Os pontos mais importantes a serem desenvolvidos nos parecem ser:

1º- Verificar, por meio de um resfriamento lento em substituição à têmpera do tratamento prévio, o papel das lacunas congeladas na difusão do Sílicio.

2º- Precisar a dependência da posição do Si na rêde com a temperatura através de medidas de resistividade de amostras de FeNi puro e FeNiSi durante:

> -recosimentos isócronos de amostras virgens(medidas em curso)
> -descidas lineares em temperatura a partir de 1100°C efetuadas paralelamente e simultâneamente nas duas amostras.

30- Determinar T_c das ligas FeNi com 2% e 4% de Si utilizando um método mais sensível, por exemplo, medindo a vari<u>a</u> ção do calor específico da amostra.

49- Acompanhar a alteração na temperatura crítica da liga FeNi com a adição de impurezas a partir de concentrações baixas, por exemplo, alguns p.p.m. 59- Fazer observações utilizando microscópio eletr<u>ô</u> nico dos estados obtidos, após diferentes tempos de recosimentoe retidos à temperatura ambiente por têmperas.Dêsse modo pode --se verificar se , além da difusão do ⁵Silício não haverá talvez produção de algum tipo de defeito, que poderia ser responsável pelo mascaramento do estabelecimento da superestrutura.

BIBLIOGRAFIA

- (1) BRAGG,W. L. ; WILLIAMS,E.J. Proc. Roy. Soc. A 145, 699 (1934)
- (2) BETHE,H. Proc. Roy. Soc. A 150, 552 (1935)
- (3) NIX,F.C. ; SHOCKLEY,W. Revs. Mod. Phys. 10, 1 (1938)
- (4) TAMMANN,G.
 Z. Anorg. Chem. 107, 1 (1919)
- (5) JOHANSSON,C.H. ; LINDE,J.O. Ann. Physik 4 78, 439 (1925)
- (6) ZERNIKE,F. Physica 7, 565 (1940)
- (7) COWLEY,J.M. Phys. Rev. 77, 669 (1950)
- (8) ONSAGER,L. Phys. Rev. 65, 117 (1944)
- (9) PAULEVÉ,J. ; DAUTREPPE,D. ; LAUGIER,J. ; NÉEL,L. J. Phys. Radium 23, 841 L (1962)
- (10) LAUGIER,J. ; PAULEVÉ,J. Note C.E.A. Nº 540 (1965)
- (11) MARCHAND,A.
 "Thèse" Laboratório de Física do:Sólido C.E.N. Grenoble
 (1966)

- (12) BROSSON,P. "Thèse de 3e. Cýcle", Grenoble (1966)
- (13) CHAMBEROD,A."Thèse" Laboratório de Física do Sólido C.E.N. Grenoble
- (14) NÉEL,L. J. Phys. Rad. 15, 225 (1954)
- (15) HOUSTON,W. V.
 Z. Physik 48, 449 (1928)
 Phys. Rev. 34, 279 (1929)
- (16) BLOCH,F.
 Z. Physik 52, 555 (1928); 59, 208 (1930)
- (17) ZEITS,F. The Modern Theory of Solids (1940)
- (18) MOTT,N.F. Adv. Phys. 13, 325 (1964)
- (19) MOTT,N.F.
 Proc. Phys. Soc. 47, 571 (1935) ; 153, 699 (1936) ; 156,
 368 (1936)
- (20) -JONES,H. Encyclopedia of Physics Vol. XIX, 227 (1956)
- (21) MOTT,N.F. ; JONES,H. Metals and Alloys (1958)
- (23) TUROV, E.A. Izv. Akad. Nauk. S.S.S.R. Ser. Fiz. 191, 426 (1955)

- (24) KRIVOGLAZ,M.A.; SMIRNOV,A. The Theory of Order-Disorder in Alloys (1964)
- (25) GIRIFALCO,L.A. Atomic Migration in Crystals (1964)
- (26) RECHENBERG, H.R. Tese de mestrado F.F.C.L. da U.S.P. (1968)
- (27) DIENES,G.J. Acta Met. 3, 549 (1955)
- (28) VINEYARD,G.H. Phys. Rev. 102, 981 (1956)
- (30) NAGY,E. ; NAGY,I.
 J. Phys. Chem. Solids 23, 1605 (1962)
- (31) IIDA,S. J. Phys. Soc. Japan 10, 769 (1955)
- (32) DAMASK, A.C. Journal of Appl. Phys. 27, 610 (1956)
- (33) Josso,E. Compt. rend, 230 (1950)
- (34) WRIGHT, P. ; GOODCHILD, J.C. Proc. Phys. Soc. 79, 196 (1962)
- (35) FEDER,R. ; CAHN,R.W. Phil. Mag. 5, 343 (1960)
- (36) SMOLUCOVISKI,R. Comunicação particular

- (37) ADDA,Y. ; PHILIBEST,J. La Difusion dans les Solides II (1966)
- (38) KERNOHAN,R.H. ; WECHSLER,M.S. J. Phys. Chem. Solids 7, 307 (1958)
- (39) Mc.GEARY,R. ; SIEGEL,S. Phys. Rev. 65, 347 (1944)
- (40) LIFSHITS,B.G. ; MOLOTILOV,B.V. ; SAVOST'YANOVA,N.A.;MYULLER,N. Fiz. Metal. 1 Metalloved 3, 477 (1956)
- (41) SYKES, C. ; JONES, F.W.
 J. Inst. of Metals 59, 257 (1936)
 Proc. Roy Soc. A 157, 213 (1936)
- (42) PAIANO,M.C. ; COHENCA,J.M.Publicação I.E.A. nº 106
- (43) DIENES,G.J. ; DAMASK, A.C. J. Appl. Phys. 29, 1713 (1958)

* * *

ÍNDICE DAS FIGURAS

		pag.
Figura 1 -	Variação dos parâmetros de ordem em função da temperatura (conforme NIX e SCHOCKLEY)	6
Figura 2 -	Estrutura da liga binária c.f.c. FeNi a) desordenada b) ordem FeNi c) ordem FeNi ₃	8
Figura 3 -	Velocidade de estabelecimento da ordem em fu <u>n</u> ção do parâmetro de ordem para U=1,1ev (con- forme BROSSON)	21
Figura 4 -	Esquema de bloco do aparato experimental	27
Figura 5 -	Esquema do dispositivo para irradiação	29
Figura 6 -	Disposição da amostra no suporte	30
Figura 7 -	Circuito de medida	33
Figura 8 -	Resistividade elétrica em função da temperat <u>u</u> ra a) liga desordenada	
	b) liga ordenada	38
Figura 9 -	Determinação da temperatura crítica da liga FeNiMo (49% 49% 2%)	39
Figura 10-	Ordenação de FeNiMo (49% 49% 2%) com e sem i <u>r</u> radiação de neutrons (resistividade X tempo ou fluxo de neutrons)	42
Figura 11-	Determinação da temperatura crítica da liga FeNiSi (49% 49% 2%)	

		a) $370^{\circ}C - 340^{\circ}C$	
		b) 335°C – 240°C	43
Figura	12-	Ordenação de FeNiSi (49% 49% 2%) com e sem i <u>r</u>	
		radiação de neutrons (resistividade X tempo ou	
		fluxo de neutrons)	44
Figura	13-	Ordenação de FeNiSi (48% 48% 4%) com e sem ir	
		radiação de neutrons (resistividade X tempo ou	
		fluxo de neutrons)	45
Figura	14-	Ordenação de FeNi (50% 50%) com irradiação de	
		neutrons (conforme MARCHAND)	46
Figura	15-	Esquema da separação nos processos A e B	50
Figura	16-	R esistividade de <u>uma amostra</u> de FeNiSi (48%-	
		48% 4%) a 370°, 360° e 350°C em; função do fl <u>u</u>	
		xo de neutrons integrado no tempo	55
Figura	17-	Resistividade da liga ordenada FeNiSi (49% -	
		49% 2%) medida na temperatura de ordenação	57
Figura	18-	Resistividade elétrica em função da temperatura	
		a) Cu ₃ Au ordenado	
		b) FeCo ordenado	59
Figura	19-	Determinação da temperatura crítica para o Fe	
		Ni (50% 50%) (conforme MARCHAND)	59
Figura	20-	Tempo de relaxação τ em função da temperatura	62
Figura	21-	Resistividade de diversas amostras a 390 ⁰ C	64
Figura	22-	Interpretação das curvas experimentais	67
Figura	23-	Resultado obtido retirando a amostra do reator	
		durante um tratamento térmico	67

ERRATA

página	linha	em vez de	<u>leia-se</u>
23	14	(2.5)	(2.4)
51	3	o processo originar-se-ia	o processo A originar-se- -ia
64		390 ⁰ C FeNi	400 ⁰ C FeNi
40	13	11 e 15	10 e 14